Publication

Modeling of Unidirectional-Overloaded Transition in Catalytic Tubular Microjets

Klingner, A., Khalil, I. S. M., Magdanz, V., Fomin, V. M., Schmidt, O. G. & Misra, S. 13-Jul-2017 In : The Journal of Physical Chemistry. C: Nanomaterials and Interfaces. 121, 27, p. 14854-14863 10 p.

Research output: Scientific - peer-reviewArticle

Documents

  • Modeling of Unidirectional-Overloaded Transition in Catalytic Tubular Microjets

    Final publisher's version, 6 MB, PDF-document

DOI

  • Anke Klingner
  • Islam S. M. Khalil
  • Veronika Magdanz
  • Vladimir M. Fomin
  • Oliver G. Schmidt
  • Sarthak Misra

A numerical time-resolved model is presented for predicting the transition between unidirectional and overloaded motion of catalytic tubular microjets (Ti/Fe/Pt rolled-up microtubes) in an aqueous solution of hydrogen peroxide. Unidirectional movement is achieved by periodic ejection of gas bubbles from one end, whereas formation of multiple bubbles hinders microjet movement in overloaded regime. The influence of nucleation positions of bubbles, hydrogen peroxide concentration, liquid-platinum contact angle, microjet length, and cone angle on the bubble ejection frequency and microjet speed are investigated. We find agreement between the theoretical speeds of the microjet for a range of bubble nucleation positions (0.4L ≤ x0 ≤ 0.6L) and our measurements (108 ± 35 μm/s) for unidirectional motion. In addition, we observe experimentally that transition to overloaded motion occurs for hydrogen peroxide concentration of 5%, whereas our model predicts this transition for concentrations above 2.5%.

Original languageEnglish
Pages (from-to)14854-14863
Number of pages10
JournalThe Journal of Physical Chemistry. C: Nanomaterials and Interfaces
Volume121
Issue number27
StatePublished - 13-Jul-2017

    Keywords

  • HYDROGEN-PEROXIDE, PROPULSION MECHANISM, MICROMOTORS, ENGINES, NANOMOTORS, FLAGELLA, BLOOD

View graph of relations

ID: 48434379