University of Groningen

Link between Culture Zeta Potential Homogeneity and Ebp in Enterococcus faecalis
Tariq, Muhammad; Bruijs, Chissa; Kok, Jan; Krom, Bastiaan P.

Published in:
Applied and Environmental Microbiology

DOI:
10.1128/AEM.07618-11

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2012

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Tariq, M., Bruijs, C., Kok, J., & Krom, B. P. (2012). Link between Culture Zeta Potential Homogeneity and Ebp in Enterococcus faecalis. Applied and Environmental Microbiology, 78(7), 2282-2288. DOI: 10.1128/AEM.07618-11

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 22-06-2017
Link between Culture Zeta Potential Homogeneity and Ebp in Enterococcus faecalis

Muhammad Tariq, a Chissa Bruijs, a, b Jan Kok, a and Bastiaan P. Krom b, c

Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands; Department of Biomedical Engineering, W. J. Kolff Institute, University Medical Center Groningen and the University of Groningen, Groningen, The Netherlands; and Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, The Netherlands

Enterococcus faecalis, a commensal of the gastrointestinal tract and an opportunistic pathogen, has the ability to adhere to surfaces and form biofilms. It has been shown earlier that only 10 to 20% of an E. faecalis OG1RF culture expresses endocarditis- and biofilm-associated pili (Ebp), which are involved in biofilm formation. Another study revealed that E. faecalis clinical isolates, as well as OG1RF, are heterogeneous with respect to their apparent zeta potential, which was also correlated with increased ability to form biofilm. The aim of this study was to demonstrate that the heterogeneity in the presence of Ebp is correlated to that in apparent zeta potential. Heterogeneous cultures of OG1RF showed two distinct subpopulations with the most (−38 mV) and least (−26 mV) negative zeta potential. Deletion of EbpR, the activator of the ebp operon, or the structural genes ebpABC resulted in homogeneous culture with the most negative zeta potential. Conversely, overexpression of EbpR or the structural genes ebpABC resulted in homogeneous culture with the least negative zeta potential. The results show that ebp operon expression in E. faecalis, as measured by using P ebp-gfp promoter fusion, is the cause of heterogeneity in zeta potential and that pilus production causes the cells to behave as the least negative particle in an electric field.

Although a bacterial culture is often considered a population of identical organisms, it is becoming increasingly clear that subpopulations with different properties exist, e.g., competent and noncompetent cells or sporulating and nonsporulating cells in cultures of Bacillus subtilis (8, 30). The presence of such culture heterogeneity has also been observed in many E. faecalis strains with respect to the apparent zeta potential (28, 29). In fact, there are two types of clinical isolates, namely, those that are homogeneous and those that form heterogeneous cultures with respect to apparent zeta potential. Strains that are heterogeneous in apparent zeta potential adhere better to surfaces than homogeneous strains, although the initial adhesion rates were the same for both types of strains. Heterogeneity in apparent zeta potential was also correlated with the ability to form biofilms, as homogeneous strains showed a significant reduction in biofilm formation. The distribution of the subpopulations in cultures of heterogeneous strains is strain dependent; in two of the investigated E. faecalis strains, the smaller (25%) subpopulation contained cells with the most negative apparent zeta potential (strains BS385 and BS1037), while in two other strains, the smaller subpopulation represented cells with the least negative apparent zeta potential (strains BS4126 and BS12297) (28, 29).

The zeta potential is commonly used to calculate the surface charge of colloids or bacteria (31). In suspension, there are two liquid layers around every particle of which the inner or Stern...
layer lies just around the surface and contains ions that are strongly bound to the surface. Since the surfaces of bacteria are almost always negatively charged, the ions in the Stern layer are positively charged. Outside of the Stern layer is an electrical double layer in which both positive and negative ions can be found. These ions are not bound tightly, but when the particle (cell) moves, this layer also moves. The ions beyond the electrical double layer stay dispersed in the liquid. The potential on the boundary of the electrical double layer and the surrounding liquid bulk is the zeta potential, which can be measured using microelectrophoresis (18, 31). The apparent zeta potential is dictated by the charges on the cell surface as well as the presence of surface structures that influence the width of the double layer (the softness of the particle) (27) and is calculated from the electrophoretic mobility of the particle in an electric field. Thus, heterogeneity in pilus expression (20) could be the cause of the observed heterogeneity in the apparent zeta potential of enterococcal isolates (29), a supposition that was further studied in this examination.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The bacterial strains and plasmids used in this study are summarized in Table 1. All *E. faecalis* strains were grown at 37°C in M17 (Difco) broth with 0.2% glucose (GM17) and, when appropriate, 100 μg/ml erythromycin or 10 μg/ml tetracycline for *Escherichia coli* and 10 μg/ml erythromycin or 4 μg/ml tetracycline for *E. faecalis* strains. *E. coli* was grown at 37°C in tryptone-yeast extract (TY) medium (10 g liter−1 tryptone, 5 g liter−1 yeast extract, 5 g liter−1 NaCl [pH 7.2]). Expression was induced with nisin (25 ng/ml; nisin not milk solid) at an optical density (OD) at 600 nm of 0.3. Nisin (N-5764), which is supplied in milk solid containing 2.5% nisin by weight, was obtained from Fermentas (Fermentas GmbH, St. Leon-Rot, Germany) or from Roche Diagnostics Nederland B.V. The sequences of the oligonucleotides used in this work are listed in Table 1.

Electrocompetent cells were obtained by growing *E. faecalis* strains in GM17 medium with 1% glycine and 0.5 M sucrose using the protocol as described for *Lactococcus lactis* by Hol and Nes (10). *E. coli* cells were grown in TY medium to an OD at 600 nm of 0.3 to 0.5 and washed three times with ice-cold water. Electrotransformation of competent cells was performed using the Gene Pulser (Bio-Rad, Richmond, CA) with standard settings, using 2.25 kV for *E. coli* and 1.6 kV for *E. faecalis*. After electrotransformation, *E. faecalis* was incubated for 2 h at 37°C in recovery medium (GM17, 0.5 M sucrose, 20 mM MgCl2, 2 mM CaCl2, and, when required, 50 ng/ml erythromycin) and *E. coli* in TY for 1 h at 37°C with shaking at 200 rpm.

Construction of an ebp promoter-gfp fusion. The ebpABC operon promoter P_{ebp} was fused to the green fluorescent protein gene gfp from *Aequorea victoria*, using vector pMV158GFP (22). The maltose promoter driving gfp expression in this vector was replaced by P_{ebp} as follows: the whole intergenic region of 327 bp between ebpA and ebpR of *E. faecalis* OG1RF, containing the two oppositely oriented promoters P_{ebp} and P_{ebpR}, was amplified by PCR using primers EbpA pro pMV158 fw and EbpA pro pMV158 rv (Table 1). The PCR product and the vector were restricted with KpnI and XbaI and subsequently ligated using T4 DNA ligase. The proper construct was obtained in *E. coli* DH5α and was confirmed by PCR and DNA sequencing. In this vector, named pMT02, P_{ebp} is fused to gfp (Fig. 1). We introduced pMT02 in *E. faecalis* OG1RF strains with various mutations in the ebp locus (15, 21).

Flow cytometry analyses. P_{ebp}-driven expression of GFP was examined by growing *E. faecalis* strains carrying pMT02 in GM17 for 24 h. Cells were centrifuged to remove the medium and diluted 100-fold in minimal medium and directly measured in a Coulter Epics XL-MCL flow cytometer (Beckman Coulter, Mijdrecht, The Netherlands) with an argon laser (488 nm). At least 20,000 cells were analyzed for each sample. Data containing the signals were collected using a fluorescein isothiocyanate (FITC) filter and the photomultiplier voltage set between 700 and 800 V.

Table 1: Strains, plasmids, and primers used in this study

<table>
<thead>
<tr>
<th>Strain or plasmid</th>
<th>Specification or description</th>
<th>Reference</th>
<th>Oligonucleotide</th>
<th>Sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OGI1RF</td>
<td>Wild type</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1D21 (G9)</td>
<td>OGI1RF ebpR::EfaMarTn (ebpRTn)</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OG1RFΔebpABC</td>
<td>OG1RF clean knockout of ebpABC</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TX662</td>
<td>OG1RF ΔebpABC(pAT392::ebpABC)</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasmids</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMSP3535</td>
<td>Em′; nisin-inducible gene expression vector, carrying pAMβ1 and CoEI replicons, nisRK, P_{nisMC}</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMSP3545</td>
<td>Em′; nisin-inducible gene expression vector, carrying pAMβ1 and CoEI replicons, nisRK, P_{nisMC}</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCJK55</td>
<td>Mariner transposase C9 cloned downstream of P_{nisMC} in pMSP3545</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCJK128</td>
<td>ebpR cloned downstream of P_{nisMC} in pMSP3535</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMV158GFP</td>
<td>Tet′; carrying P_{nairT}::gfp</td>
<td>22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pMT02</td>
<td>Tet′; pMV158 carrying P_{ebp}::gfp</td>
<td>This study</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* a: Em′, erythromycin resistance; Tet′, tetracycline resistance.
* b: Sites for restriction enzymes are underlined.
* c: Abbreviated nomenclature.
Data were captured using EXPO32 software (Beckman Coulter) and further analyzed using WinMDI 2.9 software (http://facs.scripps.edu/software.html). Figures were prepared using WinMDI 2.9 and CorelDRAW X3. To distinguish background fluorescence from GFP-specific fluorescence, the parental strain *E. faecalis* OG1RF was used as a control.

Zeta potential measurements. *E. faecalis* strains were grown overnight at 37°C in 10 ml GM17 containing the appropriate antibiotic and induced with nisin at an OD at 600 nm of 0.3, when appropriate. Cells were harvested by centrifugation at 6,500/1000 g for 5 min at 10°C and washed twice with 10 ml of 10 mM potassium phosphate buffer (pH 7), after which the pellet was resuspended in 1 ml of the same buffer. The cell suspension was sonicated on ice (3 × 10 s with intervals of 1 min). Apparent zeta potentials were measured with a Lazer Zee model 501 meter (PenKem, Bedford Hills, NY), with camera, by adding a number of drops of the bacterial suspension to 30 ml of 10 mM potassium phosphate buffer (pH 7.0). The diluted suspension was loaded into the cell, after which a voltage difference of 150 V was applied and the velocity of the cells was observed by the camera. Apparent zeta potentials were calculated from these measurements (28, 29).

Effect of bile on ebp expression in *E. faecalis*. All *E. faecalis* strains with or without pMT02 were incubated in GM17 with appropriate antibiotics, in the presence or absence of ox bile (40 mg ml⁻¹; Merck, Darmstadt, Germany) at 37°C, and with shaking at 100 rpm for 24 h. P_{ebp}-driven GFP expression was measured by flow cytometry as described above.

Cloning and sequencing of ebpR-ebp promoter region. Colony PCR was done on several human clinical isolates of *E. faecalis* using the primers pEbpA pNZ fw and pEbpA pNZ rv (Table 1). The PCR 2.1 vector (Invitrogen Life Technologies, Carlsbad, CA) was used as a cloning vector, and PCR fragments were directly ligated in the vector using T4 DNA ligase according to the manufacturer’s protocol. After transformation of the ligated product into *E. coli* DH5α, clones containing the various ebpR-ebp promoter regions were picked, verified by restriction enzyme digestion, and commercially sequenced using M13 universal primers (ServiceXS, Leiden, The Netherlands). Resulting DNA sequences were aligned with published sequences and examined using Geneious Pro trial 3.8.5 (http://emboss.sourceforge.net).

RESULTS

P_{ebp} promoter activity in heterogeneous *E. faecalis* OG1RF. Expression of the *ebp* operon is positively regulated by EbpR, the gene of which is located in opposite orientation upstream of the operon (3) (Fig. 1). To study the activity of the *ebp* promoter in *E. faecalis* OG1RF, the ebpR-ebpA intergenic region from *E. faecalis* OG1RF was amplified and used to replace the maltose promoter upstream of the *gfp* gene in pMV158GFP (22). This was done in such a way that in the resulting plasmid, pMT02, the P_{ebp} promoter drives *gfp* expression. Plasmid pMT02 was introduced in *E. faecalis* OG1RF. GFP expression was examined using flow cytometry in which fluorescence intensity of at least 20,000 *E. faecalis* OG1RF(pMT02) cells was analyzed. In a culture of OG1RF(pMT02), approximately 20% of the cells produced GFP while the control strain without the plasmid did not show detectable fluorescence (Fig. 2). *E. faecalis* OG1RF is heterogeneous with respect to apparent zeta potential at pH 7.0 (28, 29). Plasmid pMT02 did not have an effect on this property, as *E. faecalis* OG1RF(pMT02) indeed showed two populations with respect to

FIG 1 Construction of pMT02. The intergenic region of 327 bp between *ebpA* and *ebpR*, containing the two oppositely oriented promoters P_{ebp} and P_{ebpR}, was amplified by PCR. The fragment was used to replace P_{malT} in pMV158GFP in such a way that P_{ebp} is fused to *gfp*.

FIG 2 Activity of P_{ebp}-*gfp* in *E. faecalis*. Strains were grown in GM17 (in the presence of nisin in case the strain carries pCJK derivatives) for 24 h, and samples were analyzed by flow cytometry. For strain and plasmid descriptions, see Table 1.
zeta potential (Fig. 3A). The most negative subpopulation, approximately 80% of the total, had an apparent zeta potential of around \(-38\) mV, whereas the cells in the least negative subpopulation (20% of the total) have an apparent zeta potential of approximately \(-26\) mV (Fig. 3B).

Deletion or overexpression of ebpR in E. faecalis results in homogeneous populations with respect to apparent zeta potential. Using the mariner transposon EfaMarTn on plasmid pCJK55, several mutations in the ebp locus were obtained in E. faecalis OG1RF, such as in 1D21 (the ebpR::Tn strain) as described previously (15). The EfaMarTn transposon contains a gfp gene, but it is not functional in most insertion mutants, including the strain carrying ebpR::Tn (15); thus, we could use pMT02 to examine the activity of P_{ebp}-gfp in this strain. Plasmid pCJK55 did not affect zeta potential heterogeneity, as OG1RF(pMT02; pCJK55) had a zeta potential distribution similar to that of OG1RF(pMT02) (Fig. 3A). The E. faecalis OG1RF ebpR::Tn mutant was shown to have a defect in biofilm formation (15). In addition, a clean ebpR deletion mutant, E. faecalis \(\Delta ebpR\), had lost its pilus-producing ability and primary adherence capability (3). No GFP signal was detected in cells of the strain carrying ebpR::Tn (15); thus, we could use pMT02 to examine the activity of P_{ebp}-gfp in this strain. Plasmid pCJK55 did not affect zeta potential heterogeneity, as OG1RF(pMT02; pCJK55) had a zeta potential distribution similar to that of OG1RF(pMT02) (Fig. 3A).

Deletion or overexpression of ebpABC results in homogeneous cultures with respect to apparent zeta potential. To examine the involvement of the EbpABC pilus of E. faecalis in apparent zeta potential, a clean knockout mutant lacking ebpABC, strain OG1RF\(\Delta ebpABC\) (21), was used. Absence of EbpABC resulted in a homogeneous population of cells with an apparent zeta potential of \(-38\) mV (Fig. 3B), which was similar to that of the most negative subpopulation of its parent OG1RF. The complementation mutant OG1RF\(\Delta ebpABC\) containing a plasmid in which ebpABC genes are cloned behind the constitutive P2 promoter of pAT392 (21), strain TX5662, formed a homogeneous population with an enhanced biofilm formation relative to the wild type (3, 15). We introduced pMT02 in the EbpR complementation strain carrying ebpR::Tn(pCJK128) to monitor P_{ebp}-driven GFP expression. Almost all cells of the E. faecalis strain carrying ebpR::Tn(pMT02; pCJK128) produced GFP (Fig. 2).

To examine the role of EbpR in the distribution of apparent zeta potential in E. faecalis, we measured this parameter in cultures of the E. faecalis strain carrying ebpR::Tn(pMT02) and the nisin-induced EbpR overexpression strain carrying ebpR::Tn(pMT02; pCJK128). Interestingly, both strains had lost the zeta potential heterogeneity seen in their isogenic parent OG1RF(pMT02) (Fig. 3B) and the control, the noninduced strain carrying ebpR::Tn(pMT02; pCJK128) (data not shown). The ebpR::Tn mutant had a zeta potential of \(-38\) mV (Fig. 3B), which was similar to that of the most negative subpopulation of OG1RF. On the other hand, EbpR overexpression resulted in a population with a homogeneous apparent zeta potential of \(-26\) mV, a value similar to that of the least negative subpopulation of OG1RF.

Deletion or overexpression of ebpABC results in homogeneous cultures with respect to apparent zeta potential. To examine the involvement of the EbpABC pilus of E. faecalis in apparent zeta potential, a clean knockout mutant lacking ebpABC, strain OG1RF\(\Delta ebpABC\) (21), was used. Absence of EbpABC resulted in a homogeneous population of cells with an apparent zeta potential of \(-38\) mV (Fig. 3B), which was similar to that of the most negative subpopulation of its parent OG1RF. The complementation mutant OG1RF\(\Delta ebpABC\) containing a plasmid in which ebpABC genes are cloned behind the constitutive P2 promoter of pAT392 (21), strain TX5662, formed a homogeneous population with an enhanced biofilm formation relative to the wild type (3, 15). We introduced pMT02 in the EbpR complementation strain carrying ebpR::Tn(pCJK128) to monitor P_{ebp}-driven GFP expression. Almost all cells of the E. faecalis strain carrying ebpR::Tn(pMT02; pCJK128) produced GFP (Fig. 2).
apparent zeta potential of -27 mV (Fig. 3), a value similar to that of the least negative subpopulation of OG1RF.

Expression driven by Pebp is inhibited by ox bile. Ox bile in the growth medium influences the apparent zeta potential of certain *E. faecalis* strains, which ultimately affects biofilm formation (28). Thus, the effect of ox bile on the activity of the ebp promoter was examined by measuring GFP expression in strains carrying pMT02. The addition of ox bile (40 mg ml$^{-1}$) in these experiments had no effect on the pH of the medium or the growth rate of the strains (data not shown). While OG1RF(pMT02), a heterogeneous strain with respect to zeta potential, produces a large population of nonfluorescent cells and a smaller population of fluorescent cells, P$_{ebp}$.gfp activity was abolished when these cells were grown in the presence of ox bile (Fig. 4).

EbpR is the activator of P$_{ebp}$. The strain carrying ebpR::Tn(pMT02) does not produce a GFP signal (see above). Therefore, to examine whether EbpR plays a role in the effect of ox bile on P$_{ebp}$ expression we used the EbpR overexpression strain OG1RF(pMT02; pCJK128). The strain was grown in the presence or absence of bile. Figure 4 shows that bile has a negative effect on P$_{ebp}$ activity. Bile did not induce autofluorescence in these experiments (see controls OG1RF and OG1RF + bile in Fig. 4).

DISCUSSION

The increase in antibiotic resistance in bacteria has resulted in a search for alternative immunotherapeutic targets. Among such factors, the microbial surface components recognizing adhesive matrix molecules (MSCRAMMs), which are implicated in initiating infections such as endocarditis, have drawn considerable attention lately because they are commonly present in opportunistic pathogens (20). A recently recognized MSCRAMM that is important for biofilm formation in *E. faecalis* is the endocarditis and biofilm-associated pilus Ebp (20). The ebp operon is highly conserved in *E. faecalis* (19). Ebp pilus mediate adherence to platelets, fibrinogen, and collagen, suggesting that they are involved in endocarditis, urinary tract colonization, or infections (19, 21).

Here, we report on the involvement of Ebp pili in the previously observed culture heterogeneity in zeta potential in axenic cultures of *E. faecalis*. We show that culture heterogeneity with respect to zeta potential, as described by van Merode et al. (28, 29), is correlated to heterogeneity in the presence of Ebp pili (20) on the surface of the bacterium. Deletion of the pilus structural genes ebpAB or the gene of the activator of the operon, ebpR, in a heterogeneous zeta potential *E. faecalis* strain results in cultures that are homogeneous with respect to apparent zeta potential. Homogeneous nonpiliated cultures, like those from the OG1RF ebpR::Tn or ΔebpABC mutant, have a zeta potential similar to that of the most negative subpopulation of OG1RF. In contrast, overexpression of ebpR or ebpABC, both of which are known to lead to an increase in pili production in *E. faecalis* (3, 21), results in homogeneous cultures in which all cells have an apparent zeta potential similar to the least negative subpopulation of OG1RF.

We previously showed that heterogeneity in apparent zeta potential is a common feature of clinical *E. faecalis* isolates (29) and is correlated with the ability to form extensive biofilms (28). The *E. faecalis* mutants that overexpress ebpABC or ebpR all showed homogeneous populations with respect to zeta potential (this work) and have previously been shown to form extensive biofilms (3, 15). Therefore, it can be deduced that the presence of pili on the cell surface is more determinant for extensive biofilm formation than heterogeneity in apparent zeta potential.

The apparent zeta potential is derived from the electrophoretic mobility of individual bacteria. Zeta potentials are usually considered a measure for surface charge but can also be related to softness of particles. Softness of bacterial particles is dictated by surface structures such as pili that affect the width of the Stern layer. In a previous study, we showed that the heterogeneity in apparent zeta potential was pH dependent; at pH values lower than 5, the heterogeneity disappeared (29). If the apparent zeta potential is a measure of surface charge, it would be possible that aspartic acid or glutamic acid are ionized (neg-
TABLE 2 Net charges at different pH values predicted in the primary protein sequences of the Ebp pilus

<table>
<thead>
<tr>
<th>pH</th>
<th>EbpA</th>
<th>EbpB</th>
<th>EbpC</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>82.7</td>
<td>45.4</td>
<td>47.5</td>
</tr>
<tr>
<td>5</td>
<td>9.3</td>
<td>16.8</td>
<td>4.5</td>
</tr>
<tr>
<td>7</td>
<td>−24.9</td>
<td>0.6</td>
<td>−17.3</td>
</tr>
</tbody>
</table>

*The charges were calculated using Protein Calculator version 3.3 (http://www.scripps.edu/~cdputnam/protcalc.html) for each primary protein sequence retrieved from the NCBI database (http://www.ncbi.nlm.nih.gov/protein/).

Net charge behavior can be seen for EbpC while EbpB does not have a negative charge in the analyzed pH range. Alternatively, the absence of heterogeneity at low pH values could be caused by collapsing of pili onto the cell surface, which would effectively decrease the double layer and therefore the apparent zeta potential.

Previously, we have shown that heterogeneity in apparent zeta potential in E. faecalis is inhibited by bile. Specifically, the least negative population in a culture disappears upon exposure to bile. Expression of the ebp operon is similarly affected by bile as illustrated using the P_{ebpGfp} reporter strains. Using these reporters, we show that the number of cells expressing ebpABC decreases upon exposure to bile and that this bile effect is communicated through the EbpR regulator. Another study showed that ebp locus expression was enhanced by the presence of bicarbonate with a consequential increase in the number of cells producing pili (4). Presently, it is unclear how bile affects the activity of EbpR on ebp expression.

The genetic basis for culture heterogeneity in E. faecalis remains uncertain. The ebpRRA intergenic regions of several clinical isolates, both homogenous and heterogeneous with respect to apparent zeta potential (see Table 1), were sequenced, and the sequences were compared with those of the ebpRRA regions of V583 and OG1RF. No differences in intergenic regions were observed (data not shown). It could be that there is some form of bistability in the expression of the ebp operon. In support of this notion, it is known that ebpR is autoactivated (3). A bistable regulation of Ebp pilus expression (and, thus, zeta potential heterogeneity) would mean that in most cells the levels of ebpR expression remain below a certain threshold level. However, if for some unknown reason the expression levels surpass this threshold, a positive feedback loop would amplify the signal, resulting in a strong increase of ebpR expression and, thus, pilus formation.

In conclusion, this study shows that heterogeneity in apparent zeta potential of E. faecalis is related to the presence or absence of Ebp pili. A better understanding of the regulation of ebp expression might allow for new approaches to thwart virulence and biofilm formation of E. faecalis. In this respect, the P_{ebpGfp} fusion could be an important reporter to allow high-throughput screening of compound libraries to identify possible new antibiofilm agents, as illustrated in the present study using bile.

ACKNOWLEDGMENTS

We are thankful to Gary M. Dunny, Department of Microbiology, University of Minnesota Medical School, Minneapolis, MN, and Barbara E. Murray, Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical School at Houston, for providing E. faecalis strains used in this study.

REFERENCES

April 2012 Volume 78 Number 7 aem.asm.org 2287