Multiple pathways guide oxygen diffusion into flavoenzyme active sites

Baron, Riccardo; Riley, Conor; Chenprakhon, Pirom; Thotsaporn, Kittisak; Winter, Remko T.; Alfieri, Andrea; Forneris, Federico; van Berkel, Willem J. H.; Chaiyen, Pimchai; Fraaije, Marco

Published in:
Proceedings of the National Academy of Sciences of the United States of America

DOI:
10.1073/pnas.0903809106

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 23-06-2017
Multiple pathways guide oxygen diffusion into flavoenzyme active sites

Riccardo Baron,1,2 Conor Riley,1 Pirom Chenprakhon,1,2 Kittisak Thotsaporn,2,3 Renko T. Winter,4,3 Andrea Alfieri,1 Federico Forneris,5 Willem J. H. van Berkel,5 Pimchai Chaiyen,5 Marco W. Fraaije,5 Andrea Mattevi,1,6 and J. Andrew McCammon1,7,8

Department of Chemistry and Biochemistry and 8Pharmacology, 1Center for Theoretical Biological Physics, and 4Howard Hughes Medical Institute, University of California at San Diego, La Jolla, CA 92093-0365; Department of Biochemistry and Center for Excellence in Protein Structure and Function, Faculty of Science, and 3Institute for Innovative Learning, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand; 4Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands; 5Department of Genetics and Microbiology, University of Pavia, Via Ferrata 1, 27100 Pavia, Italy; and 6Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands

Edited by William A. Eaton, National Institutes of Health, Bethesda, MD, and approved April 29, 2009 (received for review April 6, 2009)

Dioxygen (O2) and other gas molecules have a fundamental role in a variety of enzymatic reactions. However, it is only poorly understood which O2 uptake mechanism enzymes employ to promote efficient catalysis and how general this is. We investigated O2 diffusion pathways into monooxygenase and oxidase flavoenzymes, using an integrated computational and experimental approach. Enhanced-statistics molecular dynamics simulations reveal spontaneous protein-guided O2 diffusion from the bulk solvent to preorganized protein cavities. The predicted protein-guided diffusion paths and the importance of key cavity residues for oxygen diffusion were verified by combining site-directed mutagenesis, rapid kinetics experiments, and high-resolution X-ray structures. This study indicates that monooxygenase and oxidase flavoenzymes employ multiple funnel-shaped diffusion pathways to absorb O2 from the solvent and direct it to the catalytic site. The diffusion of O2 to the flavin cofactor is highly specific. The predicted O2 reactivity among dehydrogenases, monooxygenases, and oxidases ultimately resides in the fine modulation of the local environment embedding the reactive locus of the flavin.

computational biochemistry | enzymology | flavin | oxygen reactivity

Dioxygen (O2) and other gas molecules have a fundamental role in a variety of enzymatic reactions carried out in living organisms. Oxygen-using enzymes usually have kinetic rates many orders of magnitude faster than those attained by artificial catalysts (1–4). One crucial unsolved question concerns how these small gas molecules reach their active sites in an effective manner. Former studies supported the model of passive diffusion through proteins (5, 6). However, it was more recently proposed that O2 preferentially follows highly specific tunnels to reach the core of the protein matrix (7–13). Is it possible to generalize these features for different classes of enzymes? Do proteins preferentially employ single specific pathways or a multitude of routes to optimize the O2 uptake process?

Pioneering studies on gas-diffusion in biomolecular systems focused on single diffusion pathways in proteins of the globin family (2, 14). For example, myoglobin served as an ideal test system for the first computational studies on gaseous reactants (14). Fluorescence-quenching experiments were used to correlate the diffusion behavior with solvent properties, e.g., viscosity (15, 16). Reaction intermediates of small gas molecules can be trapped in X-ray enzyme structures in limited favorable cases (17, 18) whereas time-resolved X-ray crystallography provides single-molecule-averaged insight (19). A general observation emerging from recent engineering studies of an O2 transport protein is that design efforts based on static-structure models fail to address the molecular complexity critical for function (20). Thus, complementing experimental and computational approaches can improve our understanding of these dynamic processes at the atomic-level scale (7, 8, 21–25). However, no molecular dynamics (MD) study to date reported on the spontaneous, nonbiased diffusion of O2 molecules from the bulk solvent to the active site of a flavoenzyme.

Flavoenzymes catalyze a wide range of reactions essential for maintaining cellular processes. Their striking chemical versatility is largely based on their ability to control the reaction of a flavin cofactor with O2. Three major groups of flavoenzymes can be distinguished (3, 26, 27). First, the dehydrogenases, that are characterized by poor or no reactivity with oxygen. Second, the monooxygenases, that catalyze a rapid 2-electron transfer to O2 to produce H2O2, typically—but not always (28)—with no detectable catalytic intermediates. The reaction of reduced flavins with O2 proceeds through an electron-transfer step that generates a caged radical pair, which is generally thought to be rate limiting. Reduced flavoprotein monooxygenases and oxidases typically react very rapidly with O2, exhibiting bimolecular rate constants (up to 106 M−1 s−1) that are close to a diffusion-controlled rate.

The biochemical and structural basis of the ability of flavoenzymes to react with O2 remains to a large extent poorly understood, representing a most fascinating issue in flavoenzymology (3, 26). A key requirement for monooxygenases is that O2 reaches the flavin to promote the catalyzed reaction through a C4a covalent adduct (3, 26, 27) (Scheme 1). However, only little is known about how oxidases react with O2. A direct contact between the oxidase flavin and O2 may not be necessary, leaving open the possibility that the enzymes of this class may react by tunneling O2 through specific pathways similar to what was reported for heme-containing enzymes (30).

Here, we investigate O2 diffusion in the monooxygenase component (C2) of p-hydroxyphenylacetate hydroxylase from Acinetobacter baumannii (31) and alditol oxidase (AldO) from Streptomyces coelicolor A3 (2) (32) using an integrated computational and experimental procedure. Enhanced-statistics MD...
Out of a total of 500 O2 trajectories at 300 K, we observe 4 conduct O2 molecules (red spheres) (observed from simulations at 300 K (volume isosurfaces) (complete spontaneous diffusion pathways that bring O2 molecules in front of the re-side of the FMNH− (Fig. 1) starting from random configurations in the bulk solvent. Successful paths typically cover overall distances of ~40–60 Å from the protein surface to the flavin C4a carbon and display a stepwise behavior from the time of entrance through the C2 protein surface (Fig. 1B). In fact, O2 molecules may temporarily reside on the surface (e.g., Fig. 1B, step A) and generally visit several cavities along each of these paths (e.g., Fig. 1B, steps B and C). An example path is depicted in Fig. 2 and available as Movie S1 video online. Additionally, trajectories show O2 molecules residing transiently in cavities and niches on the protein surface characterized by the presence of Ala and/or Ile hydrophobic residues, an ideal physicochemical environment to host O2 molecules. These additional paths carrying O2 molecules inside the protein, but not in proximity of the C4a flavin atom (distance >6 Å) were therefore distinguished from the above mentioned “complete paths” (see also SI Text). 350 K simulations confirm the location of these paths (15 and 25 corresponding events, respectively; data not shown). The relatively limited number of complete paths observed might be, in part, dependent on the 30-ns overall sampling considered (13% of O2 molecules are inside the protein matrix at the end of our runs at 300 K; 27% at 350 K). However, we stress that this sampling time was sufficient to capture a multitude of diffusion paths.

The observed spontaneous O2 diffusion matches a model consisting of multiple diffusion paths converging toward residues Phe-270 and Phe-266, in front of the re-side of the reduced FMNH− cofactor (Fig. 3 and Scheme 1). Once O2 molecules reach Phe-266 and Phe-270 (Fig. 1B, step C), transient fluctuations of these aromatic side chains allow O2 to further diffuse into a smaller cavity defined by flavin C4a, His-396, Phe-266, and Phe-270 (Fig. 1B, step D). The side chain of His-396 was proposed to facilitate formation of the C4a-hydroperoxide intermediate (31) and our MD simulations are consistent with the hypothesized role of this preorganized oxygen cavity for C4a-intermediate stabilization. Moreover, they also show that this preorganized cavity is characterized by remarkable side chain

Fig. 1. O2 spontaneous diffusion into C2. (A) Four complete paths are observed from simulations at 300 K (volume isosurfaces) (Left). All paths conduct O2 molecules (red spheres) (Right) to the re-side of the FMNH− (reduced flavin cofactor, green sticks) in close contact with its C4a carbon (Right). (B) Time series of the O2 – C4a distance for the successful diffusion paths and key steps (see text). The dashed horizontal line defines the C4a flavin oxygen cavity.
flexibility, a prerequisite of O₂ diffusion toward the active site (Fig. 2).

Computational predictions and our model for protein-guided O₂ diffusion were validated by combining site-directed mutagenesis and rapid kinetics experiments. Reactions of C₂-FMNH with O₂ to form a C₄a-hydroperoxyflavin intermediate were monitored using a stopped-flow spectrophotometer (Figs. S2–S4). The kinetics were comparatively investigated in the wild-type protein (35) and in 4 mutants that target Phe-266, the residue suggested by the MD simulations to represent the entry point for the O₂ access to the reactive C₄a locus of the flavin ring. The main results of this kinetic analysis were the following (Table 1): (i) Binding of the p-hydroxyphenylacetate (HPA) substrate to the wild-type C₂-FMN⁻ complex causes a 20-fold reduction in the rate of formation of the C₄a-hydroperoxyflavin intermediate; (ii) mutation of Phe-266 with a bulky Trp side chain causes a very similar drop in rate of the oxygen reaction; and (iii) replacement of Phe-266 with smaller side chains (Phe266Pro, Phe266Gly, and Phe266Ala) has little (<5-fold) effect on C₄a-hydroperoxyflavin formation, indicating that these mutants retain the ability to efficiently react with oxygen. Correlating the kinetics with the mechanism of oxygen diffusion is especially difficult because the measured rates of the oxygen reaction and C₄a-hydroperoxyflavin formation are composite parameters that result from the rates of oxygen diffusion through the protein matrix and of the chemical steps along the electron-transfer reaction between the oxygen and reduced flavin. Bearing in mind this inherent difficulty in data interpretation, we envision the following working model. O₂ diffusion trajectories converge to Phe-266, at the entrance of the oxygen cavity in front of the flavin C₄a atom (Figs. 1 and 2). As shown by the crystal structures, HPA binding involves a conformational change of Phe-266, which must rotate away to make room for the substrate (see Figs. S1 and ref. 31). As a result, substrate binding makes the protein matrix more tightly packed, limiting the conformational fluctuations in the active site. A similar effect is likely to be exerted by the Trp side chain of the Phe266Trp mutant. Consistently, binding of HPA in the wild-type C₂-FMN⁻ enzyme and the Trp side chain of the Phe266Trp enzyme decrease the rate of O₂ diffusion, slowing down the overall rate of C₄a-hydroperoxyflavin formation (Table 1) (35). This limiting effect is not observed in the proteins in which Phe-266 is replaced by smaller side chains (Phe266Pro, Phe266Gly, and Phe266Ala). The differences between the rate constants of these mutants and of the wild-type enzyme are likely to reflect the increased solvent accessibility of the oxygen cavity as indicated by the lower hydroxylation ratio (i.e., product formed/FMN⁻ used) exhibited by the Phe266Gly protein compared with the wild type (62 ± 5% vs. 89 ± 3%) (see SI Text) (3, 31, 36). Moreover, it must be noted that the mutants can bind HPA only after formation of the hydroperoxyflavin intermediate and, therefore, their oxygen reaction rates are not affected by HPA binding, differently from the wild-type enzyme (Table 1).

To further validate the O₂ diffusion model obtained from MD simulations, we constructed the C₂(Tyr296Phe) mutant that targets a residue close to the reactive site of the flavin whereas it is not part of the predicted diffusion pathways. This mutant reacts with O₂ identically to the wild-type enzyme; the C₄a-hydroperoxyflavin is formed with rate constants of 1.2 × 10⁶ and 4.0 × 10³ M⁻¹ s⁻¹ in absence and presence of HPA, respectively (Table 1). These values are essentially the same as those of the wild-type enzyme and confirm that Tyr-296 is not part of any O₂ diffusion path as predicted by our simulations.

Table 1. Reoxidation rates for reduced C₂(mutant)-FMNH⁻ with O₂ in presence/absence of HPA

<table>
<thead>
<tr>
<th>Mutants</th>
<th>Rate constants of formation of C₄a-hydroperoxyflavin, 10⁴ M⁻¹ s⁻¹</th>
<th>+HPA</th>
<th>-HPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type</td>
<td>110</td>
<td>4.8</td>
<td>4.8</td>
</tr>
<tr>
<td>Phe266Gly*</td>
<td>15</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Phe266Ala*</td>
<td>20</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>Phe266Pro*</td>
<td>14</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Phe266Trp*</td>
<td>4.8</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>Tyr296Phe</td>
<td>120</td>
<td>4.0</td>
<td>4.0</td>
</tr>
</tbody>
</table>

HPA, reaction of C₂(mutant)-FMNH⁻ with O₂ in presence of HPA. –HPA, reaction of C₂(mutant)-FMNH⁻ with O₂ in absence of HPA.

*Differently from the wild-type, HPA does not affect the oxygen reactivity of the four Phe266 mutants which bind HPA only after reaction with O₂ and formation of C₄a-hydroperoxyflavin (see Figs. S3 and S4).

Fig. 3. Funnel-shaped multiple pathways for C₂. (A) Time-dependent representation of the 4 complete paths observed from simulations at 300 K converging in front of Phe-266 (top view). (B) All pathways conduct O₂ molecules to the flavin re-side (side view). Volume isosurfaces are colored depending on simulation time from blue (entrance into the protein) to red (end of successful path).
All pathways conduct O₂ molecules to the flavin (end of successful path). Depending on simulation time from blue (entrance into the protein) to red (graphical purposes only, 3 paths are displayed). Volume isosurfaces are colored.

The reduced flavin (Fig. 4 horizontal line defines the C4a flavin cavity. diffusion paths and key steps (see Oxygen Diffusion into AldO). The dashed horizontal line defines the C4a flavin cavity.

Paths out of 5) eventually proceed to a preorganized cavity defined by flavin C4a and Ala-105, which coincides with the cavity previously proposed based on AldO X-ray structures (32). Thus, the side chain of Ala-105 creates a favorable hydrophobic environment to stabilize the presence of an O₂ molecule next to the reduced flavin (Fig. 4 A and B, steps C and G). Clearly, protein dynamics is required for the successful diffusion of O₂ molecules to the active site. It is striking to observe that, similar to C₂, all complete diffusion pathways (i.e., all pathways carrying oxygen from the bulk solvent to the flavin cofactor) converge to only one side of the reduced flavin (re-side) (Fig. 5 and Scheme 1). Moreover, they all cross only a limited part of the AldO protein structure, i.e., the substrate-domain.

Table 2 summarizes the rapid kinetics experiments for oxygen reactivity of reduced AldO and its Ala-105 mutants. The data show that the rate constant of AldO reoxidation (13 x 10⁴ M⁻¹s⁻¹) is hardly affected by the Ala105Ser mutation (14 x 10⁴ M⁻¹s⁻¹) whereas the Ala105Gly mutant is somewhat faster (20 x 10⁴ M⁻¹s⁻¹) (Fig. S6). Apparently, small changes in the size of the side chain at position 105 have little effect on oxygen reactivity. In this regard, we notice that one would not expect a drastic increase in reactivity with oxygen in the Ala105Gly mutant, because the reaction rate of wild-type AldO is already high and is also limited by other funnel residues and the actual electron-transfer step from O₂ to the flavin (3, 32). All attempts to replace Ala-105 with larger side chains failed because the mutants were extremely unstable and/or unable to bind FAD. However, strong support for the role of Ala-105 as O₂ entry point to the active site is provided by recently reported mutagenesis data on plant L-galactono-1,4-lactone dehydrogenase (GALDH) (38), which shares 25% sequence identity with AldO. As a typical dehydrogenase, this enzyme reacts poorly with O₂. However, its oxygen reactivity could be substantially increased (400-fold) to a level comparable to that of typical oxidases by simply mutating Ala-113 (homologous to Ala-105 of AldO) to Gly (38). Apparently, Ala-105 in AldO already allows O₂ access to the reduced FAD whereas in GALDH—due to its specific active site—it needs to be replaced by a smaller residue to allow O₂ to pass through. This finding indicates that, consistently with our MD predictions for AldO, also in GALDH O₂ diffuses and approaches the flavin from the position corresponding to that of AldO Ala-105.

Discussion

We used an integrated computational and experimental procedure, combining X-ray crystallography, enhanced-statistics MD simulations, rapid kinetic experiments, and site-directed mutagenesis to shed light on how O₂ molecules diffuse into the active site of flavoenzymes with different catalytic activity (monooxygenase and oxidase) and folding topologies. In both simulated systems, distinct and multiple protein-guided O₂ diffusion pathways converge toward defined active site entry points, forming funnel architectures. The observation that a specific set of residues form entry sites for the access of oxygen to the flavin cofactor—as Phe-266 in C₂ and Ala-105 in AldO—is consistent with what was recently reported for cholesterol oxidase (12) and sarcosine oxidase (39). However, this does not strictly imply the presence of individual diffusion pathways. Instead, our results suggest that multiple diffusion pathways, converging to a few key residues, are operative and represent a more effective structural model to combine high specificity and high kinetic efficiency in oxygen-using flavoenzymes. From a computational standpoint, we emphasize that in this work, O₂ diffusion was only solvent- or protein-guided—i.e., no biasing force was used to direct the reactants to the protein active sites. We stress, therefore, that a direct picture of the diffusion process at the atomic scale was obtained a priori and only subsequently used as a prediction tool to design the experiments addressing oxygen reactivity.

Our observations are also relevant to the understanding of the reaction mechanism of oxygen with reduced flavin (3, 26). MD simulations indicate that O₂ is able to reach specifically the flavin C4a atom both in the monooxygenase and the oxidase (Figs. 1 and 4). This implies that—indeed, independently of the nature of the enzymatic reaction—O₂ would react with the flavin by direct contact with the C4a atom of the cofactor. In this scenario, the C4a atom appears to be the locus directly involved in the electron transfer from the reduced cofactor to O₂, which is consistent with isotope effect studies performed on the oxidase (29). The combination of our data with the results obtained by site-directed mutagenesis on various flavoenzymes (38, 39) indicates that the difference among dehydrogenases, monooxygenases, and oxidases ultimately resides in the fine modulation of the local environment embedding the C4a
atom; its accessibility, the distribution of charged and polar groups to favor electron transfer between reduced flavin and O₂, and the extent to which the oxygen cavity is capable of stabilizing the C₄a-hydroperoxyflavin.

Methods

Molecular Model and Enhanced-Statistics MD Simulations. Ten MD trajectories of the C₂ hemes (chain A and D; 798 residues; FMNH⁺ cofactor; initial model PDB entry 2JBS, 2.8 Å resolution) (31) and 10 trajectories of the AldO monomer (418 residues; FADH⁺ cofactor; initial model PDB entry 2VFR, 1.1 Å resolution) (32) at 300 and 350 K were generated using the GROMOS90 software for biomolecular simulation (40), the GROMOS 53A6 parameter set (41), and compatible ion parameters (42) for SPC water model (43). A summary is reported in SI Text and Table S1. A procedure for enhanced-statistics MD simulation was used for O₂ spontaneous diffusion. It involves (i) reduced masses (1.6 u) for the oxygen atoms in the O₂ molecule (21); (ii) enhanced statistics from 10 (independent and noninteracting) O₂ molecules in the system, kept beyond a minimum pair distance by a network of repulsive half-harmonic distance-restraining potentials (44); (iii) a fast grid-based pairwise-construction algorithm (44) as implemented in the GROMOS90 MD ++ module (45); (iv) enhanced statistics from 10 independent MD runs at 300 and 350 K. QO diffusion statistics were collected over a total of 10 independent trajectories of systems with 100 O₂ molecules each, monitored for a total enhanced-MD time of 30 (C₂) or 50 (AldO) ns. The rather high O₂ apparent concentrations (C₂ ≈ 0.14 M or AldO ≈ 0.3 M, for comparison, an O₂ buffer is ≈ 1.2 mM) allow capturing a sufficient statistics of O₂-protein encounter events without perturbing protein overall structure at both 300 and 350 K. RMSD time series of C₂ and AldO backbone Cα-atoms are reported in Figs. 57 and S8, together with computational details. The term "enhanced-MD time" points out that, the kinetic properties of simulated O₂ molecules differ from standard MD simulation. Computer simulations were used to predict the location of oxygen diffusion pathways along C₂ and AldO configurational distributions; instead, kinetic properties were measured by experiments. The term "enhanced-statistics" emphasizes that an improved statistics is achieved compared with standard MD simulation. No biasing force or potential is used to bring O₂ molecules inside the enzyme active sites. Instead, O₂ freely diffuses on the free-energy landscape starting from a nonarbitrary configuration and spontaneously reaches the preorganized cavities described in the text. The Pymol (45) and VMD (46) software packages were used for graphical representations.

Rapid Kinetics and Oxygen Reactivity. C₂. Rapid kinetics measurements were performed at 277 K with a Hi-Tech Scientific Model SF-610X stopped-flow spectrophotometer in single- or double-mixing mode (observation cell optical path-length of 1 cm). The stopped-flow instrument was maintained under anaerobic conditions by flushing the flow system with an O₂ scrubbing solution consisting of 400 μM glucose, 1 mg/ml 1-glucose oxidase (15.5 units per ml), and 4.8 μg/ml 1-catalase in 50 mM sodium phosphate buffer pH 7.0. The O₂ scrubbing solution was left in the flow system overnight and was thoroughly rinsed with anaerobic buffer before experiments. To study the reaction of C₂ mutants with O₂, the reduced enzyme in presence and absence of substrate (HPA) in 50 mM sodium phosphate buffer pH 7.0 was prepared according to the protocol used for the wild-type enzyme (35), followed by mixing with buffers of different O₂ concentrations. Apparent rate constants (kₐp) from kinetic traces were calculated from exponential fits using the KineAyst 3 (Hi-Tech Scientific) or Program A (R. Chang, J.-y. Chiu, J. Dinverno, and D.P. Ballou, University of Michigan, Ann Arbor, MI) software packages. Rate constants were obtained by a Levenberg-Marquardt nonlinear fit of kₐp versus O₂ concentrations, as implemented in the KaleidaGraph software (35). SI Text reports experimental details. AldO. Purified mutant and wild-type AldO were obtained as described in ref. 37. Rapid kinetics measurements were performed using an Applied Photophysics stopped-flow apparatus model SX17MV following methods reported in ref. 12. Reduced AldO with 0.3 mM NADH was mixed with CO₃⁻ to give a CO₃⁻/AldO ratio of 7:1 to obtain a sufficient statistics of CO₃⁻/AldO (≈ 20000). All experiments were performed at 300 K and in a 50 mM potassium phosphate buffer pH 7.5. Experimental details are reported in SI Text.

ACKNOWLEDGMENTS. This work was supported by the National Science Foundation Grant PHY-0822283; the National Institutes of Health and National Science Foundation (R.B., R.B., and J.A.M.); the Howard Hughes Medical Institute (J.A.M.); the American Chemical Society Petroleum Research Fund Grant 46271-C4 and Ministero dell’Istruzione, dell’Università e della Ricerca (A.M.); the EU FP7 “Oxygreen” project (A.M. and M.W.F.); the Carbohydrate Research Center Wageningen (to W.J.H.v.B.); the Thailand Research Fund Grant BRGS1800002 and the Faculty of Science, Mahidol University (P. Chaiyen); the Institute for the Promotion of Teaching Science and Technology (P. Chenprakhon); Royal Golden Jubilee PhD Program Grant PHD0082549 (to K.T.); the Danish Technology Foundation Stichting Technische Wetenschappen Grant 7726, the Nederlandse Organisatie voor Wetenschappelijk Onderzoek applied science division, and the Technology Program of the Ministry of Economic Affairs (R.T.W.) We thank the Center for Theoretical Biological Physics for the computing resources.