Heterologous complementation of peroxisome function in yeast
Kiel, Jan; Keizer-Gunnink, [No Value]; Komori, M; Veenhuis, M; Gunnink, Afina

Published in:
FEBS Letters

DOI:
10.1016/0014-5793(95)01385-7

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-10-2017
Heterologous complementation of peroxisome function in yeast: the *Saccharomyces cerevisiae* PAS3 gene restores peroxisome biogenesis in a *Hansenula polymorpha per9* disruption mutant

J.A.K.W. Kiel* , I. Keizer-Gunnink, T. Krause, M. Komori, M. Veenhuis

1 Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Biological Centre, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
2 Institut für Physiologische Chemie, Abteilung für Zellbiochemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany

Received 31 October 1995

Abstract *PER* genes are essential for the biogenesis of peroxisomes in the yeast *Hansenula polymorpha*. Here we describe the functional complementation of a *H. polymorpha per9* disruption strain (Δ*per9*) by a heterologous gene. The *Saccharomyces cerevisiae* PAS3, a homologue of Per9p, restored peroxisome biogenesis and peroxisomal protein import in the Δ*per9* mutant, allowing it to grow again on methanol as sole carbon and energy source. This result shows that heterologous complementation of peroxisome function in yeast is indeed feasible and furthermore suggests that *H. polymorpha* Δ*per9* may be the candidate of choice to attempt the isolation of Per9p homologues from higher eukaryotes by functional complementation.

Key words: Functional complementation; Inducible promoter; Matrix protein; Microbody; Shuttle vector; Yeast

1. Introduction

Peroxisomes are subcellular organelles surrounded by a single membrane, which are characterized by the presence of H$_2$O$_2$-producing oxidases as well as the H$_2$O$_2$-scavenger catalase. Dependent on the organism in which they occur, peroxisomes may vary in size, number and enzyme repertoires. Peroxisomes do not contain DNA. As a consequence, peroxisomal matrix proteins, synthesized in the cytosol, have to be imported into the growing organelle (reviewed in [1,2]). Peroxisomes fulfill essential functions in cellular metabolism. Defects in the biogenesis/function of these organelles have severe consequences, exemplified by the lethal genetic disorders such as the classical Zellweger syndrome in humans [3]. Yeasts are a major exception in that they remain completely viable and can grow normally on rich media in the absence of peroxisomes. Hence, various mutants involved in peroxisome biogenesis have been isolated from several yeast species (reviewed in [4]). The isolation of the corresponding yeast genes has rapidly expanded our knowledge on the molecular mechanisms underlying peroxisome biogenesis and also had a distinct spin-off in the understanding of human peroxisomal disorders [5-9].

There is a firm belief that the molecular basis of peroxisome biogenesis, like for other organelles, is conserved from lower eukaryotes to higher eukaryotes. However, so far functional complementation of peroxisome-deficient yeast mutants by heterologous genes has not been achieved [8,9]. This contrasts to the situation observed for other organelles like mitochondria and endoplasmic reticulum, where yeast mutants have been complemented by genes from higher eukaryotes [10,11]. In our laboratory we use the methylotrophic yeast *Hansenula polymorpha* as a model organism for studies on peroxisome biogenesis and function. Recently, we have isolated and characterized the *PER9* gene [12]. The *H. polymorpha* Per9p is presumed to be the functional homologue of the *S. cerevisiae* peroxisomal membrane protein Pas3p [13]. In the present study we show that the *PAS3* gene could functionally complement a *H. polymorpha per9* disruption mutant and thus restore peroxisome assembly. The data suggest that in particular the Δ*per9* mutant may be suited for the isolation of heterologous genes by functional complementation, using cDNA or genome banks.

2. Materials and methods

2.1. Micro-organisms and growth conditions

*Hansenula polymorpha*NCYC495 (leu1-1 ura3 Δ*per9*:URA3) and transformants of the peroxisome-deficient *H. polymorpha* strain Δ*per9* (leu1-1 ura3 Δ*per9*:Δ*per9*:URA3) [12] were grown in batch cultures on mineral medium [14] using either glucose (0.5%), glycerol (0.5%) or methanol (0.5%) as carbon source. *Escherichia coli*DH5α (supE44 ΔlacZΔM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1) (p80lacZAM15) hsdR17 recA1 endA1 gyrA96 thi-1 relA1) [15] was used for plasmid constructions and was grown on LB-medium supplemented with the appropriate antibiotics.

2.2. DNA procedures

H. polymorpha was transformed using the electroporation method [16]. Recombinant DNA manipulations were as described [15]. Polymerase chain reaction-mediated DNA amplification (PCR) was performed with Vent polymerase (New England Biolabs, Beverly, MA) according to [17]. Oligonucleotides were obtained from Eurosequence bv, Groningen, The Netherlands. Biochemicals were obtained from Boehringer, Mannheim, Germany.

2.3. Construction of plasmids

The *E. coli/H. polymorpha* shuttle vectors pHIPX5 and pHIPX6, shown in Fig. 1, were constructed as follows: for pHIPX5, a 1.0 kb fragment containing the promoter of the *H. polymorpha* amine oxidase gene (*P$_{AMO}$* nt 1–989 of EMBL accession number X15111) was isolated by PCR with the PAam0 primer (5′ GGG GCA TGC CCA TGG ATC (blunted)-XmaI fragment in *NovI* (blunted) + XmaI digested pHIPX4 [18], thus replacing the alcohol oxidase promoter in this plasmid. Similarly, for pHIPX6 a 1.2 kb fragment containing the promoter of the *H. polymorpha* *PER9* gene (nt 3–1196 in Genbank accession number U37763) was obtained by PCR with the PASam0 primer (5′ TGG ATC CAT CAA GTA TCA CAG AG 3′) and the M13/pUC reverse sequencing primer. The amplified frag-
Fig. 1. Physical map of the *E. coli/H. polymorpha* shuttle vectors pHIPX5 and pHIPX6. Abbreviations: kan, kanamycin resistance marker; ori, origin for replication in *E. coli*; PAMO and PPER9, promoters of the *H. polymorpha* amine oxidase and *PER9* genes, respectively. TAMO and TAox, terminators of the *H. polymorpha* amine oxidase and alcohol oxidase genes, respectively.

Fig. 2. Western blots of *H. polymorpha* *aper9* transformants. Cells were grown on methanol/ammoniumsulphate as described in Table 1 and harvested after 24 h of cultivation. Panel A: *aper9* cells carrying plasmids expressing *S. cerevisiae PAS3*: pHIPX4-PAS3 (lane 2), pHIPX5-PAS3 (lane 3) and pHIPX6-PAS3 (lane 4). Panel B: *aper9* cells carrying plasmids expressing *H. polymorpha PER9*: pHIPX4-PER9 (lane 2), pHIPX5-PER9 (lane 3), pHIPX6-PER9 (lane 4) and wild-type *H. polymorpha NNCYC495 (leu1-1 ura3)* (lane 5). In both panels *aper9* cells carrying vector pHIPX4 induced on methanol/ammoniumsulphate were used as control (lanes 1). Equal amounts of protein were loaded in each lane. Blots were decorated with specific antibodies against *S. cerevisiae* Pas3p and gold-conjugated goat-anti-rabbit antibodies.
Fig. 3. Ultrastructural analysis of transformed \textit{H. polymorpha} \textit{Aper9} cells, incubated on methanol/ammoniumsulphate-containing media. Cell of \textit{Aper9} carrying vector pHIPX4, showing the absence of peroxisomes; instead a cytosolic alcohol oxidase crystalloid (*) was present. The architecture of this crystalloid is not well preserved due to the KMnO4 fixation method (A). Cell of \textit{Aper9} carrying pHIPX4-PER9 (B) and cell of \textit{Aper9} carrying pHIPX4-PAS3 (C) showing numerous peroxisomes. Cell of \textit{Aper9} carrying pHIPX5-PAS3 containing relatively few peroxisomes, which in part are enlarged in size (D). Abbreviations: M. mitochondrion; N. nucleus; P. peroxisome. The bar represents 0.5 \textmu m.

(pHIPX4-PAS3, pHIPX5-PAS3 and pHIPX6-PAS3). Plasmid pHIPX4 and plasmids carrying the \textit{PER9} gene (pHIPX4-PER9, pHIPX5-PER9 and pHIPX6-PER9) were used as controls. Growth experiments, summarized in Table 1, showed that all constructs carrying \textit{H. polymorpha} \textit{PER9}, as well as pHIPX4-PAS3 and pHIPX6-PAS3 fully complemented the methanol-utilizing deficient (Mut') phenotype of the \textit{H. polymorpha} \textit{Aper9} mutant strain. However, pHIPX5-PAS3 transformants grew only slowly on methanol/ammoniumsulphate-containing media. Even after 48 h these cells did not reach the final density obtained with the other transformants. pHIPX4-transformants, used as control, were fully impaired to grow on methanol, confirming the Mut' phenotype of the \textit{Aper9} mutant [12].

The \textit{S. cerevisiae} Pas3p and \textit{H. polymorpha} Per9p protein levels in the various transformants of \textit{H. polymorpha} \textit{Aper9} were determined by Western blotting (Fig. 2). The data indicated that both Pas3p and Per9p were predominantly present in the pellet fractions which were separated from the crude cell homogenates by a short centrifugation step (not shown). The presence of Pas3p in these fractions suggests that this protein is either strongly bound to organellar membranes, as is the case for Per9p [12], or alternatively may be present in proteinaceous aggregates. Nevertheless, the relative amounts of both \textit{S. cerevisiae} Pas3p and \textit{H. polymorpha} Per9p observed in the pellet fractions corresponded to the expected levels of the proteins in those cells carrying a \textit{PAox}-driven \textit{PAS3} or \textit{PER9} gene contained.
Immunocytochemistry, using specific antibodies against *H. polymorpha* catalase (A) and *S. cerevisiae* Pas3p (B) showing the typical location of catalase at the edge of intact peroxisomes (A) and localization of *S. cerevisiae* Pas3p on the peroxisomal membrane (B) in methanol/ammoniumsulphate-grown *H. polymorpha* Δaper9 cells, carrying pHIPX4-PAS3. Abbreviations: M, mitochondrion, N, nucleus; P, peroxisome. The bar represents 0.5 μm.

4. Concluding remarks

Summarizing, our data led us to conclude that in *H. polymorpha* the heterologous *S. cerevisiae* Pas3p is not only normally synthesized and incorporated in the peroxisomal membrane, but is also able to functionally complement for the Per9p function. A partial complementation of the Δaper9 mutant by the PAS3 gene, resulting in import of only a portion of the key enzymes of methanol metabolism – alcohol oxidase, dihydroxyacetone synthase and catalase – into the peroxisomal matrix, would undoubtedly lead to cells exhibiting a Mut− phenotype. As shown before, the presence of even low quantities of alcohol oxidase activity in the cytosol prevents growth of the cells in liquid methanol-containing cultures [25,26], and is also the most likely explanation for the failure of the *Pichia pastoris* Pas8p, the putative homologue of *H. polymorpha* Per3p, to

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>A_663 after 24 h</th>
<th>A_663 after 48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>pHIPX4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>pHIPX4-PAS3</td>
<td>3.1</td>
<td>2.8</td>
</tr>
<tr>
<td>pHIPX5-PAS3</td>
<td>1.3</td>
<td>2.4</td>
</tr>
<tr>
<td>pHIPX6-PAS3</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>pHIPX4-PER9</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>pHIPX5-PER9</td>
<td>3.4</td>
<td>3.1</td>
</tr>
<tr>
<td>pHIPX6-PER9</td>
<td>3.2</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Transformed *H. polymorpha* Δaper9 cells were precultured on glucose/ammoniumsulfate-containing media (twice), subsequently on glycero/ammoniumsulfate-containing media (twice), and finally diluted at an absorption at 663 nm (A_663) of 0.1 in methanol/ammoniumsulfate-containing media. Growth is expressed as A_663 after incubation of cells for 24 and 48 h at 37°C.
functionally complement a H. polymorpha per3 disruption mutant [8]. Partial complementation was observed in a P. pastoris pas8 mutant synthesizing a fusion protein between P. pastoris Pas8p and its human homologue, Pxrlp. The transformed cells contained peroxisomes, and could grow on oleate, which also requires functional peroxisomes. Surprisingly, methylotrophic growth was not restored [9]. The reason for this is not yet known.

Acknowledgements: We thank Dr. Wolf Kunau (Bochum, Germany) for the gift of α-Pas3p antibodies, and Meis van der Heide, Robert Hilbrands and Jan Zagers for expert assistance in various parts of this study. Dr. J.A.K.W. Kiel was supported by the Netherlands Organization for the Advancement of Pure Research (NWO/MW).

References