Angiogenic Growth Factors and Their Receptors in First-Trimester Human Decidua of Pregnancies Further Complicated By Preeclampsia or Fetal Growth Restriction

M. Plaisier, E. Streefland, P. Koolwijk, V.W.M. van Hinsbergh, F.M. Helmerhorst and J.J.H.M. Erwich

Reproductive Sciences 2008; 15; 720 originally published online Jun 18, 2008;
DOI: 10.1177/1933719108317300

The online version of this article can be found at:
http://rsx.sagepub.com/cgi/content/abstract/15/7/720

Published by:
SAGE
http://www.sagepublications.com

On behalf of:
 Society for Gynecologic Investigation

Additional services and information for Reproductive Sciences can be found at:
Email Alerts: http://rsx.sagepub.com/cgi/alerts
Subscriptions: http://rsx.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav
Citations http://rsx.sagepub.com/cgi/content/refs/15/7/720
Disturbances in decidual and placental vascular development may play a role in complications of pregnancy, like preeclampsia (PE) and fetal growth restriction (FGR). Preeclampsia affects 5% to 10% of pregnancies and is responsible for substantial maternal and neonatal morbidity and mortality. Predominant features are maternal systemic vascular endothelial dysfunction and microangiopathy. Target organs are the brain (seizures or eclampsia), liver (hemolysis, elevated liver enzymes, low platelets [HELLP] syndrome), kidney (proteinuria), and the uteroplacental unit (fetal distress and growth restriction). Failure of placental vascular development has been linked to the pathogenesis of PE and FGR.

Decidual vascular adaptation to pregnancy is characterized by high levels of both angiogenesis, the formation of new vessels from existing vasculature, and vasculogenesis, blood vessel generation from angioblast precursor cells. Additionally, vascular mimicry or pseudovasculogenesis is also taking place where cytotrophoblasts convert to an endothelial phenotype. Failure of angiogenesis and pseudovasculogenesis has been proposed as processes in the inception of PE and FGR.

Numerous factors are thought to play a role in normal vascular adaptation to implantation. Vascular endothelial growth factor-A (VEGF-A) and placental growth factor (PIGF) are probably the best-studied factors. VEGF interacts with VEGFR-1 (Flt-1) and VEGFR-2 (KDR) to promote endothelial cell proliferation, cell migration, and vascular permeability. In rabbits, VEGF, together with its receptor Flt-1, plays an active role in the angiogenic process during implantation.
PIGF shares biochemical and functional features with VEGF and interacts with VEGFR-1 (Flt-1). PIGF and VEGF-A have synergistic effects regarding angiogenesis, but vessels induced by PIGF are more mature and stable than vessels induced by VEGF-A.13,14 PIGF is abundantly expressed in the human placenta. Both VEGF-A and PIGF may be important paracrine regulators of decidual angiogenesis and autocrine mediators of trophoblast function.11,15 The soluble variant of Flt-1 has been associated with the pathogenesis of PE.4,5

A second family of growth factors, the angiopoietins, is also known for their regulating capacities regarding angiogenesis.16 Angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) bind with equal affinity to their receptor TIE-2, but have different functions. Ang-1 maintains vessel integrity and plays a role in the later stages of vascular remodeling.16 Ang-2 is a functional antagonist of Ang-1 and leads to loosening of cell–cell interactions and allows access to angiogenic inducers like VEGF.17 Coexpression of VEGF and Ang-2 induces angiogenesis, but Ang-2 results in vascular regression in the absence of angiogenic signals.18 Ang-1 and Ang-2 have both been detected in decidual and placental tissues.11,17

Various decidual cell types are capable of producing angiogenic factors. We recently showed the production of PIGF, KDR, Flt-1, Ang-2, and TIE-2 by endothelial cells and extravillous trophoblasts. Decidual stromal cells, glandular epithelium, and perivascular smooth muscle cells were found to produce all studied angiogenic factors.11 Uterine natural killer cells are also abundantly present in first-trimester decidua and are known to produce PIGF, VEGF, Ang-1, and Ang-2.19

The possible correlation of PE and FGR with impaired vascular development has been studied in placental tissues mainly after the onset of disease.9,20,21 However, whether decidual vascularization is also related to the pathogenesis of both diseases is not known. Information regarding the expression of angiogenic factors in first-trimester tissues would be helpful in understanding PE and FGR. The present study focused on the role of first-trimester angiogenic growth factors in the pathogenesis of PE and/or FGR. The expressions of VEGF-A, PIGF, Flt-1, KDR, Ang-1, Ang-2, and TIE-2 were determined in first-trimester decidua obtained during routine chorion villous sampling (CVS). The included patients were followed throughout their pregnancy to be able to relate the angiogenic factor expression to the pregnancy outcome, that is, uncomplicated PE, or FGR.

Materials and Methods

Study Group and Tissue Collection
Decidual samples were obtained from viable first-trimester pregnancies during routine CVS. Chorion villous sampling was performed vaginally between 10 and 12 weeks of gestation. Main indications were maternal age and serum screening related risk for aneuploidy. Gestational age was calculated according to the last menstrual period and confirmed by ultrasound (crown rump length). After CVS, surplus decidual tissue was microscopically separated from the chorion villi and immediately stored at −20°C until RNA isolation. One sample per person was collected with an average size of 5 mg to 15 mg.

Follow-up of the pregnancies was available through a postpartum questionnaire. Patients experiencing FGR (n = 10) and PE/HELLP (n = 9) were selected. Preeclampsia was defined as diastolic blood pressure (BP) of minimal 90 mm Hg, or a raise of 15 mm Hg compared with first-trimester BP, combined with proteinuria of at least 300 mg/day. For FGR, criteria according to Kloosterman22 were used. Birth weight was corrected for gestational age and FGR was defined as a corrected birth weight below the 5th percentile. All cases were matched to controls based on gestational age, maternal age, and parity at time of CVS (N = 19). Patients with concurrent morbidity (eg, diabetes) or medication were excluded. Fetal karyotyping showed no chromosomal abnormalities. Weight and the number of smokers were comparable between cases and controls. Patients were informed that surplus material was used for research, according to the “Guideline for Good Use” by the Federation of Medical Scientific Associations and informed consent was provided by all study subjects. Patient characteristics are described in Table 1.

RNA Isolation and cDNA Synthesis
Tissue samples were incubated in 1.5 mL RNA Later Ice (Ambion, Austin, Texas) for 48 hours at −20°C. After centrifugation, the tissue samples were lysed in lysis buffer (RLT buffer [Qiagen] and β-mercapto-ethanol) using plastic mortars and RNA isolation was performed using RNAeasy columns (Qiagen Benelux BV, Venlo, the Netherlands) following recommended protocol. mRNA was dissolved in RNAse-free water. mRNA quantity and quality was determined by measuring its absorbance in a spectrophotometer (NanoDrop ND-1000, NanoDrop
Technologies, Wilmington, Delaware) and reverse transcription was performed with 1 µg total RNA, random primers, and a cDNA synthesis kit (Ready-to-go You-Prime first strand beads, Amersham Biosciences, Buckinghamshire, United Kingdom). The 32 µL of cDNA obtained was diluted 1:3.

Real-Time Reverse Transcriptase Polymerase Chain Reaction

mRNA expression was quantified according to the Taqman real-time polymerase chain reaction (PCR) method using validated primer and probe (FAM/TAMRA double-labeled) sets for VEGF-A, Flt-1, KDR, PI GF , Ang-1, Ang-2, and TIE-2. Glycerlylaldehyde-3-phosphate dehydrogenase (GAPDH, primers/VIC-labeled probe) was used as an endogenous reference gene (all purchased from Applied Biosystems, Foster City, California).

RT-PCR for target gene/GAPDH pairs was performed in 12.5-µL reactions, containing 2.5 µL cDNA solution, using Mastermix (RT-QP2X-03, Eurogentec, Maastricht, the Netherlands), DNase-free water, and the primer/probe sets described above. Reactions were performed in duplicate and mRNA levels were expressed in cycle threshold (Ct). To correct for the RNA input, the difference in Ct values of target and reference genes (dCt = Ct(target gene) – Ct(GAPDH)) was calculated. The difference between cases and controls (ddCt) was calculated as ddCt = dCt(case) – dCt(control) and the fold induction was calculated as $2^{-\Delta \Delta Ct}$. In addition, Ct values were quantified into nanograms per microliter (ng/µL) using a standard curve of total RNA. Cases and controls were compared by the ratio ng/µL(case)/ng/µL(control). Water and negative-RT samples, obtained by the omission of the reverse transcriptase enzyme in the cDNA reaction, were used as negative controls.

Statistics

The mRNA expression levels were compared between cases and matched controls. A general linear model for repeated measurements, analysis of variance, was performed to analyze the paired data between matched cases and controls (SPSS 11.5). P values < .05 were considered significant.

RESULTS

The expression of the angiopeptins and their receptor TIE-2 and of VEGF, PI GF and their receptors KDR and Flt-1 were evaluated. The mRNA levels in all cases were calculated and expressed as ddCt, ng/µL and as fold induction compared with the control group (Tables 2 and 3). All factors were present at mRNA level in decidua of cases as well as controls.

Control Group

The control patients were matched to the cases; 10 controls to FGR patients and 9 controls to PE patients. First, mRNA expression was analyzed in all the control patients. In these controls, PI GF showed the most abundant expression with a mean of 4.6 ± 1.8 ng/µL. KDR, Flt-1, and Ang-2 showed a moderate expression with means of 0.4 ± 0.1, 0.5 ± 0.1, and 0.8 ± 0.3 ng/µL, respectively. VEGF-A, Ang-1, and TIE-2 were only dimly

<table>
<thead>
<tr>
<th>Table 1. Characteristics of the FGR and PE Study Groups and Matched Control Groups²</th>
</tr>
</thead>
<tbody>
<tr>
<td>At CVS</td>
</tr>
<tr>
<td>Age (years)</td>
</tr>
<tr>
<td>GA (days)</td>
</tr>
<tr>
<td>Parity</td>
</tr>
<tr>
<td>At delivery</td>
</tr>
<tr>
<td>GA (days)</td>
</tr>
<tr>
<td>Birth weight (g)</td>
</tr>
</tbody>
</table>

Abbreviations: FGR, fetal growth restriction; PE, preeclampsia; HELLP, hemolysis, elevated liver enzymes, low platelets; CVS, chorion villous sampling; GA, gestational age.

²Data are presented as mean ± standard deviation (mean ± SD).

²P < .05 versus control group.
Table 2. First-Trimester Decidual mRNA Expression of Angiogenic Factors (in Cycle Threshold, Ct)\(^{ab}\)

<table>
<thead>
<tr>
<th>Angiogenic Factor</th>
<th>mRNA Content (dCt)(^c)</th>
<th>Fold Induction(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FGR (n = 10)</td>
<td>PE (n = 9)</td>
</tr>
<tr>
<td>VEGF-A</td>
<td>(-1.5 \pm 1.2)</td>
<td>(-0.5 \pm 0.8)</td>
</tr>
<tr>
<td>PlGF</td>
<td>(0.5 \pm 1.6)</td>
<td>(-2.0 \pm 1.4)</td>
</tr>
<tr>
<td>KDR</td>
<td>(-0.5 \pm 1.8)</td>
<td>(-1.8 \pm 1.1)</td>
</tr>
<tr>
<td>Flt-1</td>
<td>(0.4 \pm 0.6)</td>
<td>(-1.1 \pm 0.7)</td>
</tr>
<tr>
<td>Ang-1</td>
<td>(-1.5 \pm 1.9)</td>
<td>(-1.7 \pm 1.6)</td>
</tr>
<tr>
<td>Ang-2</td>
<td>(-0.4 \pm 1.3)</td>
<td>(0.1 \pm 1.3)</td>
</tr>
<tr>
<td>TIE-2</td>
<td>(-1.2 \pm 1.5)</td>
<td>(-3.1 \pm 1.3)</td>
</tr>
</tbody>
</table>

Abbreviations: FGR, fetal growth restriction; PE, preeclampsia.

\(^{a}\)First-trimester decidual mRNA expression was determined by reverse transcriptase polymerase chain reaction and compared between pregnancies resulting in FGR or PE and their matched controls. The “repeated measures analysis of variance” was performed to analyze the data.

\(^{b}\)Data are expressed as mean ± standard error of the mean (mean ± SEM).

\(^{c}\)mRNA content was expressed in cycle threshold (Ct). Mean Ct per gene: GAPDH, 25; VEGF-A, 26.0; PlGF, 29.2; KDR, 28.5; Flt-1, 28.4; Ang-1, 33; Ang-2, 27.4; and TIE-2, 32.1. The Ct values were corrected for the mRNA input by calculating the difference in Ct of target and reference genes: dCt = Ct(target gene) − Ct(GAPDH).

\(^{d}\)The difference between cases and controls (dCt) was calculated as dCt = dCt(case) − dCt(control). Fold induction in cases compared with controls was calculated as \(2^{-\text{dCt}}\).

The results showed that first-trimester decidual tissues obtained from CVS expressed all examined angiogenic factors. mRNA levels of VEGF-A, PlGF, KDR, Ang-1, Ang-2, and TIE-2 appeared unregulated in FGR cases compared with matched controls. In addition, PlGF, Ang-1, and TIE-2 mRNA appeared unregulated in PE cases compared with matched controls. However, the large interindividual variation disallowed an unequivocal conclusion. The differential expression of angiogenic factors appeared more prominent in FGR than in PE.

The origin of both PE and FGR probably starts in the first-trimester, before the onset of overt disease during the last trimester. Our first-trimester decidual samples provide a unique opportunity to obtain information regarding the onset of PE and FGR. The fact that the decidual samples were obtained together with villous tissue offers valid information on the original localization in utero, namely underneath the implantation site. Shortcomings are also present. No histological investigation could be performed on the number of trophoblasts and other cell types because of the small amounts of material in each sample. Also, the study groups are small because of the rarity of the samples. This results in rather high standard deviations, which makes interpretation of the data difficult. However, the 10-fold to 100-fold induction...
of genes in these small groups promises significant differences when groups could be expanded.

Current knowledge regarding PE suggests that defective vascular remodeling of maternal spiral arteries leads to impaired invasion of trophoblasts, placental insufficiency, and ischemia.\(^4\) The affected placenta releases soluble anti-angiogenic factors, like soluble Flt-1 (sFlt-1) and endoglin (sEng).\(^5,23,24\) These factors alter the angiogenic balance, mainly by neutralizing VEGF and PlGF. Furthermore, these factors are able to induce systemic endothelial dysfunction and finally induce clinical PE.\(^5,25-27\) The serum and placental levels of these factors have been studied extensively in term pregnancies, without reaching complete consensus with regard to VEGF.

Several reports have described increased, comparable, and even decreased VEGF levels in placenta of term PE pregnancies.\(^9,12,28,29\) PlGF was decreased in serum of PE in the third trimester.\(^30,31\) Term placental tissue showed reduced Ang-2 mRNA and equal Ang-1 mRNA in PE.\(^32\) No reports on these angiogenic factors are available regarding first-trimester tissues.

In the present study, mRNA levels of PlGF, Ang-1, and TIE-2 appeared upregulated in future PE patients compared with controls. VEGF-A, KDR, Flt-1, and Ang-2 showed comparable expression levels. No previous reports were found to reference these data in first-trimester tissues. Only first-trimester serum data are available, showing reduced PlGF and increased VEGF and sflt-1 in first-trimester serum of PE patients.\(^32,33\)

The studied Flt-1 represents both the soluble and membrane bound Flt-1 and unfortunately no differentiation can be made between both types. The comparable overall Flt-1 expression in PE cases probably corresponds to the described decline of membrane bound Flt-1 and the known increase of soluble Flt-1.\(^34\)

Fetal growth restriction has been proposed to be induced by relatively high oxygen levels, which cause a disturbed expression of angiogenic factors and altered angiogenesis in placental villi.\(^35-37\) These relative hyperoxic conditions may cause the decreased VEGF and increased PlGF expression in FGR placentas because these factors are inversely regulated by oxygen.\(^38,39\) An ovine model for FGR demonstrated increased Ang-1, Ang-2, and TIE-2 levels in early gestation before FGR was clinically detected. Later in gestation, decreased TIE2 expression was associated with FGR.\(^40\) Whether decidual angiogenesis is also affected by the altered oxygen levels in FGR is still not demonstrated but plausible.

The present study showed that the mRNA levels of angiogenic factors in first-trimester decidua were altered in the FGR group compared to the control group, although differences were not significant. The expression of VEGF-A, PlGF, KDR, Ang-1, Ang-2, and TIE-2 appeared upregulated in FGR, cases and Flt-1 showed comparable expression levels in cases and controls.

The relative hyperoxia in FGR and the oxygen effect on angiogenic factors are mainly described in fetoplacental tissues and trophoblasts. If the theory is valid for

Table 3. First-Trimester Decidual mRNA Expression of Angiogenic Factors\(^{a,b}\)

<table>
<thead>
<tr>
<th>Angiogenic Factor</th>
<th>mRNA Content (ng/µL)(^a)</th>
<th>Fold induction(^d)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FGR (n = 10)</td>
<td>PE (n = 9)</td>
</tr>
<tr>
<td>VEGF-A</td>
<td>0.1 ± 0.0</td>
<td>0.1 ± 0.0</td>
</tr>
<tr>
<td>PlGF</td>
<td>4.1 ± 1.8</td>
<td>8.2 ± 3.1</td>
</tr>
<tr>
<td>KDR</td>
<td>0.7 ± 0.3</td>
<td>1.7 ± 0.8</td>
</tr>
<tr>
<td>Flt-1</td>
<td>0.6 ± 0.2</td>
<td>2.0 ± 1.3</td>
</tr>
<tr>
<td>Ang-1</td>
<td>0.02 ± 0.0</td>
<td>0.4 ± 0.4</td>
</tr>
<tr>
<td>Ang-2</td>
<td>0.4 ± 0.2</td>
<td>3.6 ± 2.0</td>
</tr>
<tr>
<td>TIE-2</td>
<td>0.9 ± 0.8</td>
<td>19.6 ± 19.5</td>
</tr>
</tbody>
</table>

Abbreviations: FGR, fetal growth restriction; PE, preeclampsia.

\(^a\)First-trimester decidual mRNA expression was determined by reverse transcriptase polymerase chain reaction and compared between pregnancies resulting in FGR or PE and their matched controls. The “repeated measures analysis of variance” was performed to analyze the data.

\(^b\)Data are expressed as mean ± standard error of the mean.

\(^c\)mRNA content was expressed in cycle threshold (Ct). Mean Ct per gene: GAPDH, 25; VEGF-A, 26.0; PlGF, 29.2; KDR, 28.5; Flt-1, 28.4; Ang-1, 33; Ang-2, 27.4; and TIE-2, 32.1. Cycle threshold were converted into ng/µL using a standard curve of total RNA. Values were corrected for mRNA input by calculating the ratio [(ng/µL(target gene))/(ng/µL(GAPDH))] and these values are expressed as “mRNA content” in the table.

\(^d\)Fold induction in cases compared with controls was calculated as the ratio ng/µL(case)/ng/µL(controls).
first-trimester decidua, one would expect decreased VEGF and Ang-2 and increased Ang-1 and PlGF mRNA levels in FGR patients. However, mRNA levels of all 4 genes appeared increased in FGR compared with matched controls. This might be explained by a different expression and regulation of angiogenic factors in first-trimester tissues compared with third-trimester tissues. For example, VEGF-A and Ang-1 were shown to increase and Ang-2 was shown to decrease as gestation progresses. In contrast, other studies have demonstrated a decline in VEGF-A mRNA as gestation progresses. In addition, oxygen influences in decidua may differ from its influences in villous tissue and/or trophoblasts. No references were found regarding oxygen regulation in decidua. Finally, histological differences or differences in the number of trophoblasts between the studied specimens cannot be ruled out.

The differential expression of angiogenic factors appeared more prominent in FGR than in PE and therefore a more pronounced disbalance between angiogenic factors might be involved in the pathogenesis of FGR. Overall, enhanced angiogenic factors in both patient groups might represent an (ineffective) vascular rescue mechanism in response to unidentified situation(s) and/or event(s). This compensatory mechanism may, in turn, unintentionally induce increased nonbranching angiogenesis, altered decidual and placental vascular adaptation, and functional placental insufficiency, all of which may result in PE and/or FGR during late gestation.

REFERENCES