An Improved Perylene Sensitizer for Solar Cell Applications
Li, Chen; Yum, Jun-Ho; Moon, Soo-Jin; Herrmann, Andreas; Eickemeyer, Felix; Pschirer, Neil G.; Erk, Peter; Schoeneboom, Jan; Muellen, Klaus; Graetzel, Michael

Published in:
Chemsuschem

DOI:
10.1002/cssc.200800068

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2008

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
An Improved Perylene Sensitizer for Solar Cell Applications

Dye-sensitized solar cells (DSSCs) based on nanocrystalline semiconductors have been the subject of intense investigation owing to their potential low cost, easy processing and good performance.[1] In these cells, a dye monolayer is adsorbed on a mesoporous film of titania. Upon light absorption, the dye injects electrons into the TiO2 conduction band, where they are transported to the anode. The neutral dye is regenerated by electron transfer either from an electrolyte containing a redox system or from a solid-state hole conductor. With a closed external circuit and under illumination, the device then constitutes a photovoltaic energy-conversion system, which is regenerative and stable. In this technology, ruthenium complexes maintained a clear lead in performance amongst the thousands of dyes tested, yielding power conversion efficiencies of 10–11%.[2] However, in view of the cost and availability of 4d metals as well as their environmental non-compatibility, many metal-free organic dyes have been developed.[3]

As metal-free dyes, perylene derivatives have been widely applied in various optical devices owing to their outstanding chemical, thermal and photochemical stability and non-toxicity.[4] Several perylene dyes have been used as sensitizers in DSSCs, however, they exhibited very low overall power conversion efficiencies (η = 1–2%).[5] Recently, we reported diphenylamino-substituted perylene monoanhydrides as sensitizers which show an improved efficiency of up to 3.9%.[6] Herein, we present a novel perylene molecule 5 that bears two thiophenol groups in the 1 and 6 positions (see Scheme 1 and Experimental Section). Substituents at the 1 and 6 positions in perylene tune the HOMO and LUMO energies and thereby the absorption wavelength of the molecule. Another aspect of introducing (bulky) side groups is their ability to suppress dye aggregation on TiO2 resulting in more efficient electron injection.[7] In this type of molecule, light absorption is associated with an intramolecular charge transfer (ICT) excitation from the donor to the acceptor moiety of the dye, which is anchored to the surface of the TiO2, resulting in efficient electron transfer from the excited dye into the TiO2 conduction band.

Figure 1 shows the UV/Vis absorption spectra of 5 measured in CH2Cl2 solution and adsorbed on a TiO2 electrode. The solution absorption spectrum of 5 shows two peaks at λ = 620 nm (ε = 22 727 M−1 cm−1) and at 462 nm (ε = 13 704 M−1 cm−1). From time-dependent density functional theory (DFT) calculations[8] at the B3LYP/TZVP level,[9,10] the first excitation (predicted at λ = 639 nm) corresponds to the ICT from the HOMO located mainly on the diphenylamino group to the LUMO (π*) located

Scheme 1. Synthesis of 5. 1) Br2, chloroform, reflux, 6 h, 86%; 2) thiophenol, K2CO3, NMP, RT, 3 h, 56%; 3) dip(tert-octylphenyl)amine, [Pd(dba)2]PCl3, [tBu]3P, tBuONa, overnight, 83%; 4) KOH, isopropanol, overnight, 80%. (dba = dibenzylideneacetone.)

Figure 1. Normalized UV/Vis absorption spectra of 5 in dichloromethane (solid line) and adsorbed on a nanocrystalline 6-μm transparent TiO2 film (dashed line).
mainly on the perylene. The second band (predicted at $\lambda = 473$ nm) is a transition from a mixed thiophenyl-perylene π orbital to the LUMO. When absorbed onto TiO$_2$, compound 5 shows a blue-shifted absorption ($\lambda_{\text{max}} = 506$ nm). This effect is attributed to the ring opening of the anhydride group on the perylene to form two carboxylates, which provide strong chemical interactions with the oxide surface. This phenomenon is well known for perylene anhydride sensitizers.5,6

Figure 2 shows the cyclic voltammogram$^{[11]}$ of 5 which exhibits reversible waves both in the oxidation and reduction regions, indicating the electrochemical stability of 5, a vital parameter for the durability of solar cells. The HOMO and LUMO are observed at 0.48 V and -1.08 V (vs Fc/Fc$^+$), respectively. When the dye adsorbs to TiO$_2$, it undergoes a transition to the dicarboxylate, that is, a ring-opened structure, which results in a negative shift in the HOMO potential. From DFT calculations of the anhydride and the dicarboxylate, we obtain a shift of 0.5 eV in the ionization potential. Also, the optical gap is increased upon ring opening to the dicarboxylate, resulting in an additional negative shift to the injecting excited-state energy level (see above). Hence, the energetic alignment of the HOMO and LUMO of the dye is well suited for electron injection into the TiO$_2$ conduction band as well as regeneration by the triiodide/iodide redox couple or alternatively by a hole conductor.

To fabricate the solar cell, a 6-μm thick transparent mesoporous TiO$_2$ with 4-μm thick scattering mesoporous TiO$_2$ was prepared and treated with a 40 mM solution of titanium tetra-chloride using a previously reported procedure.$^{[1b]}$ The films were heated at 500°C in air and sintered for 30 min before use. The solutions of sensitizer 5 were prepared in chlorobenzene at a concentration of 0.15 mM. The films were immersed into the dye solution for 16-18 h at room temperature and were then rinsed with acetonitrile to remove any unadsorbed dye and used as such for photovoltaic measurements in completely sealed devices. Figure 3 shows the incident monochromatic photon-to-current conversion efficiency (IPCE) and the J–V (current density vs voltage) curve for the solar cell sensitized with 5. The IPCE curve of 5 plotted as a function of excitation wavelength exhibits a strikingly high plateau value of 87%.

The solar cell sensitized with 5 shows an unprecedented efficiency under solar simulated light irradiation (100 mW cm$^{-2}$, 1.5 AM global) of 6.8% with a short-circuit current density $J_{sc} = (12.60 \pm 0.20)$ mA cm$^{-2}$, an open-circuit voltage $V_{oc} = (728 \pm 15)$ mV and a fill factor FF = 0.74 ± 0.01. As far as we know, this is the highest efficiency ever reported for a perylene/TiO$_2$ DSSC. Integrating the IPCE curve over the solar spectrum results in a short-circuit current of 11.8 mA cm$^{-2}$ in agreement with the photocurrent of the measured device. At the low intensities, 9.3 and 51.4% sun, the J$_{sc}$ values are 1.24 and 6.74 mA cm$^{-2}$, respectively, which are linearly proportional to the light intensity. The efficiencies at 9.3 and 51.4% sun are 6.7 and 7.0%, respectively.

We fabricated complete solid-state dye-sensitized solar cells, where 2,2,7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluorene (Spiro-MeOTAD) as an organic hole-transporting material replaces the liquid electrolyte. In this setup, interfacial hole transfer from the perylene sensitizer 5 to Spiro-MeOTAD takes place and regenerates the oxidized dye.$^{[12]}$ Figure 4 shows the solid-state solar cell J–V characteristics measured under AM 1.5 solar conditions. At 100 mW cm$^{-2}$, $J_{sc} = 2.83$ mA cm$^{-2}$, $V_{oc} = 838$ mV and FF = 0.75 and the corresponding power conversion efficiency is 1.78%. The cell demonstrated an almost linear behavior under different light intensities ranging from 9.2 to 99% sun with a slightly higher efficiency (~1.84%) at low intensity.

In summary, we have molecularly engineered a highly efficient novel perylene sensitizer, which yields 87% IPCE and
6.8% power conversion efficiency under standard AM 1.5 solar conditions. We have also demonstrated the possibility to utilize perylenes for solid-state solar cells yielding 1.8% power conversion efficiency under standard illumination conditions. Comparing these results with other perylene sensitizers, we conclude that the thiophenol groups in 5 contribute strongly to the obtained high efficiencies. Work to extend the spectral response of these sensitizers further into the red and near-IR spectral region is in progress.

Experimental Section

N-(2,6-Diisoproplyphenyl)-perylene-3,4-dicarboximide (1) was supplied by BASF-SE (Ludwigshafen). Diip-tet-tert-octylphenylamine was purchased from MP Biomedicals Inc. All other starting materials and catalysts were purchased from Aldrich, Acros or ABCR and used as received. 1H and 13C NMR spectra were recorded on Bruker AMX250 NMR spectrometers using the residual proton or the carbon signal of the deuterated solvent as an internal standard. Chemical shifts are reported in parts per million. FD mass spectra were performed with a VG Instrument ZAB 2-SE-FDP. UV/Vis absorption spectra were recorded on a Perkin-Elmer Lambda 40 spectrophotometer. Elemental analyses were carried out by the Mikroanalytical Laboratory at the Johannes Gutenberg University.

The synthesis of N-(2,6-Diisopropyphenyl)-1,6,9-tribromoperylene-3,4-dicarboximide (2, Scheme 1) was described before.[11] Synthesis of 3: Compound 2 (1 g, 1.4 mmol), thiophenol (153 mg, 1.4 mmol) and potassium carbonate (128 mg, 1.4 mmol) were stirred in N-methylpyrrolidone (NMP, 80 mL) at room temperature. After 1.5 h, additional thiophenol (76 mg, 0.6 mmol) and potassium carbonate (128 mg, 1.4 mmol) were added to the reaction mixture, which was stirred at the same temperature for another 1.5 h. After cooling to room temperature, the reaction mixture was precipitated and washed with water and dried. The product was purified by column chromatography on silica gel using dichloromethane and pentane (1:4) as eluent to give a dark red solid (600 mg, 56%).

Synthesis of 4: A mixture of 3 (0.3 g, 0.39 mmol), diip-tet-tert-octylphenylamine (0.22 g, 0.58 mmol), [Pd2(dba)3] (20 mg, 0.022 mmol), tris-tet-butylphosphine (20 mg, 0.10 mmol), sodium tert-butyl alcohol (55 mg, 0.57 mmol) and toluene (100 mL) was stirred at 80 °C under argon atmosphere overnight. The solvent was removed under reduced pressure, and the crude product was purified by column chromatography using toluene as eluent on silica to give a green solid (0.35 g, 83%). 1H NMR (300 MHz, CDCl3, 25 °C, TMS): δ = 8.68 (d, J = 8 Hz, 1H), 8.52 (d, J = 7 Hz, 1H), 8.47 (s, 1H), 8.43 (s, 1H), 8.16 (d, J = 8 Hz, 1H), 7.52–7.27 (m, 19H), 7.01 (d, J = 9 Hz, 4H), 2.66 (m, 2H; CH isopropyl), 1.73 (s, 4H), 1.37 (s, 12H), 1.08 (s, 12H); MS: m/z 1088.9 (100%) [M+] (calcd 1089.57); IR (KBr): vmax = 2944, 2362, 1705, 1670, 1568, 1461, 1385, 1236, 1202, 1050, 937, 866, 829, 770, 725, 698, 562 cm–1; elemental analysis (%) calcd for C74H76N2O2S2: C 80.80, H 7.47, N 2.49, S 5.81; UV/Vis (CH2Cl2): λmax (log ε) = 606 (4.14), 462 nm (3.89).
transparent nanocrystalline layer was coated on FTO glass plates (Nippon Sheet Glass, 4 mm thickness) pretreated with TiCl4 (40 mM) by repetitive screen printing to obtain a thickness of 6 µm. Then, a paste for the scattering layer containing 400-nm-sized anatase particles (CCIC, HPW-400) was deposited onto the transparent nanocrystalline layer. The resulting layer had a thickness of around 4 µm. The TiO2 electrodes were gradually sintered under a programmed flow: at 325 °C for 5 min, at 375 °C for 5 min, at 450 °C for 15 min and finally at 500 °C for 15 min. The TiO2 electrodes were treated again by TiCl4 under 70 °C for 30 min and sintered again at 500 °C for 30 min before they were dipped into dye solution. The TiO2 electrodes were immersed into the solutions of 5 (150 µm) in chlorobenzene and kept at room temperature for 16–18 h. The dye-adsorbed TiO2 electrode and thermally platinized counter electrode were assembled into a sealed sandwich-type cell equipped with a colour-matched IR cutoff filter (KG-3, Schott) in order to reduce the mismatch in the region of 350–750 nm between the simulated light and AM1.5 to less than 2%. The geometry, USA, which was focused through a Gemini-180 double monochromator (Jobin Yvon Ltd.).

Acknowledgements

We gratefully acknowledge financial support from the German Science Foundation SFB 625, Korean–German IRTG and Korean–Swiss GBL.

Keywords: dye-sensitized solar cells · fused-ring systems · photoelectrochemical cells · sensitizers

[11] a) The cyclic voltammograms (CVs) were measured in a solution of BuNPF6, (0.1 M) in dry dichlormethane with a scan rate of 50 mV/s at room temperature under argon.

Received: March 3, 2008
Revised: April 16, 2008
Published online on June 6, 2008