Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts
Boekema, Egbert; van Breemen, JFL; van Roon, H; Dekker, JP; Dekker, Jan P.

Published in:
Journal of Molecular Biology

DOI:
10.1006/jmbi.2000.4037

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
2000

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Arrangement of Photosystem II Supercomplexes in Crystalline Macrodomains within the Thylakoid Membrane of Green Plant Chloroplasts

Egbert J. Boekema1*, Jan F. L. van Breemen1, Henny van Roon2 and Jan P. Dekker2

1Department of Biophysical Chemistry, Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Nijenborgh 4, 9747 AG Groningen, The Netherlands
2Faculty of Sciences, Division of Physics and Astronomy Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam The Netherlands

The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained by a short treatment of thylakoid membranes with the mild detergent \(n \)-dodecyl-\(\alpha \),\(\delta \)-maltoside and are thought to reflect the grana membranes in a native state. The membranes frequently show crystalline macrodomains in which PSII is organized in rows spaced by either 26.3 nm (large-spaced crystals) or 23 nm (small-spaced crystals). The small-spaced crystals are less common but better ordered. Image analysis of the crystals by an aperiodic approach revealed the precise positions of the core parts of PSII in the lattices, as well as features of the peripheral light-harvesting antenna. Together, they indicate that the so-called \(C_2S_2 \) and \(C_2S_2M \) supercomplexes form the basic motifs of the small-spaced and large-spaced crystals, respectively. An analysis of a pair of membranes with a well-ordered large-spaced crystal reveals that many PSII complexes in one layer face only light-harvesting complexes (LHCII) in the other layer. The implications of this type of organization for the efficient transfer of excitation energy from LHCII to PSII and for the stacking of grana membranes are discussed.

Introduction

A key role in the energy-conserving mechanisms of green plants is played by photosystem II (PSII). Its major task is to use light energy for the reduction of plastoquinone, the oxidation of water and the formation of a transmembrane pH gradient. It consists of at least 25 different types of protein subunits (Hankamer et al., 1997a), many of which are bound to the thylakoid membrane. Some subunits are involved in the capturing of solar energy and the regulation of the energy flow, others are directly or indirectly responsible for the photochemistry, including the oxidation of water to molecular oxygen.

Abbreviations used: PS, photosystem; LHC, light-harvesting complex; \(\alpha \)-DM, \(n \)-dodecyl-\(\alpha \),\(\delta \)-maltoside.

E-mail address of the corresponding author: boekema@chem.rug.nl

The central part of PSII is formed by the so-called core complex. This structure binds about 40 chlorophyll \(a \) molecules and is responsible for all electron transfer reactions in PSII, including the formation of oxygen. There is overwhelming evidence that the PSII core complex is organized as a dimer in the stacked, appressed regions of the thylakoid membrane. The structure of the PSII core complex without the CP43 subunit has recently been determined at 8 Å resolution by electron crystallography on two-dimensional crystals (Rhee et al., 1998).

The dimeric PSII core complex is surrounded by the peripheral antenna, which in green plants and algae consists of an unknown structure of several light-harvesting complex II (LHCII) proteins that together bind a large number of chlorophyll \(a \), chlorophyll \(b \) and carotenoid (xanthophyll) molecules. Per PSII dimer, the total number of chlorophyll molecules bound in the peripheral antenna is...
usually about 350-400, which implies that in vivo about 80% of the sunlight directed to PSII will be absorbed by its peripheral antenna. The structure of the major (trimeric) LHCII complex is known at 3.4 Å resolution (Kühlbrandt et al., 1994).

Supercomplexes of PSII and LHCII have recently been isolated by mild detergent treatment of thylakoid membranes and structurally characterized by electron microscopy at about 2 nm resolution (e.g. see Boekema et al., 1995, 1998, 1999a,b; Nield et al., 2000). These supercomplexes were found to be very heterogeneous with respect to their LHCII subunits. The basic unit is the so-called C2S2 supercomplex (Boekema et al., 1998, 1999a,b), in which the central dimeric PSII core part (C2) is surrounded by two symmetry-related structures consisting of one LHCII trimer (abbreviated S, for strongly attached), one CP26 monomer and one CP29 monomer. The C2S2 supercomplex can at each side bind one additional monomeric LHCII complex (CP24) and two additional LHCII trimers (abbreviated M and L, for moderately and loosely bound, respectively) at two different positions. Apart from the basic C2S2 supercomplex, only the C2S2M supercomplex was found to be quite common after isolation (Boekema et al., 1999a,b). The fact that only small numbers of particles with more than three LHCII trimers were found raised the question of whether they were too fragile to isolate. However, many C2S2M particles were found to occur in even larger associations, the so-called megacomplexes, in which two C2S2M supercomplexes associate with each other with both M-subunits at the interface (Boekema et al., 1999a). Two types of C2S2M megacomplexes were observed, differing by an approximately 7.5 nm translational shift of one of the C2S2M units. In both associations, an additional binding of an L-type trimer is not possible, indicating that the association between PSII and LHCII is intrinsically heterogeneous.

Although it is now quite clear that the C2S2 and/or C2S2M supercomplex forms the basic unit of PSII in at least a large part of the thylakoid membranes (e.g. see Nield et al., 2000; van Roon et al., 2000), it is not clear at all how these supercomplexes make up the complete membrane and how they connect to the LHCII that is not present in these complexes. Biochemical data have revealed that there should be about eight trimeric LHCII complexes per PSII dimer (Peter & Thornber, 1991). In addition, it is not clear which role the PSII-LHCII supercomplexes play in the stacking process. In the presence of divalent cations, the thylakoid membranes segregate into two structurally different components. Appressed membranes form stacks of several (up to dozens) membranes (grana membranes), which are connected by non-appressed membranes (stroma membranes) in a continuous way (reviewed by Anderson, 1999).

The ultrastructure of the intact membrane has been studied intensively in the past, mainly to address questions about the localization of the various components within the stacked and unstacked parts, and of the changes during unstacking (Staehelin, 1976), but at the time of these investigations there were no detailed data available about the PSII structure. Although it could be proven that the structures protruding from an almost flat background originated from the extrinsic parts of the PSII core structure (Seibert et al., 1987), no detailed concept could be formulated about the overall structure in the membrane. Only some “hard facts” could be deduced, such as the lattice parameters, in cases where the PSII complexes were shown to be present in ordered arrays (Miller, 1976; Simpson, 1978).

Recently, we have described the isolation and purification of inside-out paired grana membranes, obtained after partial solubilization of spinach chloroplasts with n-dodecyl-β-D-maltoside (α-DM, Van Roon et al., 2000). They frequently show macromdomains with a substantial amount of ordering. The lattice of the most dominant type of crystal is strongly reminiscent of those studied by freeze-etching of native membranes (Simpson, 1978). Here, we describe an analysis of the crystalline membrane fragments by electron microscopy using negatively stained specimens and image reconstruction techniques. With these techniques, a higher resolution can be achieved than with the previously applied freeze-fracture and freeze-etch techniques, while in addition information is gained concerning positioning of the particles in opposing membrane layers. We found two types of simultaneously existing lattices, the most abundant type of lattice is very likely composed of the C2S2M PSII-LHCII supercomplex, the other of the C2S2 PSII-LHCII supercomplex. We also show that in many cases a supercomplex in one layer faces only LHCII in the opposite layer.

Results

Grana membrane fragments

Incubation of thylakoid membranes from spinach with α-DM in the presence of 5 mM MgCl2 resulted in a selective solubilization of the non-stacked, stromal parts of the membrane (van Roon et al., 2000). Under these conditions, the stacked grana membranes remained intact and could be separated from the solubilized protein complexes of the stroma membranes and the grana margins by a single gel-filtration chromatography step. The membranes were shown to consist of two membrane layers with an average diameter of 360 nm (van Roon et al., 2000), and to have polypeptide and pigment compositions that are very similar to those of the well-characterized PSII membranes prepared with Triton X-100 (Berthold et al., 1981).

The lumenal exposed, hydrophilic parts of PSII core complexes are clearly visible on electron microscopy images of negatively stained paired grana membranes (Figures 1 and 2), regardless of whether these complexes are randomly oriented in
the membrane, or in a semi-regular lattice. The easy detection is made possible by the fact that the peripheral antenna of PSII, composed of trimeric and monomeric LHCII, is only 6 nm thick and very flat (Kühlbrandt et al., 1994), while the extrinsic proteins bound to the core part of PSII extend

Figure 1. A gallery of large, paired inside-out grana membranes showing a semi-crystalline arrangement of PSII supercomplexes into macrodomains with a spacing of 26.3 nm between rows of PSII supercomplexes (large-spaced crystals). (a) and (b) Membranes negatively stained with 2% (w/v) uranyl acetate; (c) a frozen-hydrated, unstained fragment. Asterisks mark areas with a very smooth membrane surface, where PSII is largely absent. The two arrows in (a) point to rows of PSII supercomplexes with non-overlapping core parts; the lower row belongs to the lower membrane layer, which faces the carbon support film, and which is overall slightly more strongly stain-embedded; the two arrows in (b) indicate directions of rows from two layers differing by 45°. The space bars represent 100 nm.

Figure 2. A gallery of paired inside-out grana membranes showing macrodomains in which PSII supercomplexes are in crystalline arrays with a spacing of 23 nm between the rows (small-spaced crystals). Fragments were negatively stained with 2% uranyl acetate. The space bar represents 100 nm.
The crystals are slightly better packed (Figure 2). The membranes show macrodomains with a second type of crystalline lattice. The spacing between the rows is about 26.3 nm (Figure 1). The rows can, in principle, arise from both layers if rows of both layers overlap, which occurs in only a minority of the images (see below), there are two preferential orientations. The rows in both layers either run in an almost parallel direction (Figure 1(a)) or they make an angle of roughly 40-50° (Figure 1(b)). From printed micrographs, the average angles were calculated to be 3(±4)° (S.D., n = 17) and 46(±10)° (S.D., n = 26) for the two types of orientations. (2) About 1% of the membranes show macrodomains with a second type of crystalline lattice. The spacing between the rows is clearly smaller (23 nm) but, on average, these crystals are slightly better packed (Figure 2). (3) The amount of crystallinity is independent of the size of the membranes. There are large crystalline membranes (Figure 1(a)), as well as very small ones. In the larger paired membranes, several crystalline macrodomains can be present within one layer (Figure 1(a)); the angles between the domains were found to be rather random. Outside the crystalline macrodomains, the distribution of PSI is variable, but always lower on the average and even areas in paired membranes without any PSI in both layers were found (asterisks, Figure 1(a)). (4) The crystalline macrodomains are not stain-induced, because frozen-hydrated membranes show the same type of pattern, though with a much lower contrast (Figure 1(c)). Crystalline macrodomains were also visible in stacks of up to six membranes before detergent treatment (not shown). (5) In the small-spaced crystals, the striation pattern is much stronger, suggesting that the crystallinity is in both layers (Figure 2(a) and (b)). In the lower half of Figure 2(d), some individual core complexes can be distinguished, indicating less overlap. From both types of crystals, the best negatives were used for further image analysis.

Analysis of the macrodomains with the large-spaced crystalline arrays

In general, two superimposed crystalline lattices of two-dimensional crystals can be easily separated by making use of Fourier analysis, if the two layers differ in their rotational orientation. This is performed by masking off one of the two lattices in the two-dimensional Fourier transform. The two Fourier-filtered layers can then be used for additional steps in the analysis, because lattice imperfections can be corrected by cutting the crystals into fragments that undergo rotational and translational alignments using the Fourier-filtered layers as references (Saxton & Baumeister, 1982; Saxton et al., 1992). These corrections can be done in real space and enable the contribution of the other layer to be erased from the total, just by summing aligned fragments of one layer. In the past, we followed this approach in the analysis of collapsed vesicle crystals of photosystem I (Böttcher et al., 1992). However, the large-spaced crystalline arrays show such a strong disorder that it was impossible to achieve a Fourier-filtering from any of the crystals that could be used as a starting point for further analysis. Therefore, we analyzed the fragments as being single particles and started with the projection from the dimeric C₅S₂ supercomplex, derived from single-particle analysis (Boekema et al., 1999a) as a first reference. With this reference, fragments were aligned and treated with multivariate statistical analysis and subsequently classified into 16 classes. The best class was used as a next reference and the whole procedure of alignments and classification was repeated four times. Class-sums from the final classification are presented in Figure 3; they show the same crystal pattern in two different ways. One type of orientation is represented by 13 class-sums, of which six are shown in Figure 3(a)-(e); the other type by only two (Figure 3(g) and (h)). The classification furthermore indicates the presence of some misaligned fragments (Figure 3(i)). The PSI core parts in classes A-E are mirror-related to those of the isolated PSI-LHCl supercomplexes (Boekema et al., 1999a), which suggests that the PSI complexes in these classes are oriented with their luminal sides towards the carbon support film (see above). The fact that more fragments align with these face-down complexes probably arises from the fact that the lower layer is usually somewhat more strongly contrasted by the negative stain.

From the best eight face-down classes, containing 1057 aligned fragments, the best 900 were summed, with the cross-correlation coefficient during the alignment step as the quality parameter (Figure 4(a)). The features of the strongly stain-excluding core parts indicate a unit cell with dimensions of 27.3 nm x 18.3 nm, and an angle of 74.5° between the axes. The characteristic rectangular shape of the dimeric C₅S₂ supercomplexes, which is dominated by the positions of the...
LHCII trimer and CP26 (for a scheme, see Boekema et al., 1999b) can be observed in these sums, as indicated in Figure 4(b). The dimensions of the C_2S_2 supercomplexes within the crystal fit well with the outlines as determined by the single-particle investigations (Boekema et al., 1999a,b; Nield et al., 2000), if the single particles are corrected for a boundary layer of attached detergent of 1.8 nm, as has been done in Figure 4(b). The C_2S_2 supercomplexes, however, do not completely occupy the crystal space and there remains considerable left-over space, as will be discussed below.

Analysis of the crystalline arrays with the small spacing

The membranes with the small-spaced crystalline macrodomains were analyzed in a way similar to that used for the large-spaced crystals; from 115 aligned fragments, the best 100 were summed (Figure 4(c)). The unit cell dimensions are 23 nm × 16.9 nm. Although the core part features are well defined and are similar to those of the large-spaced crystals, there is not much clear detail visible in the antenna region, possibly because the number of summed fragments was rather low. Nevertheless, the shape of the C_2S_2 supercomplexes from the single particle investigations can be fitted in and it can be seen that such supercomplexes fill the lattice quite well. These results indicate that the C_2S_2 supercomplex forms the basic unit of the crystal with the small spacing.

Analysis of positions of supercomplexes in the two superimposed layers

From the grana membrane fragment with the best preserved periodicity of the large-spaced crystal type, we analyzed how the individual PSII complexes are positioned (Figure 6). It will be relevant for a better understanding of the stacking process to know how the complexes in the two adjacent grana membranes are positioned with respect to each other. By correlation of individual PSII complexes with face-up and face-down oriented references, their positions in the two layers could be determined (marked by the black dots, Figure 6(b)). On these positions, rows of PSII complexes belonging to the lower membrane or upper membrane have been fitted (the blue and red core parts and the green and yellow contours of the PSII-LHCII supercomplexes in Figure 6(b)). If the molecules were first aligned to a reference with a handedness as in the lower layer and then to a reference with the different hand, which was first aligned on the first reference, several positions in the central part were shifted and rotated over a small but systematic angle (5.6±0.7° (S.D., n=19)), indicating that the correlation methods are accurate enough to systematically find the positions of individual molecules even if they are strongly overlapping.

The analysis suggests that a considerable part of the PSII core complexes do not have a PSII core counterpart in the other layer. In the upper three rows the detectable core complexes are all in a face-down orientation (the complexes depicted in blue, Figure 6(b)), in which the extrinsic subunits face the carbon support film, whereas in the lower three rows (the complexes depicted in red in Figure 6(b)) the complexes are in a face-up position. Only in the central layer, which has the strongest overall stain-excluding features (Figure 6(a)), there are many detectable PSII core complexes at both sides.

The well-ordered fragment of Figure 6 shows that the central rows of both layers run in a parallel direction with overlapping core parts. This is a frequently observed way of packing, but other organizations have been found in which the PSII core parts of the two layers are parallel but do not face each other (e.g. see the rows indicated by the two arrows in Figure 1(a)).

Discussion

Two types of semi-crystalline macrodomains

The image processing of the semi-crystalline arrays in the paired grana membrane fragments revealed two types of lattices. The first and most
abundant lattice has unit cell dimensions of 27.3 nm x 18.3 nm with an angle of 74.5° and a unit cell area of 481 nm². The second and minor lattice has a rectangular unit cell with dimensions of 23 nm x 16.9 nm and a unit cell area of 389 nm². Both crystal forms agree reasonably well with published data from electron microscopy. In a freeze-etch study of native thylakoid membranes from barley, large-spaced macrodomains with a similar crystalline packing and unit cell area (462 nm²) were found (Simpson, 1978). In freeze-fractured membranes from Pisum sativum (Tageeva et al., 1978) a distance of 27.1 nm between the rows can be deduced for PSII complexes, compatible to a spacing of 26.3 nm for the rows in our large-spaced crystals. Bassi et al. (1989) analyzed and Fourier-filtered lattices from maize chloroplasts that had a rectangular unit cell of 26.7 nm x 17.8 nm. Lattices with dimensions similar to those of our small-spaced crystals have been observed quite often (e.g. see Miller, 1976; Seibert et al., 1987; Vallon et al., 1989; Marr et al., 1996; Lyon, 1998; Stoylova et al., 2000). Because some of these small-spaced and large-spaced lattices were obtained without any involvement of detergent, we suggest that both types of lattices represent native states of PSII arrangement in the thylakoid membrane. This suggestion is in agreement with the fact that the overall shape and diameter of the inside-out grana membranes and native membranes are very similar (van Roon et al., 2000).

Fourier transformation of the final sums and evaluation of structure factors indicate that the resolution obtained by our image processing is about 2-2.5 nm for both crystal types and that only one type of lattice remained after aperiodic averaging. The enhanced lattices have sufficient detail to see the shape and handedness of the inner core parts of PSII supercomplexes directly, which can thus unambiguously be fitted into the lattices of the paired grana membranes. By doing so, the small-spaced lattice leaves just enough space to fit a C_2S_2 supercomplex. Especially in the direction along the striations, the supercomplexes come very close (Figure 4(c) and (d)). It is very likely that the similar sized lattices observed before (see above) consist of C_2S_2 supercomplexes. This was already concluded from a crystal simulation of such lattices.
complex are clearly visible (Figure 4(a)). Without S-type LHCII trimers flanking the dimeric core possible. In this way, the positions of the innermost tallinity of the large-spaced crystals as well as taken as a compromise to overcome the poor crys-
tality very similar to that of the S-type LHCII tri-
ments, far below that of the core parts. This rules out the possibility that this density is occupied by, for instance, the cytochrome b6/f complex, because this complex sticks out of the membrane at the luminal side by at least 5 nm. This conclusion is in line with the biochemical analyses, which indicated that the cytochrome b6/f complex is not present in our grana membranes (van Roon et al., 2000) and together these results demonstrate unequivocally that the cytochrome b6/f complex cannot be responsible for the additional mass in the large-spaced crystals.

Based on its level of intensity, which is similar to that of the S-type trimers, we consider it most likely that the extra mass is caused by LHCII complexes. The most obvious candidate is the M-type trimer (Boekema et al., 1999a), perhaps together with one or two monomeric LHCII proteins. Figure 5 shows that a repeat of C5S2M particles fits the lattice rather well, but that a crystal motif of the larger C5S2M2 particles is not possible because of excessive overlap with M trimers of neighbour-
ing supercomplexes. An asymmetric C5S2M repeating unit could be one of the reasons for the overall considerable disorder of the crystallinity. For instance, it could be possible that within a domain some of the C5S2M particles differ by 180° from the others or that a few C5S2M2 could slip in. This is not a totally irrelevant idea, since in the natural membrane stacking and destacking can occur within minutes, which also implies a mixing and demixing of components from the stacked mem-
branes containing PSI with the unstacked mem-
branes containing ATPase and PSI (see Anderson, 1999; Horton, 1999; and Garab & Mustardy, 1999).

The tentative attribution of the repeating unit of the large-spaced crystals as C5S2M implies that each unit should contain one CP24 protein (Boekema et al., 1999a,b). However, it is clear that there is sufficient space for another protein with the mass of a monomeric LHCII complex. A suitable candidate is the PsbS protein, which is sometimes found in supercomplexes (Eshaghi et al., 1999). Recent results have indicated that this PSII protein plays an essential role in the process of non-photo-
chemical quenching (Li et al., 2000), one of the most important regulation mechanisms in green plants (Horton, 1999).

The extra mass in the large-spaced crystals

The projection map of the large-spaced crystal analysis was obtained by imposing 2-fold rotational symmetry on the references used in the alignment step. Because previous work strongly indicates that the C5S2 supercomplex is always a dimer, imposing symmetry on the references was taken as a compromise to overcome the poor crys-
tallinity of the large-spaced crystals as well as possible. In this way, the positions of the innermost S-type LHCII trimers flanking the dimeric core complex are clearly visible (Figure 4(a)). Without symmetry application, the features of the final projection map were less well defined, but not signifi-
cantly different (not shown). A comparison with the single-particle projection maps shows that the positions of the S-type LHCII trimers are identical or highly similar (Boekema et al., 1999a,b). It is the first time that these features of the supercomplex have been visualized within the membrane. The fitting of C5S2 supercomplexes within the lattice (Figure 4(b)) leaves no other conclusion than a building block of a C5S2 supercomplex and one or more additional proteins in the left-over space. This space is occupied by a density with an intensity very similar to that of the S-type LHCII tri-

(Hankamer et al., 1997b) and the unit cell dimen-
sions of this hypothetical crystal are within a few per cent of the unit cell dimensions that were determined in this study, although the positioning of the supercomplexes differs.

Heterogeneity of supercomplexes and megacomplexes within one membrane

Our earlier research on isolated complexes obtained from partially solubilized PSII mem-
branes indicated that some of the supercomplexes occurred in dimeric forms (Boekema et al., 1999a,b). We found three types of these so-called megacomplexes. The first two types consisted of two C5S2M12 units, whereas the third and least abundant type consisted of two C5S2 units. The only difference between the first two types was an approximately 7.5 nm lateral shift in the positions of the C5S2M12 units. Based on the relative occur-
rences of the megacomplexes in the various data sets and the very mild isolation procedure used, we suggested that these megacomplexes represent natural associations of PSII in the thylakoid membranes (Boekema et al., 1999a,b).

From a comparison between the various crystals and megacomplexes, it can be seen that there is a similarity between the large-spaced crystals and the most abundant (type I) megacomplex. If the crystals and the megacomplexes are positioned in the same orientation (with the extrinsic subunits upwards and with the long dimension of the supercomplexes along the y-axis), then each complex at the right side is shifted downwards by about 7.5 nm, both in the type I megacomplexes and in the large-spaced crystals. However, the distance between the two adjacent C2S2M units is about 1.5 nm longer in the type I megacomplexes (19.8 nm) than in the crystals (18.3 nm). From this discrepancy it becomes clear that these megacomplexes cannot be regarded as straightforward fragments of the large-spaced crystals.

The conclusion that the C2S2M2 particles cannot fit the observed lattice may provide an explanation for the relatively low occurrence of solubilized C2S2M2 supercomplexes (Boekema et al., 1999b). Analysis of a very large data set of supercomplexes revealed that the ratio of C2S2 to C2S2 was about 1:5, whereas that of C2S2M2 to C2S2M was only about 1:15. It is possible that the type I and type II megacomplexes and the rare supercomplexes containing additional L-type trimers (Boekema et al., 1999a,b) are restricted to non-crystalline parts of membranes, but further work is required to establish the precise relationships between PSII arranged in crystalline and non-crystalline areas.

Figure 6. Analysis of positions of PSII supercomplexes in the two layers of paired membranes with large-spaced crystalline macrodomains that show a relatively high level of ordering of the PSII supercomplexes. The black dots indicate the positions of central supercomplexes in both layers as found by alignment procedures. On these positions, rows of PSII complexes belonging to the lower membrane (in blue) or upper membrane (in red) have been fitted. The inner part of the peripheral antenna of the supercomplexes is indicated in green and yellow, respectively.
Relative positions of supercomplexes in adjacent layers

The results described here provide information on the relative positions of supercomplexes in the two adjacent layers. This question has been addressed before in freeze-fracture studies (Staehelin, 1975), but can be answered much more easily by electron microscopy using negatively stained specimens. It has been shown that the presence of bivalent cations is the main direct cause for the occurrence of stacked membranes, and that LHCII trimers are responsible for the major part of it (reviewed by Anderson, 1999). However, in mutant plants lacking LHCII, membrane stacking is not absent (Simpson, 1979) and isolated PSII supercomplexes have a strong tendency to stack upon standing (Boekema et al., 1995). This indicates that PSII could be responsible. Analysis of a large number of micrographs made it clear that the orientation of the rows of adjacent layers is, to some extent, variable (although angles of about 0° and 45° between the rows seemed to predominate), and that therefore the interaction between PSII particles in the two membranes cannot be very specific.

The detailed analysis of the membranes in Figure 6 resulted in an unexpected observation: many PSII particles were found to have no PSII counterpart in the adjacent membrane. The lower membrane lattice predominates in the upper half of the crystalline macrodomain, whereas the upper membrane lattice is the main component of the lower half. Apparently, the remaining part of the superimposed membranes is rather smooth, and thus mostly occupied with LHCII, unbound to PSII supercomplexes.

The precise purpose of an organization with PSII-LHCII supercomplexes in one membrane and only LHCII in the adjacent part of the opposing layer is not entirely clear. The question is whether such an organization would provide an optimal harvesting of the excitation energy and thus whether all LHCII complexes would efficiently transfer the excitation energy to the photochemical reaction centers of PSII. If energy transfer takes place only by lateral movements within one membrane, then the presence of large LHCII-only domains in the membrane is not very favorable for efficient energy transfer. The average energy transfer kinetics between two LHCII trimers is probably about 30 ps (Van Grondelle et al., 1994). If the LHCII-only domains have larger diameters than, for instance, 125 nm (as in the example of Figure 6) and if the average distance between two LHCII trimers is 8.3 nm (Dekker et al., 1999), then many excitations will need at least 450 ps to reach a PSII reaction centre, which would be too slow for efficient energy transfer. It should be realized, however, that the distance between two adjacent rows is small (of the order of 2 nm, Nicolson, 1971) and that resonance energy transfer from one layer to the next by the Förster mechanism is quite possible. This means that the LHCII-only domains in one layer should be able to transfer excitation energy to the PSII complexes in the opposing layer. Experimental evidence for the occurrence of fast excitation energy transfer from one layer to the next has been provided by fast photovoltage experiments (Trissl et al., 1987; Leibl et al., 1989). These experiments revealed a lack of electrogenicity of PSII in stacked grana membranes and paired PSII membranes, but not in unstacked membranes and single PSII membranes. This lack was explained by an “excitonic short-circuit” between layers on a faster time-scale than the average time required for an excitation to reach the photoactive pigment of PSII in a single layer. Since this so-called trapping time is multiphasic and of the order of about 50-500 ps in intact PSII (discussed by Van Grondelle et al., 1994), the excitation energy transfer from one layer to the next must occur in 50 ps or less.

The analysis of the paired membrane fragment shown in Figure 6 made it clear that in these particular two membranes the ratio of PSII to LHCII is about as expected from biochemical data (eight LHCII trimers per dimeric PSII core complex, Peter & Thornber, 1991). A calculation suggests that this fragment has a density of 1140-1190 dimeric core complexes per μm² within one layer. If the core complexes are considered to be all part of C₂S₂M supercomplexes, they would occupy about 55% of the overall membrane area. The remaining space could then accommodate five to six additional trimeric LHCII complexes, if the trimers have a packing efficiency compatible with the two-dimensional crystals of LHCII (Kühlbrandt et al., 1994). We would like to point out, however, that this ratio may just be a coincidence, and that there may be also grana membranes with a considerably higher or lower LHCII content. For instance, some of our micrographs show grana membranes without much periodicity, but with many empty-PSII-areas, as indicated by the asterisks in Figure 1(a), indicating an abundance of trimeric/monomeric LHCII (see also Garab & Mustardy (1999) for LHCII-containing macrodomains). This suggests that the heterogeneity of PSII is restricted to the direct environment of the C₂S₂ supercomplexes (the presence or absence of one or two M and/or L types of LHCII trimers, and the presence or absence of monomeric LHCII proteins, Boekema et al., 1999a,b), and to the complete macromolecular organization. It is possible that under certain physiological conditions other organizations may occur. An indication for this comes from an electron micrograph published by Cunningham & Crane (1966), which shows a nice semi-crystalline thylakoid membrane with a deduced lattice spacing of 34 nm. This is obviously outside the range of our large-spaced crystals. The fact that recognizable single Rubisco molecules with well-defined sizes are lying around the membranes excludes a simple magnification error in the presentation. Experiments with wild-type and mutant plants grown under controlled light conditions will be a logical
next step in further elucidating the overall grana membrane structure.

Materials and Methods

Isolation of inside-out grana membranes

Inside-out paired grana membranes were prepared from freshly isolated thylakoid membranes from spinach as described (van Roon et al., 2000). In short, thylakoid membranes at a chlorophyll concentration of 1.4 mg/ml were suspended at 4°C in a buffer containing 20 mM bis-Tris (pH 6.5) and 5 mM MgCl₂, solubilized with n-dodecyl-β-D-maltoside (α-DM, final concentration 1.2%) during one minute and centrifuged for three minutes at 9000 rpm in a bench-top centrifuge, after which the supernatant was pushed through a 0.45 µm filter to remove large fragments and subjected to gel-filtration chromatography using a Superdex 200 HR 10/30 column (Pharmacia). The first green material that eluted from the column contained the grana membranes.

Electron microscopy and image analysis

Transmission electron microscopy was performed with a Philips CM10 electron microscope at 52,000× magnification. Negatively stained specimens were prepared with a 2% (w/v) solution of uranyl acetate on glow-discharged plain carbon-coated copper grids as described (Boekema et al., 1999a) by diluting the inside-out grana sample 1:4 with buffer without α-DM. Unstained cryo-specimens were prepared using glow-discharged carbon films on 400-mesh copper grids. Grids were frozen in liquid ethane and transferred to a Gatan Cryoholder 626 for electron microscopy. From 71 digitized negatives with macrodomains with large-spaced crystalline arrays 115 pixels (or 700 nm) were selected. Image analysis was carried out with IMAGIC software (Harauz et al., 1988). The crystal fragments were analyzed following an aperiodic procedure, as for single particles, including repeated cycles of alignment procedures (Harauz et al., 1988) and treatment by multivariate statistical analysis (Van Heel & Frank, 1981) and classification (Van Heel, 1989). The resolution of final sums was evaluated from the IQ values of structure factors obtained by 2D Fourier transformation according to Henderson et al. (1986).

Acknowledgements

We thank Dr W. Keegstra for his help with computer analysis and Mr K. Gilissen for technical support. Our research was supported, in part, by the Netherlands Foundation for Scientific Research (NWO) via the Foundation for Life and Earth Sciences (ALW).

References

Edited by M. F. Moody

(Received 10 March 2000; received in revised form 10 July 2000; accepted 17 July 2000)