Role of childhood adversity in the development of medical co-morbidities associated with bipolar disorder

Post, Robert M.; Altshuler, Lori L.; Leverich, Gabriele S.; Frye, Mark A.; Suppes, Trisha; McElroy, Susan L.; Keck, Paul E.; Nolen, Willem; Kupka, Ralph W.; Grunze, Heinz

Published in:
Journal of Affective Disorders

DOI:
10.1016/j.jad.2012.11.020

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 19-04-2017
Role of childhood adversity in the development of medical co-morbidities associated with bipolar disorder

Robert M. Posta,*, Lori L. Altschulerb, Gabriele S. Levericha, Mark A. Fryec, Trisha Suppesd, Susan L. McElroye, Paul E. Keck Jr., Willem A. Noleng, Ralph W. Kupkah, Heinz Grunzei, Mike Rowe

aBipolar Collaborative Network, 5415 West Cedar Lane Suite 201B, Bethesda, MD 20814, USA
bUCLA Mood Disorders Research Program and VA Medical Center, Los Angeles, CA, USA
cMayo Clinic Department of Psychiatry and Psychology, Mayo Clinic Depression Center, USA
dStanford University School of Medicine and V.A., Palo Alto Health Care System, Palo Alto, CA, USA
eLindner Center of Hope, Mason, OH, USA
fBiological Psychiatry Program, University of Cincinnati Medical College, Cincinnati, OH, USA
gUniversity Medical Center Groningen (UMCG), University of Groningen, Groningen, The Netherlands
hVU University Medical Center, Department of Psychiatry, Amsterdam, The Netherlands

Abstract

Objective: A role for childhood adversity in the development of numerous medical conditions in adults has been described in the general population, but has not been examined in patients with bipolar disorder who have multiple medical comorbidities which contribute to their premature mortality.

Methods: More than 900 outpatients (average age 41) with bipolar disorder completed questionnaires that included information about the occurrence of verbal, physical, or sexual abuse in childhood and whether their parents had a mood or substance abuse disorder, or a history of suicidality. These factors were combined to form a total childhood adversity score, which was then related to one or more of 30 medical conditions patients rated as present or absent.

Results: The child adversity score was significantly related to the total number of medical comorbidities a patient had (p < .001), as well as to 11 specific medical conditions that could be modeled in a logistic regression (p < .03). These included: asthma, arthritis, allergies, chronic fatigue syndrome, chronic menstrual irregularities, fibromyalgia, head injury (without loss of consciousness), hypertension, hypotension, irritable bowel syndrome, and migraine headaches.

Limitations: The contribution of parental diagnosis to childhood adversity is highly inferential.

Conclusions: These data link childhood adversity to the later occurrence of multiple medical conditions in adult outpatients with bipolar disorder. Recognition of these relationships and early intervention may help avert a more severe course of not only bipolar disorder but also of its prominent medical comorbidities and their combined adverse effects on patients’ health, wellbeing, and longevity.

1. Introduction

Bipolar disorder is associated with a host of psychiatric and medical comorbidities (Jerrell et al., 2010). These comorbidities have a dramatic effect on behavior, functioning, and longevity. Recent estimates suggest that bipolar disorder, like other major mental disorders, is associated with a marked reduction in years of life expectancy (Osby et al., 2001). In the U.S. these range from 13 years of lost life expectancy in some eastern states such as Virginia to 30 years in some western states (Colton and Manderscheid, 2006; Newcomer and Hennekens, 2007). While suicide is a factor, medical causes and contributions appear to exert the major effect (Colton and Manderscheid, 2006; Newcomer and Hennekens, 2007; Osby et al., 2001), especially cardiovascular diseases. The presence of childhood adversity appears to exert a negative influence on the earlier onset and adverse course of bipolar disorder (Brown et al., 2005; Garno et al., 2005; Leverich et al., 2002). Whether it also exerts an influence on increased risk for medical comorbidities remains to be studied.

In general medical practices, a history of childhood abuse or neglect is associated with a significant increase in the onset of a variety of medical illnesses, some of which appear predominantly in adulthood (Anda et al., 2006, 2008, 2010; Dubé et al., 2009;
Felitti et al., 1998; Shonkoff and Garner, 2012; Wolko... both parents were positive for these psychiatric difficulties, yielding a maximum total childhood adversity score (tCAS) of 17.

We then examined the relationship of the tCAS to the patients’ report of the lifetime occurrence of 30 medical conditions, each was scored as present if the patient rated it as “likely” or “definite” having that condition, and absent if it was scored as “unlikely” or “not present”. These medical conditions were tabulated for the 968 patients who completed the patient questionnaire. If the comorbidity was rare, (i.e., occurring in less than 20 patients), it was dropped from the analysis in this study due to insufficient sample size. The tCAS scores were then compared in the bipolar subjects as a function of the presence or absence of each of the remaining medical conditions. For this calculation we used tCAS scores only for those 904 who answered all of the questions related to childhood adversity burden. The mean tCAS score was 3.74 ± 3.26 for all 968 patients, while it was 3.84 ± 3.27 for the 904 patients answering all questions.

The relationship between the tCAS and each patient’s total number of comorbidities was also examined with a multinomial logistic regression with each patient having none (0), few (1–3), or many (4+) comorbidities using the few category as the baseline. Patient’s age, gender, body mass index, country of origin and any interactions were included as needed to produce the best model.

Once a relationship between the total number of comorbidities and tCAS was found, each comorbidity was then individually examined for tCAS influence on it. A logistic regression was run for each comorbidity modeling its occurrence as a function of tCAS and age, gender, body mass index and country of origin. Relationships of the different components of the tCAS to the presence of a given medical condition were preliminarily examined.

Table 1

<table>
<thead>
<tr>
<th>Medical comorbidity</th>
<th>Obs. Number</th>
<th>Percent present (%)</th>
<th>Mean tCAS present</th>
<th>Mean tCAS absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergies</td>
<td>949</td>
<td>353</td>
<td>37.2</td>
<td>4.66</td>
</tr>
<tr>
<td>Arthritis</td>
<td>946</td>
<td>125</td>
<td>13.2</td>
<td>5.23</td>
</tr>
<tr>
<td>Asthma</td>
<td>947</td>
<td>122</td>
<td>12.9</td>
<td>5.03</td>
</tr>
<tr>
<td>Cancer</td>
<td>948</td>
<td>24</td>
<td>2.5</td>
<td>4.63</td>
</tr>
<tr>
<td>Chronic fatigue syndrome</td>
<td>949</td>
<td>58</td>
<td>6.1</td>
<td>5.41</td>
</tr>
<tr>
<td>Chronic meningitis (no male)</td>
<td>505</td>
<td>140</td>
<td>27.7</td>
<td>5.11</td>
</tr>
<tr>
<td>Diabetes</td>
<td>949</td>
<td>30</td>
<td>3.2</td>
<td>3.89</td>
</tr>
<tr>
<td>Fibromyalgia</td>
<td>947</td>
<td>29</td>
<td>3.1</td>
<td>5.89</td>
</tr>
<tr>
<td>Head injury (with loss of consciousness)</td>
<td>949</td>
<td>134</td>
<td>14.1</td>
<td>4.4</td>
</tr>
<tr>
<td>Head injury (without loss of consciousness)</td>
<td>950</td>
<td>209</td>
<td>22.0</td>
<td>5.81</td>
</tr>
<tr>
<td>Heart disease</td>
<td>949</td>
<td>55</td>
<td>5.8</td>
<td>4.28</td>
</tr>
<tr>
<td>Hypertension (high blood pressure)</td>
<td>953</td>
<td>152</td>
<td>15.9</td>
<td>4.28</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>945</td>
<td>38</td>
<td>4.0</td>
<td>3.5</td>
</tr>
<tr>
<td>Hypoglycemia</td>
<td>952</td>
<td>60</td>
<td>6.3</td>
<td>4.84</td>
</tr>
<tr>
<td>Hypertension (low blood pressure)</td>
<td>952</td>
<td>100</td>
<td>10.5</td>
<td>5.12</td>
</tr>
<tr>
<td>Hypothyroidism</td>
<td>946</td>
<td>142</td>
<td>15.0</td>
<td>4.01</td>
</tr>
<tr>
<td>Irritable bowel syndrome</td>
<td>944</td>
<td>127</td>
<td>13.5</td>
<td>5.15</td>
</tr>
<tr>
<td>Kidney disease</td>
<td>949</td>
<td>29</td>
<td>3.1</td>
<td>3.76</td>
</tr>
<tr>
<td>Liver disease/Hepatitis</td>
<td>950</td>
<td>43</td>
<td>4.5</td>
<td>5.26</td>
</tr>
<tr>
<td>Migraine headache</td>
<td>950</td>
<td>228</td>
<td>24.0</td>
<td>4.94</td>
</tr>
<tr>
<td>other</td>
<td>721</td>
<td>95</td>
<td>13.2</td>
<td>4.09</td>
</tr>
<tr>
<td>Seizure</td>
<td>946</td>
<td>31</td>
<td>3.3</td>
<td>5.63</td>
</tr>
</tbody>
</table>

This table lists the frequency with which each comorbidity was found in our patient population as well as the mean tCAS for patients with (present) and without (absent) that comorbidity. Encephalitis, hyperadrenalism (Cushing’s disease), hypoadrenalism (Addison’s disease), meningsitis, multiple sclerosis, narcolepsy, Parkinson’s disease, and stroke were also queried, but the incidence was less then 2%, and they were not listed in the table or further examined.
3. Results

The number and percentage of patients reporting each of the 22 medical conditions that occurred in more than 20 individuals are listed in Table 1. Among the most prominent were allergies, migraine headache, and head injury (without loss of consciousness), which occurred in 22–37.2% of the patients. These were followed by hypertension, chronic menstrual irregularities, hypothyroidism, head injury (with loss of consciousness), irritable bowel syndrome, arthritis, asthma, and other problems occurring in 12–16%.

The distribution of the tCAS are listed and illustrated in Fig. 1. Nineteen percent had a score of zero, while 47% of the patient population had a tCAS 5 or greater. As illustrated in Fig. 2, higher tCAS were associated with a higher number of medical comorbidities; these were grouped as none, few (1–3), or many (4 or more) and subjected to multinomial logistic regression which also accounted for age, gender, and country of origin. Significant independent predictors of having 4+ medical comorbidities as compared to 1–3 included higher tCAS score (the best predictor), being from the US, and female gender, but not age. Significant predictors of having 1–3 medical comorbidities as compared to none included higher tCAS score, increased age, and female gender, but not country of origin Fig. 2.

As reported in Table 2, for 11 of the 16 medical conditions that could be modeled by a logistic regression accounting for age, gender, and country of origin, the risk of patients having that specific comorbidity significantly increased as a function of increasing tCAS. These comorbidities included: allergies, arthritis, asthma, chronic fatigue syndrome, chronic menstrual irregularities, fibromyalgia, head injury (without loss of consciousness), hyper- and hypotension, irritable bowel syndrome, and migraine headache.

Table 2 (right column) also shows which parts of the tCAS produced the best individual component model of the comorbidities presence. A history of physical abuse in childhood remained related to numerous comorbidities, including allergies, chronic fatigue syndrome, head injury (without loss of consciousness), and hyper- and hypotension. Sexual abuse was only related to irritable bowel syndrome. Verbal abuse was related to arthritis and migraine headaches. However, while the best model was obtained by using the specified abuse type listed, one could typically substitute the other types of abuse with only minor loss in the model’s explanatory power. Parental history of mood disorder was related to allergies, chronic fatigue syndrome, and menstrual irregularities; parental history of substance abuse to arthritis, head injury, and hypotension; and history of suicidality to fibromyalgia.

4. Discussion

As previously reported in the literature, many medical conditions co-occur in adult outpatients with bipolar disorder (Table 1) whose average age at entry into the Network was just over 40
This table presents a summary of the influence of tCAS on each comorbidity. Each comorbidity was modeled with a logistic regression as a function of tCAS score accounting for potential effects of country, age, gender, body mass index, and their interaction if needed. Comorbidities which could be successfully modeled with no more than minor specification errors (as noted) are presented. This shows overall strength of the model (n, LR, P, r^2) and the results of the tCAS factor. The other factors included in the model are not shown here. The 11 comorbidities listed at the top of the table were successfully modeled, and all increased significantly as tCAS increased as indicated in the fifth column ($p < (z)$). For these comorbidities, the Individual Components (far right column) shows which parts of the tCAS were significantly related to a given comorbidity when each separate component was used in the logistic regression and the best model selected.

| Medical comorbidity | Coeff. | Relative increase (%) | Std. Err. | z | $P > |z| $ | 95% Conf. Int. | n | LR | P | MacFadden's pseudo r^2 | Individual components |
|--------------------------------------|--------|-----------------------|-----------|------|---------|----------------|-----|------|-----|--------------------------|-----------------------|
| Arthritis | 0.11 | 11.0 | 0.02 | 4.58 | 0.00 | 0.06 1.15 884 49.56 0.00 0.04 | Physical abuse, Mother mood disorder |
| Asthma | 0.10 | 10.5 | 0.03 | 3.26 | 0.00 | 0.04 0.16 882 32.21* 0.00 0.05 | Verbal abuse, Mother drug abuse |
| Chronic fatigue syndrome | 0.16 | 16.8 | 0.04 | 3.64 | 0.00 | 0.07 0.24 862 21.57 0.00 0.05 | Physical abuse, Father mood disorder |
| Chronic renal insufficiency | 0.26 | 30.0 | 0.11 | 2.36 | 0.00 | 0.04 0.48 500 20.09 0.01 0.03 | Verbal abuse, Father mood disorder |
| Kidney disease | 0.00 | 0.3 | 0.06 | 0.56 | 0.00 | –0.12 0.13 884 39.05 0.00 0.04 | Age, BMI |
| Hypertension | 0.07 | 6.8 | 0.03 | 2.16 | 0.00 | 0.01 0.13 867 78.22* 0.00 0.10 | Physical abuse |
| Hypothyroidism | 0.18 | 19.3 | 0.04 | 4.86 | 0.00 | 0.11 0.25 887 65.73 0.00 0.11 | Physical abuse, Mother alcohol |
| Irritable bowel syndrome | 0.07 | 6.7 | 0.03 | 2.15 | 0.00 | 0.01 0.12 882 85.27 0.00 0.12 | Sexual abuse |
| Migraine headache | 0.11 | 11.9 | 0.03 | 4.48 | 0.00 | 0.06 0.16 885 72.20 0.00 0.07 | Verbal abuse |
| Not related to tCAS Score | 0.00 | 0.3 | 0.06 | 0.56 | 0.00 | –0.12 0.13 884 39.05 0.00 0.04 | Age, Country, Gender |
| Diabetes | 0.01 | 0.2 | 0.02 | 0.07 | 0.00 | –0.11 0.11 880 12.56 0.01 0.04 | Country, Gender |
| Heart disease | 0.01 | 0.2 | 0.06 | 0.03 | 0.00 | –0.11 0.11 880 12.56 0.01 0.04 | Country, Gender |
| Hypoglycemia | 0.00 | 0.2 | 0.04 | 0.82 | 0.41 | –0.05 0.11 886 32.41 0.00 0.08 | Physical abuse, Mother alcohol |
| Hyperthyroidism | 0.01 | 0.2 | 0.06 | 0.03 | 0.00 | –0.11 0.11 880 12.56 0.01 0.04 | Country, Gender |
| Migraine headache | 0.00 | 0.2 | 0.04 | 1.52 | 0.13 | –0.02 0.13 669 11.99 0.10 0.02 | Nonsignificant |

This table presents a summary of the influence of tCAS on each comorbidity. Each comorbidity was modeled with a logistic regression as a function of tCAS score accounting for potential effects of country, age, gender, body mass index, and their interaction if needed. Comorbidities which could be successfully modeled with no more than minor specification errors (as noted) are presented. This shows overall strength of the model (n, LR, P, r^2) and the results of the tCAS factor. The other factors included in the model are not shown here. The 11 comorbidities listed at the top of the table were successfully modeled, and all increased significantly as tCAS increased as indicated in the fifth column ($p < (z)$). For these comorbidities, the Individual Components (far right column) shows which parts of the tCAS were significantly related to a given comorbidity when each separate component was used in the logistic regression and the best model selected.

In the bottom rows, the tCAS was not related to diabetes, heart disease, hypoglycemia, hyperthyroidism, even though they were well modeled. Kidney disease and “other” produced non-significant models, while the other comorbidities (Cancer, Head Injury with Loss of Consciousness, Hypothyroidism, Liver Disease/Hepatitis, and Seizure) could not be modeled, as specification errors were too high to be acceptable.

* a minor specification error as determined by a linktest with a hat value between .05 and 1.

b individual components model slightly better and without specification error.

years. Our study found significant relationships between the total childhood adversity score (tCAS) and the overall number of medical comorbidities a given patient reported (Fig. 1) and to 11 different medical conditions (Table 2), including allergies, arthritis, asthma, chronic fatigue syndrome, chronic menstrual irregularities, fibromyalgia, head injury, hypertension, hypoglycemia, head injury, and migraine headaches.

4.1. Mechanisms and implications

Both animal models of childhood adversity and clinical data have revealed lasting behavioral, endocrinological, and neurochemical consequences of early stressors in part based on epigenetic mechanisms (Champagne and Meaney, 2001; Meaney and Szyf, 2005; Roth et al., 2009). Early adversity in animals is associated with a decrease in hippocampal glucocorticoid receptors based on increased methylation of the GR promoter. These findings have been replicated clinically in autopsy studies in humans (McGowan et al., 2009, 2008), where reduced glucocorticoid receptors and increased methylation of the promoter have been found in suicide victims with a history of childhood abuse compared with those without such abuse. Similarly, a substantial body of evidence indicates that childhood adversity is associated with increases in inflammatory markers and in the risk for being overweight (Dube et al., 2009; Shonkoff and Garner, 2012), each of which could also contribute to the vulnerability to many of the co-occurring medical conditions. Many biological effects associated with both stress and affective disorders (increases in glucocorticoids, inflammatory markers, oxidative stress, mitochondrial dysfunction, insulin resistance and decreases in neuroprotective factors) could contribute to increases in allostatic load (Kapczinski et al., 2008; McEwen, 2003, 2004; Post, 2007; Post et al., 2012) and likewise increase the chance of medical illnesses and complications.

Scott et al. (2011) reported in a recently published large international study that both childhood adversity and early-onset mental disorders (anxiety and depressive disorders) had independent effects in increasing the risk for diverse chronic medical conditions in later life, including the six that they investigated (heart disease, asthma, diabetes, arthritis, chronic spinal pain, and chronic headache). They also found that a history of three or more childhood adversities (such as abuse, neglect, and multiple parental variables) was associated with all six physical conditions with hazard ratios of 1.44–2.19.

The occurrence of bipolar disorder in the absence of a history of childhood adversity is associated with a variety of comorbidities, and many of the same mechanisms noted above have been postulated for such an association. It is clear that there are a rather extraordinarily large number of years of life expectancy lost in those with bipolar disorder and other major psychiatric disorders compared to the general population (Colton and Manderscheid, 2006; Newcomer Hennekens, 2007; Osby et al., 2001). The reason for this early demise appears to be highly attributable to cardiovascular disease, but contributions from other medical comorbidities and suicide are also apparent to a lesser extent. The lack of significant differences in tCAS in those with heart disease in this study may in part be due to the relative low incidence of heart disease ($n=55$, 5.8%), likely because of the relative young age of our population.

The current findings of an increased burden of medical comorbidities in those subjects with bipolar disorder who have higher tCAS scores suggest the importance of discriminating the
differential contributions of bipolar illness itself and that of a history of childhood adversity on the incidence of various medical comorbidities and their ultimate impact on functional impairment, disability, and mortality. Since recurrence of stressors, substances of abuse, and episodes of affective illness each have been postulated to yield sensitization effects (increased reactivity upon repetition) as well as cross-sensitization to the others in part via epigenetic mechanisms (Post, 2010; Post and Kauer-Sant’Anna, 2010; Post and Miklowitz, 2010; Post et al., 2012), the findings further highlight the importance of early intervention and prevention (Post et al., 2010a, 2010b; Post and Kowatch, 2006). Such early effective treatment might minimize and mitigate the effects of childhood adversity, recurrent episodes of illness, and substances of abuse on subsequent course of bipolar illness, as well as its numerous comorbidities.

The current study also re-enforces the importance of specifically focusing on medical comorbidities and their appropriate treatment in patients with bipolar illness in an effort to decrease the impact and consequences of such medical conditions on health, quality of life, and longevity. Many of the medical comorbidities reported here and in other studies of adults with bipolar disorder were already present at a disproportionately high rate in adolescents (age 13–17) with bipolar disorder compared to a matched control group population (Jerrell et al., 2010). These included obesity, type II diabetes, dyslipidemia, endocrine disorder, organic brain disorder, migraine, epilepsy, cardiovascular disease, and asthma (Jerrell et al., 2010).

Later in life and in the course of bipolar disorder, the burden of cardiovascular disease may be even more apparent than that seen in our study population. A study in Sweden found that bipolar patients and those in the population at large arrived at the same age with heart-related complaints, but compared to those in the general population, the psychiatric patients went on to have fewer invasive corrective interventions, such as angioplasty and bypass surgery, thus potentially accounting for their reduced longevity (Laursen et al., 2009).

We have found that the duration of the interval between the onset of the first episode of bipolar disorder and the first treatment for mania or depression is an independent contributor to an adverse outcome in adulthood (Post et al., 2010b). This time to first treatment was significantly longer in those with a history of childhood physical or sexual abuse compared with those without (Post and Leverich, 2006). Thus, increasing recognition of both the medical and psychiatric difficulties that are associated with a range of childhood adversities may help facilitate earlier and more effective psychosocial and psychopharmacological intervention in these children and adolescents who are at risk for a more adverse course of not only their bipolar disorder but also the emergence of many other medical conditions as well (Shonkoff and Garner, 2012).

Social support, early intervention, and other primary and secondary preventive interventions may also be helpful in those at highest risk for bipolar disorder (Post and Kowatch, 2006; Post and Leverich, 2006; Post and Miklowitz, 2010; Post and Post, 2004). Family psycho-education compared with treatment as usual has consistently been shown to have long-term positive effects in both adults and adolescents with bipolar disorder (Colom and Lam, 2005; Miklowitz et al., 2003a, 2003b; Vieta and Colom, 2004). Part of this education is not only focused on the symptoms of bipolar disorder but also on enhancing interpersonal interactions and intra-family communication and minimizing stressors. Similarly, support by family members, visiting nurse, or a volunteer may be helpful during periods of parental illness and minimize the direct or indirect effects of parental diagnosis on subsequent emergence of medical comorbidities (Eckenrode et al., 2001; Olds et al., 1999).

4.2. Limitations

There are a number of limitations that must be considered in interpreting the findings of this study. The study was based entirely on retrospective and self-report data. Self-reports of childhood stressors were based on subjective reports and were not reconfirmed by other informants. However, such self reports and questionnaire methodology are widely used in epidemiological and psychiatric studies (Anda et al., 2006; Brown et al., 2005; Felitti et al., 1998; Garno et al., 2005; Leverich et al., 2002), and some data suggest that they represent conservative estimates of the actual occurrence of childhood adversity, which is often forgotten (Hardt and Rutter, 2004). We also did not have a control group so that whether any of the relationships described may or may not have been specific to this population of bipolar patients is not known.

The classification of parental history of psychiatric illness was also based only on the probands’ reports and not confirmed with direct interviews of the family members. Again, some investigators question the reliability of this type of family history, but others indicate that it has considerable reliability and validity (Algorta et al., 2011). However, our exclusive use of a parental history of illness, rather than that of any first-degree relative, may also increase accuracy of reporting.

Another caveat is the utilization of a positive parental history for psychiatric illness as a reflection of potential childhood adversity. The parental status of active illness versus wellness during the early years of the proband’s life, which may be an important factor in the relationship to childhood adversity, was not obtained. For example, it is known that treating a mother’s depression to remission is associated with less psychiatric illness and externalizing disorders in her children compared to mothers who were similarly diagnosed and treated but did not reach remission (Wickramaratne et al., 2011). Another confounding factor would also be the inability to discriminate whether any contribution of parental psychiatric diagnosis was based on genetic vulnerability or environmental stressors. The medical histories of the parents were also not available.

We decided to include these parental measures and construct a combined tCAS scale in order to closely approximate the measures of adversity used in other studies in the general population (Anda et al., 2006; Felitti et al., 1998). Since these parental variables were indirect and only an indication of potential childhood adversity, these were rated only as present or absent for each parent, and not graded according to frequency or severity, as were the direct reports of verbal, physical, or sexual abuse, which thus were slightly more heavily weighted in the tCAS. However, when we used an un-weighted score of just present or absent for each type of abuse and for either parent having a psychiatric disorder (or suicide attempt), the results were highly similar to those seen when the weighted tCAS was used (analysis not shown). Moreover, in the analysis of the relationship of different components of the tCAS to individual comorbidities, both the childhood abuse and parental variables were found to contribute (Table 2, right column). However, the precise relationships of different components of the tCAS score presented in the Table should be considered highly preliminary and in need of replication as many of the other types of abuse/adversity would have provided relationships with very little loss of explanatory power. Certainly a larger N would also give more confidence about the relationships described. Although our total childhood adversity scale (tCAS) was similar to the adverse childhood experience (ACE) scale used by Felitti et al. (1998), it was not identical. Moreover, the scale has not been independently validated against other measures in the literature.

Another potential limitation in our study is the reliance on self-report for garnering patients’ medical history. The study of
Banks et al. (2006) provides indirect validation of this type of self-report for medical conditions in 55–65 year old white males. In that study, self-reports of high blood pressure were validated by actual measures of elevated blood pressure; reports of diabetes by elevated measures of hemoglobin A1C; inflammatory disease processes by elevated c-reactive protein and fibrinogen, and the like. Banks et al. (2006) thus concluded that “Self-reports of disease are not deceiving us about the reality of the situation”, and we would assume our similarly acquired data about one’s medical conditions would also be reliable especially since they mirror the incidences of these comorbidities reported in other studies and populations of bipolar patients. However, the severity and impact of the medical syndromes listed was not evaluated in our study. Finally, the neurobiological mechanisms underpinning the described relationships were not studied and deserve further exploration, particularly as they might have implications for therapeutics and prevention.

Role of Funding Source

Funding for this research was provided by the Stanley Medical Research Institute.

Conflict of interest

Disclosure of biomedical financial interests and potential conflicts of interest: Dr. Altshuler has received past funding from Sepacror (advisory board honoraria, January 2010) and Eli Lilly (consultant, September 2010), and no past but potential future honoraria from Astra-Zeneca (speakers bureau) and Merck and Co. (consulting).

Dr. Post acknowledges no financial disclosures pertinent to this manuscript.

Dr. Frye acknowledges grant support from Pfizer, Myriad, National Alliance for Schizophrenia and Depression (NAMSD), National Institute of Mental Health (NIMH), National Institute of Alcohol Abuse and Alcoholism (NIAAA), and the Mayo Foundation.

Dr. Nolen acknowledges receiving grants from The Netherlands Organization for Health Research and Development, the European Union, the Stanley Medical Research Institute, Astra Zeneca, Eli Lilly, GlaxoSmithKline and Wyeth; has received honoraria/speaker’s fees from Astra Zeneca, Lundbeck, Pfizer and Wyeth; and has served in advisory boards for Astra Zeneca.

Dr. Keck is presently or has been in the past year a principal or co-investigator on research studies sponsored by: Akermes, AstraZeneca, Cephalon, GlaxoSmitthKline, Eli Lilly and Company, Marriott Foundation, NIMH, Orexigen, Pfizer, Inc., and Shire; has been reimbursed for consulting to Pamlab and Bristol-Myers-Squibb in the past 2 years; and is a co-inventor on U.S. Patent No. 6,387,956: Shapira NA, Goldsmith TD, Keck, PE Jr. (University of Cincinnati) Methods of treating obsessive-compulsive spectrum disorder comprises the step of administering an effective amount of tramadol to an individual. Filed March 25, 1999; approved May 14, 2002. Dr. Keck has received financial gain from this patent.

Dr. Gronze has received consulting fees and honoraria within the last two years from AstraZeneca, BMS, Eli Lilly, Gedeon Richter, Lundbeck, Merck, Otsuka, Servier and UBC.

Dr. McElroy is a consultant to, or member of the scientific advisory boards, in the past year: Aklermes and Shire; is presently or has been in the past year a principal or co-investigator on research studies sponsored by: Agency for Health care Research & Quality (AHRQ); Akermes, AstraZeneca, Cephalon, Eli Lilly and Company, Marriott Foundation, NIMH, Orexigen Therapeutics, Inc., Pfizer, Shire, Takeda Pharmaceutical Company Limited, and Transcept Pharmaceutical, Inc.; is also an inventor on U.S. Patent No. 6,323,236 B2. Use of sulfamate derivatives for treating impulse control disorders, and, along with the use of the patent’s assignee, University of Cincinnati, Cincinnati, OH, has received payments from Johnson & Johnson Pharmaceutical Research & Development, L.L.C., which has exclusive rights under the patent.

Dr. Kupka has no financial disclosures or conflicts of interest.

Gabriele Leverich has no financial disclosures or conflicts of interest.

Gabreel Suppes declares sources of funding of medications for clinical grants from the National Institute of Mental Health, Pfizer, Inc., AstraZeneca, and Sunovion Pharmaceuticals, Inc; and royalties from Jones and Bartlett (formerly Compact Clinicals).

Michael Rowe has no financial disclosures or conflicts of interest.

Acknowledgments

The authors have no acknowledgments pertinent to this manuscript.

References

Colton, C.W., Manderscheid, R.W., 2006. Congruencies in increased mortality rates, years of potential life lost, and causes of death among public mental health clients in eight states. Preventing Chronic Disease 3, A42.

