Organisational unit: Research Group

  1. 2017
  2. 2016
  3. Ruíz Duarte, E. (2016). L Functions and arithmetic: L Functions and arithmetic at Harvard, June 2016. Paper presented at L-function and arithmetic ; a conference in honor of thr 60th birthday of Karl Rubin, Cambridge, MA, United States.
  4. Anema, A. S. I. (2016). The arithmetic of maximal curves, the Hesse pencil and Mestre curve [Groningen]: Rijksuniversiteit Groningen
  5. 2015
  6. Hoepman, J., Lueks, W., & Ringers, S. (2015). On Linkability and Malleability in Self-blindable Credentials. In R. N. Akram, & S. Jajodia (Eds.), Information Security Theory and Practice: 9th IFIP WG 11.2 International Conference, WISTP 2015 Heraklion, Crete, Greece, August 24–25, 2015 Proceedings (Vol. 9311, pp. 203-218). [Chapter 13] (Information Security Theory and Practice; Vol. 9311). Springer. DOI: 10.1007/978-3-319-24018-3_13
  7. Ngo, L. X. C., Nguyen, K. A., van der Put, M., & Top, J. (2015). Equivalence of differential equations of order one. Journal of symbolic computation, 71(November-December 2015), 47-59. DOI: 10.1016/j.jsc.2014.09.041
  8. 2014
  9. Schicho, J., Top, J., Ellwood, D., Hauser, H., Mori, S., & Schicho, J. (2014). Algebraic approaches to FlipIt. In D. Ellwood, H. Hauser, & S. Mori (Eds.), The Resolution of Singular Algebraic Varieties (pp. 319-326). (Clay Mathematics Proceedings; Vol. 20). Providence, R.I.: American Mathematical Society.
  10. 2013
  11. Kiselev, A., & Ringers, S. (2013). A comparison of definitions for the Schouten bracket on jet spaces. In Proceedings 6th International workshop `Group analysis of differential equations and integrable systems' (pp. 127-141)
  12. Soomro, M. A. (2013). Algebraic curves over finite fields Groningen: s.n.
  13. Kiselev, A. (2013). The geometry of variations in Batalin--Vilkovisky formalism. In Journal of Physics: Conference Series (Vol. 474, pp. 012024)
  14. Kiselev, A. (2013). Towards an axiomatic noncommutative geometry of quantum space and time. In Proceedings 6th International workshop `Group analysis of differential equations and integrable systems' (pp. 111-126)
  15. 2012
  16. 2011
  17. Top, J., van der Put, M., & Polo Blanco, I. (2011). Ruled quartic surfaces, models and classification. Geometriae dedicata, 150(1), 151-180. DOI: 10.1007/s10711-010-9500-0
  18. Kiselev, A. (2011). Classical mechanics. In Geometry of interaction ISPU Press.
  19. Heijne, B. L. (2011). Elliptic delsarte surfaces Groningen: s.n.
  20. Kiselev, A., & van de Leur, J. W. (2011). Involutive distributions of operator-valued evolutionary vector fields and their affine geometry. In Proceedings 5th International workshop Group analysis of differential equations and integrable systems (pp. 99-109)
  21. 2010
  22. Compoint, E., Put, M. V. D., & Weil, J-A. (2010). Effective descent for differential operators. Journal of algebra, 324(1), 146-158. DOI: 10.1016/j.jalgebra.2010.02.040
  23. Napp, D., Put, M. V. D., & Shankar, S. (2010). PERIODIC BEHAVIORS. SIAM Journal on Control and Optimization, 48(7), 4652-4663. DOI: 10.1137/100782577
  24. 2009
  25. Put, M. V. D., & Tsang, F. L. (2009). Discrete systems and abelian sandpiles. Journal of algebra, 322(1), 153-161. DOI: 10.1016/j.jalgebra.2009.02.025
  26. Kiselev, A. V., & van de Leur, J. W. (2009). A geometric derivation of KdV-type hierarchies from root systems. In Proceedings of the 4th International workshop ‘Group analysis of differential equations and integrable systems’ (pp. 87-106)
  27. 2008
Previous 1 2 3 Next

ID: 32995