A power-based description of standard mechanical systems

Dimitri Jeltsemaa,*, Jacquelien M.A. Scherpenb

aDelft Center for Systems and Control, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands
bUniversity of Groningen, Faculty of Mathematics and Natural Sciences, ITM, Nijenborgh 4, 9747 AG, Groningen, The Netherlands

Received 7 June 2004; received in revised form 28 April 2006; accepted 10 October 2006
Available online 4 December 2006

Abstract

This paper is concerned with the construction of a power-based modeling framework for mechanical systems. Mathematically, this is formalized by proving that every standard mechanical system (with or without dissipation) can be written as a gradient vector field with respect to an indefinite metric. The form and existence of the corresponding potential function is shown to be the mechanical analog of Brayton and Moser’s mixed-potential function as originally derived for nonlinear electrical networks in the early sixties. In this way, several recently proposed analysis and control methods that use the mixed-potential function as a starting point can also be applied to mechanical systems.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Mechanical systems; Hamiltonian mechanics; Brayton–Moser equations

1. Introduction and motivation

It is well known that a large class of physical systems (e.g., mechanical, electrical, electromechanical, thermodynamical, etc.) admits, at least partially, a representation by the Euler–Lagrange (EL) or Hamiltonian equations of motion, see e.g. [1,7,9,13,14], and the references therein. A key aspect for both sets of equations is that the energy storage in the system plays a central role. For standard mechanical systems with n degrees of freedom, and locally represented by n generalized displacement coordinates \(q = \text{col}(q_1, \ldots, q_n) \in \mathbb{Q} \), the EL equations of motion are given by

\[
\frac{d}{dt} \left(\nabla_q \mathcal{L}(q, \dot{q}) \right) - \nabla_q \mathcal{L}(q, \dot{q}) = \tau,
\]

where \(\dot{q} = \text{col}(\dot{q}_1, \ldots, \dot{q}_n) \in \mathbb{V} \) denotes the generalized velocities, and \(\mathcal{L} : \mathbb{Q} \times \mathbb{V} \to \mathbb{R} \) represents the Lagrangian which is defined by the difference between the kinetic co-energy and the potential energy. Usually the forces \(\tau \) are decomposed into dissipative forces and generalized external forces.

The relation between the EL equations and the Hamiltonian equations is classically established as follows. Defining the generalized momenta \(p = \nabla_q \mathcal{L}(q, \dot{q}) \) with \(p = \text{col}(p_1, \ldots, p_n) \in \mathbb{P} \), the equations of motion, as described by the set of second-order equations (1), can be written as a set of 2n first-order equations:

\[
\dot{q} = \nabla_p \mathcal{H}(q, p), \quad \dot{p} = -\nabla_q \mathcal{H}(q, p) + \tau.
\]

Here, \(\mathcal{H} : \mathbb{Q} \times \mathbb{P} \to \mathbb{R} \) denotes the Hamiltonian which represents the sum of the kinetic and potential energy.

The relationship between (1) and (2) is graphically represented in the diagram shown in Fig. 1 (solid lines). Clearly, the diagram suggests that there exists a dual form of (1) in the sense that a mechanical system can be expressed in terms of a set of generalized momenta and its time derivatives, which represent a set of generalized forces. Indeed, in [7] a description of the dynamics in the generalized momentum and force spaces \(\mathbb{P} \) and \(\mathbb{F} \), respectively, is called a co-Lagrangian system, where the Lagrangian \(\mathcal{L} \) in (1) is replaced by its dual form \(\mathcal{L}^* : \mathbb{P} \times \mathbb{F} \to \mathbb{R} \), representing the difference between the potential co-energy and the kinetic energy, while the forces \(\tau \) are replaced by external velocities \(\tau^* \), i.e.,

\[
\frac{d}{dt} (\nabla_p \mathcal{L}^*(p, \dot{p})) - \nabla_p \mathcal{L}^*(p, \dot{p}) = \tau^*,
\]

with \(\dot{p} = \text{col}(\dot{p}_1, \ldots, \dot{p}_n) \in \mathbb{F} \). Hence, the co-Lagrangian system (3) represents a velocity-balance equation.
The notion of new passivity properties along the lines of [3]. This includes the definition of alternative conjugated port-variables (inputs and outputs) with respect to an alternative storage function (i.e., the mixed-potential).

- The BM equations seem to be a natural equation set in relation with bond-graph theory since the state variables live in the flow and effort spaces.

There exists a widely accepted standard analogy between simple mechanical and electrical system elements, like the ‘spring–capacitor’ and the ‘mass–inductor’ analogy used in this paper, but also the ‘spring-inductor’ and ‘mass-capacitor’ analogy used in e.g. [11]. However, the existence of a well-defined analogy for more general mechanical systems is not straightforward. One of the main reasons for making such analogy difficult is the presence of the coriolis and centrifugal forces, which do not appear as such in the electrical domain. Another difficulty is that, in contrast to electrical networks, mechanical systems are in general not nodical. Hence, a mechanical system cannot always be considered as an interconnected graph. For these reasons, we can, in general, not equate the dynamics of a mechanical system mutatis mutandis along the lines of [2]. A more dedicated analysis is needed and a dedicated transformation algorithm that goes beyond the Legendre transformation needs to be developed.

Although there have been earlier attempts towards the formalization of a mechanical analog of [2], see e.g., [4,6], in our opinion, the mechanical analog of [2] presented in this paper seems a rather natural and general one. The approach of our paper differs from [10] in the sense that here we consider a description starting from the Hamiltonian system equations, and possibly staying within the original generalized position and generalized momenta coordinates. In [10] the starting point is given by the EL equations and an electrical interpretation in canonical BM coordinates of e.g., the gravity force as well as the coriolis and centrifugal terms is given. Also, the final BM form is different.

The structure of the paper is as follows. Section 2 discusses the original form of the BM equations. In Section 3, a lemma

2 PBC is a control method that has its roots in the field of robotics and the closely related Lagrangian framework. For a detailed elaboration on this subject the interested reader is referred to [9], and the references cited therein.
will be introduced which forms the key behind the main results presented in Section 4. The theory is exemplified using a well-known nonlinear mechanical system. The role of dissipative forces and velocities is studied in Section 5. Finally, in Section 6, possible extensions of the theory and future research will be discussed.

2. The BM equations

The BM equations as originally developed for a large class of nonlinear electrical RLC networks take the special gradient form [2]

\[
\begin{pmatrix}
C(u) & 0 \\
0 & -L(i)
\end{pmatrix}
\begin{pmatrix}
\frac{du}{dt} \\
\frac{di}{dt}
\end{pmatrix}
= \begin{pmatrix}
\nabla_u \mathcal{J}(u,i) \\
\nabla_i \mathcal{J}(u,i)
\end{pmatrix},
\]

where \(u \in \mathbb{U} \) represents the voltages across the incremental capacitors \(C(u) \), \(i \in \mathbb{I} \) represents the currents through the incremental inductors \(L(i) \) and \(\mathcal{J} : \mathbb{U} \times \mathbb{I} \rightarrow \mathbb{R} \) is called the mixed-potential function which usually takes the form

\[
\mathcal{J}(u,i) = \mathcal{J}^e(u,i) + i^T \gamma u - \mathcal{J}^f(u).
\]

Here, \(\gamma \) is a unitless matrix derivable from Kirchhoff’s laws, whereas the functions \(\mathcal{J}^e : \mathbb{I} \rightarrow \mathbb{R} \) and \(\mathcal{J}^f : \mathbb{U} \rightarrow \mathbb{R} \) represent the content and co-content, respectively. The content and co-content are directly related with the dissipated power in the network. As will be shown later, the content plays a role similar to the Rayleigh dissipation function in a mechanical system, while the co-content suggests the existence of a Rayleigh co-dissipation function. Note that if the network does not contain resistors and/or sources, the mixed-potential reduces to

\[
\mathcal{J}(u,i) = i^T \gamma u.
\]

In the original development by BM [2] the off-diagonal terms of \(Q^e(u,i) \) in (4) are assumed to be zero. Here, we consider a more general form without this restriction, i.e.,

\[
Q^e(x) \dot{x} = \nabla_x \mathcal{J}^e(x),
\]

with \(x = \text{col}(i, u) \) and \(\mathcal{J}^e(x) \) as in (5), and introduce the following definition.

Definition 1. A set of BM equation (7), defined on the voltage and current space \(\mathbb{U} \) and \(\mathbb{I} \), respectively, is called a canonical BM description. Any other set of equations of the form

\[
Q(\eta) \dot{\eta} = \nabla_\eta \mathcal{J}(\eta),
\]

with \(\eta = \text{col}(\eta_1, \eta_2) \), that admits structurally the same mixed-potential as in (5), i.e.,

\[
\mathcal{J}(\eta) = \mathcal{J}_1(\eta_1) + \eta_1^T \gamma_2 \eta_2 - \mathcal{J}_2(\eta_2),
\]

not necessarily defined on \(\mathbb{U} \) and \(\mathbb{I} \), but having the units of power, is called a homonymous BM description.

A typical example of a homonymous BM description is obtained when we describe an RLC network in terms of the inductor fluxes and the capacitor charges.

The class of nonlinear electrical networks considered here allows a similar quadrangle as depicted in Fig. 1. Adapting the classical ‘spring–capacitor’ and ‘mass–inductor’ analogy [7], we may relate the mechanical spaces \(\mathbb{Q}, \mathbb{P}, \mathbb{V} \) and \(\mathbb{F} \) as the electrical space of charge, flux, current and voltage, respectively. This would mean that the electrical analog of the Lagrangian (resp. co-Lagrangian) represents the difference between the magnetic co-energy (resp. electric co-energy) and the electric energy (resp. magnetic energy), while the electrical analog of the Hamiltonian represents the sum of the electric and magnetic energies. The BM equations are defined on the electrical analog of the force and velocity space, i.e., \(\mathbb{U} \leftrightarrow \mathbb{F} \) and \(\mathbb{I} \leftrightarrow \mathbb{V} \), thus constituting the fourth equation set of the quadrangle for the electrical domain. Hence, based on the ‘spring–capacitor’ and ‘mass–inductor’ analogy, the construction of the mechanical analog of (4) will basically be concerned with the construction of a mixed potential of form (5) in terms of mechanical forces and velocities, either directly in terms of \(\mathbb{F} \) and \(\mathbb{V} \) (i.e., canonical), or indirectly in terms of e.g., \(\mathbb{Q} \) and \(\mathbb{P} \) (i.e., homonymous). Additionally, the corresponding (indefinite) metric is desired to coincide with a form structured as

\[
Q(\cdot) \sim \begin{pmatrix}
\text{‘springs’} & * \\
* & \text{‘masses’}
\end{pmatrix}.
\]

3. Preliminaries

As discussed in Section 1, a standard mechanical system can be represented by the Hamiltonian equation set (2). For ease of presentation, we set the external forces \(\tau = 0 \) and rewrite (2) in a more compact form as

\[
\dot{z} = J \nabla_z \mathcal{H}(z),
\]

where \(z = \text{col}(q, p) \), and \(J \) is a skew-symmetric matrix of the form

\[
J = \begin{pmatrix}
0 & I_n \\
-I_n & 0
\end{pmatrix} = -J^T,
\]

with \(I_n \) the \(n \times n \) identity matrix. The Hamiltonian function \(\mathcal{H}(z) = \mathcal{H}(q, p) \) is assumed to be

\[
\mathcal{H}(q, p) = \frac{1}{2} p^T M(q) p + \mathcal{V}(q),
\]

where \(M(q) = M^T(q) > 0 \) is the inertia matrix, and \(\mathcal{V} : \mathbb{Q} \rightarrow \mathbb{R} \) is a twice-differentiable potential energy function.

Clearly, for standard mechanical systems \(J^{-1} = J^T \) is well defined. Hence, the Hamiltonian equations (11) can be rewritten as

\[
J^{-1} \dot{z} = \nabla_z \mathcal{H}(z),
\]

which directly gives rise to the suggestion of a BM type of gradient system (compare with (7)). However, apart from the fact that the system is described in terms of displacement and momenta instead of some force and velocity variables, the matrix
\[J^{-1} \] is skew-symmetric and dimensionless, while the ‘potential’ function \(H(z) \) still represents the total energy.

On the other hand, since we have \(\{ J^{-1}, H \} \), the next question is whether there exists another pair, say \(\{ \tilde{J}^{-1}, \tilde{H} \} \), that equivalently describes the system’s dynamics. Borrowing inspiration from [2], such pairs can be generated as illustrated in the following lemma.

Lemma 1. Consider a standard mechanical system represented by (14). If \(\nabla_z^2 H(z) \) is full-rank, then for any constant symmetric matrix \(K \) the dynamics of (14) can be equivalently expressed by

\[\tilde{J}^{-1}(z) \dot{z} = \nabla_z \tilde{H}(z), \quad (15) \]

where

\[\tilde{H}(z) = \frac{1}{2}(\nabla_z \tilde{H}(z))^\top K \nabla_z \tilde{H}(z), \quad (16) \]

and

\[\tilde{J}^{-1}(z) = \nabla_z^2 \tilde{H}(z) K J^{-1}. \quad (17) \]

Proof. The result follows directly by computing the gradient of \(\tilde{H}(z) \) and substitution of (17) and (11). \(\square \)

Having made these observations, our next task is to select a constant and symmetric matrix \(K \) such that (16) coincides with the mechanical equivalent of (6), while (17) represents a metric similar to (10).

4. Main result

Theorem 1. Consider a standard mechanical system described by the Hamiltonian equations (14). The dynamics of (14) can be equivalently expressed as

\[Q(z) \dot{z} = \nabla_z \mathcal{P}(z), \quad (18) \]

where

\[Q(z) = \begin{pmatrix} \nabla_q^2 \mathcal{P}(q) + \frac{1}{2} \nabla_q^2 (p^\top M^{-1}(q) p) - \nabla_q (p^\top M^{-1}(q) p) \\ \nabla_q (M^{-1}(q) p) & -M^{-1}(q) \end{pmatrix}, \quad (19) \]

and

\[\mathcal{P}(z) = (\nabla_q \mathcal{P}(q))^\top M^{-1}(q) p + \frac{1}{2} (\nabla_q (p^\top M^{-1}(q) p))^\top M^{-1}(q) p. \quad (20) \]

The pair (19) and (20) defines a homonymous BM description of mechanical type.

Proof. The key is to select in (16) and (17) of Lemma 1 a constant symmetric \(K \)-matrix such that

\[K J^{-1} = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}, \quad (21) \]

which means that \(K \) should be chosen as

\[K = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix} J = \begin{pmatrix} 0 & I_n \\ I_n & 0 \end{pmatrix} = K^\top. \]

Hence, if we define \(\mathcal{P}(z) \defeq H(z) \) and \(Q(z) \defeq \tilde{J}(z) \), then by substitution of \(K \) into (16) and (17), we obtain (19) and (20) from \(\mathcal{P}(q, p) \defeq (\nabla_q H(q, p))^\top \nabla_p H(q, p) \) and

\[Q(q, p) \defeq \begin{pmatrix} \nabla_q^2 H(q, p) & -\nabla_q (\nabla_p H(q, p)) \\ -\nabla_q (\nabla_p H(q, p)) & -\nabla_p^2 H(q, p) \end{pmatrix}, \]

respectively. The claim that the pair (19) and (20) defines a homonymous BM description (in the light of Definition 1) follows from the fact that, although expressed in terms of \(q \) and \(p \), the units and form of \(\mathcal{P}(q, p) \) coincide with power, and correspond to the mechanical analog of a mixed-potential for a lossless electrical network as given in (6). Indeed, since the generalized velocities and forces are defined by (2), \(\mathcal{P}(q, p) \) as defined in (20) can be written in terms of \(q \in \mathbb{V} \) and \(p \in \mathbb{F} \) as

\[\mathcal{P}(\cdot) = -q^\top \dot{p}, \quad (22) \]

i.e., \(\mathcal{P}(\cdot) \) as (minus) velocity \(\times \) force which equals power. \(\square \)

Regarding Theorem 1, we observe that the diagonal terms of the \(Q \)-matrix (19) correspond to the inverse of the diagonal terms of (10). Hence, \(Q(q, p) \) in its present form is not (yet) interpretable as the precise mechanical analog of \(Q^e(u, i) \) in (4), e.g., the dynamics are still expressed in terms of the generalized displacements and momenta, instead of the generalized forces and velocities, respectively (i.e., the mechanical analogs to voltages and currents as adopted at the end of Section 2). Furthermore, the presence of the skew-symmetric off-diagonal terms are related to the coriolis and centrifugal forces.

As is highlighted in [4], and according to Definition 1, a precise mechanical analog (or, in a different parlance: a canonical BM equation set of mechanical type) of the BM equations (4) can only be obtained if the Legendre transformations from \(P \rightarrow \mathbb{V} \) and \(Q \rightarrow \mathbb{F} \), and preferably vice versa, are well-defined relations. Unfortunately, in general this is not always the case. For example, if a system operates under the influence of a (constant) gravitational force, the mapping \(q \mapsto f \) (recall that \(f \) represents the generalized forces) is not invertible and therefore does not exist.\(^3\) On the other hand, suppose for simplicity that \(M(q) \) is constant, i.e., \(M(q) = M \), then (19) reduces to

\[Q(q) = \begin{pmatrix} \nabla_q^2 \mathcal{P}(q) & 0 \\ 0 & -M^{-1} \end{pmatrix}. \]

\(^3\) Of course, we could treat gravity as an external force, input or disturbance. However, in Hamiltonian mechanics gravity is usually included using the potential energy function.
Additionally, the previous observations indirectly clarify the role played by \(V \), i.e., the co-Hamiltonian, as discussed in Section 1, since
\[
\left(\begin{array}{cc}
\nabla_q V(q) & 0 \\
0 & -M^{-1}
\end{array} \right) \left(\begin{array}{c}
\dot{q} \\
\dot{p}
\end{array} \right) = \left(\begin{array}{c}
\nabla_q \Phi(q, p) \\
\nabla_p \Phi(q, p)
\end{array} \right) = \left(\begin{array}{c}
\nabla_q V(q) M^{-1} p \\
M^{-1} \nabla_q V(q)
\end{array} \right).
\]

Clearly, since \(M^{-1} \) is invertible by assumption (even in the non-constant case!), the Legendre transformation of \(p \mapsto \dot{q} \) is well defined, i.e., \(\dot{q} = M^{-1} p \). Let again \(v = \dot{q} \in \mathbb{V} \) denote the generalized velocities, then the second equation in (23) can be written as
\[
-M \ddot{v} = \nabla_q V(q).
\]

Moreover, if \(\nabla_q V(q) \) is full-rank and there exists a mapping \(q \mapsto f \), we have with
\[
V^*(f) \triangleq q^T f - V(q) \quad f = \nabla_q V(q)
\]
and \(q = \nabla_q V^*(f) \), that the first equation in (23) can be rewritten on the \((\mathbb{V}, \mathbb{F})\) space as \(\dot{q} = \nabla_f V^*(f) \dot{f} = v \). Furthermore, Eq. (24) becomes
\[
-M \ddot{v} = f.
\]

Hence, if \(M \) is constant, the precise mechanical analog of (4) is given by
\[
\left(\begin{array}{cc}
\nabla_f V^*(f) & 0 \\
0 & -M
\end{array} \right) \left(\begin{array}{c}
\dot{f} \\
\dot{v}
\end{array} \right) = \left(\begin{array}{c}
\nabla_f \Phi(f, v) \\
\nabla_v \Phi(f, v)
\end{array} \right),
\]
\[
\hat{\Phi}(f, v) \triangleq \Phi(q, p) | q = \nabla_f V^*(f) = v^T f.
\]

where the associated mixed potential is defined as
\[
\hat{\Phi}(f, v) \triangleq \Phi(q, p) | q = \nabla_f V^*(f) = v^T f.
\]

Additionally, the previous observations indirectly clarify the role played by \(\hat{\Phi}^*(f, v) \), i.e., the co-Hamiltonian, as discussed in Section 1, since
\[
\left(\begin{array}{cc}
\nabla_f \hat{\Phi}^*(f) & 0 \\
0 & M
\end{array} \right) \left(\begin{array}{c}
\dot{f} \\
\dot{v}
\end{array} \right) = \frac{d}{dt} \left(\begin{array}{c}
\nabla_f \hat{\Phi}^*(f, v) \\
\nabla_v \hat{\Phi}^*(f, v)
\end{array} \right).
\]

A similar discussion holds for non-constant inertia matrices \(M = M(q) > 0 \), but it yields a more complex analysis which is omitted for sake of brevity. In conclusion for this part, we summarize the latter discussion in the following corollary.

Corollary 1. Consider a standard mechanical system described by the Hamiltonian equations (14). If the mapping \(q \mapsto f \) is well defined, then (18), together with the pair defined in (19) and (20), is the canonical mechanical analog of the BM equations (4).

Let us next illustrate the application of Theorem 1 using an example.

Example 1. Consider the frictionless spherical pendulum shown in Fig. 2, e.g., [12]. The system consists of a massless rigid rod of length \(\ell \) fixed in one end by a spherical joint and having a bulb of mass \(m \) at the other end. Let \(q_1 \) and \(q_2 \) denote angles of the vertical and horizontal movements, and \(p_1 \) and \(p_2 \) the corresponding momenta. The configuration space of the system is \(S^2 \), however we will assume that \(q_1 \) and \(q_2 \) remain inside the domain \([0, \pi]\) and \([0, 2\pi]\), respectively. The Hamiltonian (i.e., the total stored energy) reads
\[
\mathcal{H}(q, p) = \frac{1}{2} p^T M^{-1}(q) p - mg \ell \cos(q_1),
\]
where
\[
M^{-1}(q) = \begin{pmatrix}
\frac{1}{m \ell^2} & 0 \\
0 & \frac{1}{m \ell^2 \sin^2(q_1)}
\end{pmatrix}.
\]

The centrifugal and coriolis forces are defined by the gradient of the kinetic energy with respect to \(q_1 \) and \(q_2 \), i.e.,
\[
\frac{1}{2} \nabla_q (p^T M^{-1}(q) p) = \begin{pmatrix}
-\frac{\cos(q_1)}{m \ell^2 \sin^3(q_1)} p_2^2 \\
0
\end{pmatrix},
\]
and the potential forces are
\[
\nabla_q V^*(q) = \left(\begin{array}{c}
mg \ell \sin(q_1) \\
0
\end{array} \right).
\]

Application of Theorem 1 yields that the homonymous mixed potential for the system is given by
\[
\hat{\Phi}(q, p) = \frac{g}{\ell} \sin(q_1) p_1 - \frac{\cos(q_1)}{m^2 \ell^4 \sin^3(q_1)} p_2^2 p_1.
\]
Furthermore, we compute the matrix $Q(q, p)$ as
\[
Q(q, p) = \begin{pmatrix}
\Phi(q, p) & 0 & \frac{2 \cos(q_1)}{m \ell^2 \sin^3(q_1)} p_2 \\
0 & 0 & 0 \\
-\frac{2 \cos(q_1)}{m \ell^2 \sin^3(q_1)} p_2 & 0 & -\frac{1}{m \ell^2} \\
\end{pmatrix},
\]
where
\[
\Phi(q, p) = mg\ell \cos(q_1) p_1 \\
-\left(\frac{3 \cos^2(q_1)}{m \ell^2 \sin^4(q_1)} + \frac{1}{m \ell^2 \sin^2(q_1)}\right) p_2^2 p_1.
\]
We directly observe that the system is not minimal in the sense that $Q(q, p)$ is rank deficient. However, since q_2 does not explicitly contribute to the dynamics (also not in the original Hamiltonian model), we may delete the second row and column of $Q(q, p)$ as to obtain a minimal homonymous BM description. Also note that the mapping $q \mapsto f$ is not globally defined, and thus we cannot obtain a global canonical BM equation set on the $(\mathcal{V}, \mathcal{F})$ space for this system.

5. On the role of dissipation

In the previous sections we have concentrated on standard mechanical systems without any external disturbances or dissipative forces. In this section we generalize our developments further by studying the effect of mechanical dissipation. In the analysis hereafter, we assume for simplicity that the dissipators are linear and time-invariant.

5.1. Mechanical content and co-content

An ideal (translational or rotational) mechanical dissipator is defined as an object which exhibits no kinetic or potential effects. As illustrated in [14], linear dissipation effects are included into a Lagrangian or Hamiltonian equation set by applying a constant negative gain feedback of the associated velocities. For a standard mechanical system of form (11) this means that the resulting (closed-loop) system takes the form
\[
\dot{z} = (J - D)\nabla_z \mathcal{H}(z),
\]
where
\[
D = \begin{pmatrix}
0 & 0 \\
0 & R
\end{pmatrix},
\]
with $R = R^T \geq 0$. Since the force related to the dissipators is determined by $f_R \triangleq R \nabla_p \mathcal{H}(q, p) = Rv$, i.e., the dissipators are velocity-controlled, we can define in a manner analogous to the definition of current-controlled electrical resistors
\[
\mathcal{R}(v) \triangleq \int f_R^T (v')dv' = \frac{1}{2} v^T R v.
\]
The latter function thus represents the mechanical content associated to the dissipators contained in the mechanical ‘resistance’ matrix R. Note that (29) coincides with the usual definition of the Rayleigh dissipation function.

Additionally, there should also exist a mechanical analog of the electrical co-content function. Recalling that the electrical co-content is a function defined in terms of the capacitor voltage, we may introduce a quantity
\[
\mathcal{G}(v) \triangleq \int f^T v_G(f')df',
\]
where v_G is the velocity related to the force-controlled mechanical dissipators. In the linear case, we have that $v_G \triangleq G v$. Hence, the mechanical co-content takes the form
\[
\mathcal{G}(v) \triangleq \frac{1}{2} v^T G f.
\]
Consequently, the co-content (31) should then be considered as some Rayleigh co-dissipation function. This enables us to extend Theorem 1 to standard mechanical system with (linear) dissipation. For that, we replace the dissipation matrix D in (27) with
\[
D = \begin{pmatrix}
G & 0 \\
0 & R
\end{pmatrix}.
\]

The mechanical co-content function, although (to our knowledge) only defined conceptually in [7], can be argued to have some physical significance as illustrated in the example below. Furthermore, the notion of mechanical co-content can be used as an alternative (force-controlled) damping injection strategy in PBC design schemes along the lines of [5].

Example 2. Consider the linear mass–spring–damper system depicted in Fig. 3. Although the equivalent damper velocity v_d can be expressed as $v_d = v_1 - v_2$ ($= \dot{q}_1 - \dot{q}_2$), the problem, however, is that q_2 (resp. v_2) is not related to a mass element and can therefore not serve as a displacement (resp. velocity) coordinate. As a result, the damper cannot be described in terms of content (Rayleigh dissipation) function $\mathcal{R}(v)$, but needs to be described by its dual form, the co-content (Rayleigh co-dissipation function). Let $f_j = k_j q_j$, $j = 1, 2$, denote the forces.
related to the linear springs with elasticity constants \(k_j \), then

\[
\mathcal{G}(f_1, f_2) = \frac{1}{2d}(f_2 - f_1)^2.
\]

(\text{Note that} \(\nu_G = \nabla / \mathcal{G}(f_1, f_2) = \nu_d.)\) Hence, the Hamiltonian equations (27) can be used to obtain a valid equation set for this system, however the corresponding dissipation matrix \(D \), as introduced in (28), should for this particular example be changed to

\[
D = \begin{pmatrix} G & 0 \\ 0 & 0 \end{pmatrix} \quad \text{with} \quad G = \frac{1}{d} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} = G^T \geq 0,
\]

for all \(d > 0 \).

Theorem 2. Consider a standard mechanical system with dissipation described by (27). The dynamics of (27) can be equivalently expressed by (18), where \(Q(q, p) \) is of the form (19), while

\[
\mathcal{P}(q, p) = \mathcal{R}(q, p) + (\nabla q \mathcal{V}^-(q))^T M^{-1}(q) p + \frac{1}{2}(\nabla q(p^T M^{-1}(q)p))^T M^{-1}(q)p - \mathcal{G}(p, q),
\]

(33)

where

\[
\mathcal{R}(q, p) = \frac{1}{2} p^T M^{-1}(q) R M^{-1}(q) p
\]

\[
\mathcal{G}(q, p) = \frac{1}{2}(\nabla q(p^T M^{-1}(q)p))^T G \nabla q(p^T M^{-1}(q)p).
\]

(34)

Proof. In this case, we need to select a \(K \)-matrix in (16) and (17) such that

\[
K(J - D)^{-1} = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix}.
\]

Hence,

\[
K = \begin{pmatrix} I_n & 0 \\ 0 & -I_n \end{pmatrix} (J - D) = \begin{pmatrix} -G & I_n \\ I_n & R \end{pmatrix},
\]

which, since \(R = R^T \) and \(G = G^T \), insures that \(K = K^T \). The remaining part of the proof follows along the same lines of the proof of Theorem 1 and by noting that \(v = \nabla_p \mathcal{H}(q, p) \in \nabla \) and \(f = \nabla_q \mathcal{H}(q, p) \in \nabla \). \(\square \)

Corollary 2. Consider a standard mechanical system with dissipation of the form (27). If the mapping \(q \mapsto f \) is well defined, then (18), together with the pair defined in (19) and (33), is precisely the mechanical analog of the BM equations (4) and, hence, identifies the fourth equation set—including dissipation—suggested by the quadrangle of Fig. 1. A description with the latter properties is referred to as a canonical BM equation set of mechanical type.

5.2. **External signals**

During our developments we have assumed that the external signals (e.g., sources and disturbances), as modeled in Section 1 by the vector \(\tau \), are zero. The previous analysis remains unaffected if we include (possibly velocity-dependent) external forces. Indeed, the expressions remain valid if we replace \(\mathcal{R} \) in (34) by a new content function of the form

\[
\tilde{\mathcal{R}}(q, p, \tau) = \mathcal{R}(q, p) - \int \nabla_p \mathcal{H}(q, p) \tau^T (v') dv'.
\]

(35)

A similar construction holds for the inclusion of (possibly force-dependent) external velocity sources.

6. **Discussion and outlook**

The results reported in this paper are the first steps towards a general power-based modeling and analysis framework for finite-dimensional physical systems. The present work first shows that a large class of mechanical systems (referred to as standard mechanical systems) can be described by a homonymous BM equation set. This set appears to be precisely the ‘missing link’ between the classical Lagrangian, co-Lagrangian and Hamiltonian equation sets on the one side (defined on the \((Q, \nabla) \), \((P, F) \) and \((Q, P) \) spaces, respectively), and the equation set defined on the \((\nabla, F) \) space—as is illustrated by the quadrangle in Fig. 1.

The analysis was carried out for standard mechanical systems with linear dissipation and a constant structure matrix of form (12). However, since the matrix \(J \) is in general state dependent, i.e., \(J(z) = -J^T(z) \), it is necessary to extend Lemma 1 with a state-modulated \(K \)-matrix. Consequently, the new pair \((\tilde{J}^{-1}, \tilde{\mathcal{H}}) \) is then obtained as follows:

\[
\tilde{J}(z) = \frac{1}{2}[\nabla z^2 \mathcal{H}(z) K(z) + \nabla z ((\nabla z \mathcal{H}(z))^T K(z))] J^{-1}(z),
\]

and

\[
\tilde{\mathcal{H}}(z) = \frac{1}{2}(\nabla z \mathcal{H}(z))^T K(z) \nabla z \mathcal{H}(z).
\]

For mechanical systems having a structure matrix of the form \(J(z) = -J^T(z) \), the corresponding Hamiltonian equation set is usually referred to as a generalized Hamiltonian (or port-Hamiltonian) system [14]. Besides the fact that the state space is (locally) not restricted to \(2n \) (i.e., an even number of) generalized coordinates \((q, p) \), it can be argued to be an excellent tool to describe a very large class of physical models, ranging from standard mechanical systems treated here to electrical, electromechanical or even distributed parameter systems in various domains. For that reason, the next step is the search for a general BM equation set, starting from a port-Hamiltonian system description.

References

