APPENDIX

DISCOVERY, CHARACTERIZATION AND KINETIC ANALYSIS OF AN ALDITOL OXIDASE FROM STREPTOMYCES COELICOLOR

Dominic P.H.M Heuts, Erik W. van Hellemond, Dick B. Janssen, Marco W. Fraaije
From the Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute,
University of Groningen, The Netherlands

Running title: Alditol oxidase from S. coelicolor

Correspondence to: Dr. M.W. Fraaije, Laboratory of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands. Tel: + 31 50 3634345; Fax: + 31 50 36 34165; E-Mail: m.w.fraaije@rug.nl

Steady-state kinetics
We used the determinant method for obtaining the steady-state rate equations of the proposed ping-pong and ternary complex mechanisms (1). From these rate equations the steady-state kinetic parameters were calculated. Next to this, we also show the measured and simulated Lineweaver-Burk plots of steady-state kinetics of AldO at varying oxygen and xylitol concentrations. The plots and the calculated steady-state kinetic parameters suggest that AldO follows a ternary complex mechanism.

Scheme 1. Proposed kinetic scheme (I = ping-pong mechanism, II = ternary complex mechanism).

Ping-pong mechanism
To solve the steady-state rate equation for the proposed ping-pong mechanism, the steady-state concentrations of all enzyme species need to be solved. This is accomplished by using the determinant method (1). Because of the relatively fast equilibrium between E_{ox} and $E_{ox}~S$ these species are lumped yielding: $\frac{d(E_{ox}+E_{ox}~S)}{dt} = -[E_{ox}~S] \cdot k_{red} + \frac{[E_{red}] \cdot k_{ox,1} \cdot O_2}{K_d+S}$ where $[E_{ox}~S] = ([E_{ox}] + [E_{ox}~S]) \cdot S/(K_d+S)$.
Substitution of $[E_{ox}~S]$ by the latter equation then yields:
$\frac{d(E_{ox}+E_{ox}~S)}{dt} = -([E_{ox}] + [E_{ox}~S]) \cdot S/(K_d+S) \cdot k_{red} + [E_{red}] \cdot k_{ox,1} \cdot O_2$.
From this matrix the concentration for \((E_{\text{ox}} + E_{\text{ox}^-} S)\) is obtained by deleting the first row and first column and then calculating the determinant of the remaining smaller matrix. In a similar way the concentrations of the remaining enzyme species can be obtained. These values can then be used to write down the steady-state rate equation in the form of a Michaelis-Menten equation:

\[
V = \frac{k_{\text{ox,4}} O^2 [E_{\text{red}}]}{[E_{\text{ox}} + E_{\text{ox}^-} S] + [E_{\text{red}}^- P'] + [E_{\text{red}^-} P] + [E_{\text{red}}]}
\]

\[
V = \frac{k_3 k_4 k_{\text{ox,1}} k_{\text{red}} O_2 S}{(k_4 + k_{-3}) k_{\text{ox,1}} k_{\text{red}} O_2 S + k_3 (k_{\text{ox,1}} k_{\text{red}} O_2 S + k_4 (K_d k_{\text{ox,1}} O_2 + k_{\text{red}} S + k_{\text{ox,1}} O_2 S))}
\]

From this rate equation the kinetic parameters \(K_M\) and \(k_{\text{cat}}\) can be derived:

\[
K_M = \frac{k_3 k_4 k_{\text{ox,1}} O_2}{(k_4 + k_{-3}) k_{\text{ox,1}} k_{\text{red}} O_2 + k_3 (k_{\text{ox,1}} k_{\text{red}} O_2 + k_4 (k_{\text{red}} + k_{\text{ox,1}} O_2))}
\]

\[
k_{\text{cat}} = \frac{k_3 k_4 k_{\text{ox,1}} k_{\text{red}} O_2}{(k_4 + k_{-3}) k_{\text{ox,1}} k_{\text{red}} O_2 + k_3 (k_{\text{ox,1}} k_{\text{red}} O_2 + k_4 (k_{\text{red}} + k_{\text{ox,1}} O_2))}
\]

\[
\frac{k_{\text{cat}}}{K_M} = \frac{k_{\text{red}}}{K_d}
\]

Ternary complex mechanism

The steady-state rate equation for the proposed ternary complex mechanism can be derived in a similar way. The result is:

\[
V = \frac{k_3 k_4 k_{\text{ox,1}} k_{\text{red}} O_2 S}{(k_4 k_{\text{red}} (k_{-3} + k_{\text{ox,2}} O_2) S + k_3 (k_{\text{ox,2}} k_{\text{red}} O_2 S + k_4 (K_d k_{\text{ox,2}} O_2 + k_{\text{red}} S + k_{\text{ox,2}} O_2 S)))}
\]

From this rate equation the following equations for \(K_M\) and \(k_{\text{cat}}\) were derived:
Steady-state kinetics of AldO at varying oxygen concentrations

Steady-state kinetic parameters of AldO were determined at 0.25 and 1.25 mM O\textsubscript{2} (k\textsubscript{cat} is respectively 13 s-1 and 20 s-1, K\textsubscript{M} is respectively 0.32 mM and 0.49 mM). The set of Lineweaver-Burke plots obtained in this way gives information on the kinetic mechanism that is operative. A set of parallel lines suggests that a ping-pong mechanism is employed by the enzyme, however it is known that in certain cases a ternary complex mechanism yields the same result (2,3). For AldO a set of parallel lines was obtained and correlated to a ternary complex mechanism by simulating the Lineweaver-Burk plot according to the abovementioned equations.

Tested compounds for substrate profiling

D-ribose, L-arginine, diglycerol, L-arabinose, L-alanine, cholesterol, D-xylose, D-alanine, D-lyxose, L-asparagine, D-glucose, L-aspartate, ethyleneglycol, D-mannose, DL-aspartate, diethyleneglycol, D-galactose, L-cysteine, hexaethyleneglycol, L-histidine, PEG, L-proline, D-fructose, L-threonine, 3-buten-1-ol, 3-buten-2-ol, glycerol, sarcosine, cis-2-Butene-1,4-diol, meso-erythritol, DL-homoserine, L-threitol, L-ornithine, ribitol, DL-norvaline, 2-aminoethanol, D-arabitol, 1-amino-2-propanol, xylitol, 2-amino-1-propanol, D-sorbitol, methanol, 4-amino-1-butanol, D-mannitol, ethanol, galactitol, 1-propanol, 2-propanol, 1-butanol, 1,4-diaminobutane, L-rhamnose, 2-butanol, L-fucose, 1-pentanol, 2-pentanol, benzyl alcohol, 1-octanol, 2-phenylethanol, L-gulono-1,4-lactone, isoamylalcohol, α-methylbenzyl alcohol, α-methylbenzyl amine, 1-phenyl-1,2-ethanediol, maltose, 1,2-propanediol, 2-amino-1-phenylethanol, lactose, 1,3-propanediol, 2-amino-2-phenylethanol, sucrose, 1,2-butanediol, 1,2-pentanediol benzyl methylether, 1,4-butanediol, cinnamyl alcohol, D-melizitose, meso-2,3-butanediol, 2-methoxy-4-methylphenol, N-acetylglucosamine, butanediol, vanillyl alcohol, butanediol, 1,2-pentanediol, 1,2-hexanediol, cis-1,2-cyclohexanediol.
REFERENCES

