Grey scales uncover similar attentional effects in homonymous hemianopia and visual hemi-neglect
Tant, M.L.M.; Kuks, Joannes; Kooijman, Aart; Cornelissen, Franciscus; Brouwer, Wiebo

Published in:
Neuropsychologia

DOI:
10.1016/s0028-3932(01)00197-x

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2002

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 06-04-2017
Grey scales uncover similar attentional effects in homonymous hemianopia and visual hemi-neglect

M.L.M. Tant a,*, J.B.M. Kuks b, A.C. Kooijman c,d,e, F.W. Cornelissen c,d, W.H. Brouwer a

a Department of Neuropsychology and Gerontology, University of Groningen, Academic Hospital Groningen, Postbus 4, 2 de verdieping, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
b Department of Neurology, University Hospital Groningen, Groningen, The Netherlands
c Laboratory of Experimental Ophthalmology (LEO), University of Groningen, Groningen, The Netherlands
d Department of Ophthalmology, University Hospital Groningen, Groningen, The Netherlands
e Visio, National Foundation for the Visually Impaired and Blind, Groningen, The Netherlands

Received 11 May 2001; received in revised form 21 September 2001; accepted 21 September 2001

Abstract

Multi-component models of visual hemi-neglect have postulated that visual hemi-neglect is characterised by various attentional deficits. A grey scales task has been developed to quantify the early, automatic, (perhaps obligatory) ipsilesional orienting of visual attention, frequently assumed as the first of these attentional deficits. Explanations for this attentional imbalance are up until now mainly formulated in terms of right hemisphere activation. This lateral attentional bias has also been demonstrated in controls, in whom it is expressed as a leftward perceptual asymmetry. We reproduced previous literature findings on a grey scales task, considering controls and neglect patients. Three patients with neglect showed an extreme ipsilesional lateral bias. This bias did not change during or after cognitive rehabilitation. Additionally, we presented this grey scale task to 32 patients with left- and right-sided homonymous hemianopia (HP). HP is the loss of sight in one visual hemi-field. The HH patients had no clinical signs of impaired lateralised attention. Results revealed that HH patients showed a similar ipsilesional bias, albeit to a lesser degree than in neglect. Left-sided HH patients presented a quantitatively similar, but qualitatively opposite bias than the right-sided HH patients. We suggest that sensory effects can be an alternative source of attentional imbalance, which can interact with the previously proposed (right) hemispheric effects. This suggests that the perceptual asymmetry in the grey scales task is not necessarily an indicator of impaired right hemisphere attention. It rather suggests a pattern of functional cerebral asymmetry, which can also be caused by asymmetric sensory input.

Keywords: Attentional imbalance; Perceptual bias; Hemispheric specialisation; Laterality

1. Introduction

Several authors (e.g. [11,16,23]) suggested that the clinical syndrome of unilateral visual spatial neglect (UN) can be described/explained as a series of successive attentional events beginning with (1) an early, automatic, chronic, perhaps obligatory, orienting of attention toward the ipsilesional half space, followed by (2) a deficit in disengaging attention from that side in order to reorient it toward the contralateral half space. In addition to these two deficits, (3) a generalised (i.e. directionally non-specific) reduction in attentional-information processing capacity is assumed. The first component underlies an anomalous lateral preference. The second component gives rise to the clinical signs of UN (e.g. left-sided omissions on cancellation tasks) [23]. Karnath [16] proposed that this second component (reorienting) recovers faster than the other two, and this has been confirmed by several authors (e.g. [23,28]). Mattingley et al. [23] concluded that the apparent recovery of UN constituted of the restitution in reorienting of attention, but that the early ipsilesional orienting remained. They further postulated this (residual) attentional bias to be characteristic of right hemisphere dysfunction, and posed that it could be predictive of persistent neglect-type behaviours. This attentional bias has been demonstrated in right hemisphere patients, not only using RT paradigms (e.g. [3]), but also under more naturalistic free viewing conditions. It has been demonstrated using several indexes and tasks. Gainotti et al. [11] operationally defined it as a “position preference”, namely as the tendency to identify first (and consistently) those parts of a composite diagram lying on the right or on the left of its centre. As a result of the early, automatic orienting of attention, UN patients frequently start scanning...
on the right side of a given composite stimulus (i.e. show a rightward bias). A further frequently used index expressing this lateral orienting bias is an asymmetry index (AI) derived from mainly paradigms using chimeric stimuli. For example, Mattingley et al. [23,24] concluded that this lateral preference is expressed (in UN) by a tendency to choose or prefer the right side of a composite image (rightward bias). In a face-matching task by Mattingley et al. [23], subjects were required to indicate which of two bimodal composites (one composed of the two left halves of an original face, the other composed of the two right halves) more closely resembled the (inherently asymmetrical) original. Patients with UN tended to judge the faces composed of the two right halves as more similar to the original than the face composed of two left halves (rightward bias). In another chimeric faces task, presented by the same authors, patients were required to judge which face of a given pair appeared “happier”. The faces were composed of two half-faces of the same person, one half smiling, the other in a neutral expression. In one pair, the smiling face was on the left, in the other on the right. Again, UN patients tended to judge the face with the “right-smile” as happier. This rightward bias was also demonstrated using grey scales [24]. In this task, the patient was required to compare two vertically aligned rectangular bars and indicate which one appears overall darker. The bars consisted of scales of semi-continuous shades of grey, ranging from white on one end to black on the other. Both bars were identical, but mirror-reversed. Patients with UN tended to choose the bar which was black on the right side as the darker one.

Lateral biases have also been demonstrated in healthy subjects using identical or comparable paradigms (e.g. [21,23,24,27]). Contrary to patients with UN, healthy subjects exhibit a significant leftward bias. Since this bias is displayed by healthy subjects, and hence is considered to be “normal”, it is often termed as a “perceptual asymmetry” instead of a “bias” (which suggests deviation from normality).

This left perceptual asymmetry in healthy subjects has been demonstrated using face-stimuli (judgements of emotions, similarity, and femininity) [21,23,24], using grey scales (e.g. [24]), and using stimuli asking for comparisons of dot numerosity and roundness (e.g. [21]), and size (e.g. [27]). The leftward bias occurs in all these tasks in more or less comparable intensities. Despite of the similar levels of perceptual asymmetry, only low to modest intercorrelations are observed. Nicholls et al. [27] suggest that these tasks do not index one single common factor, but tap a set of attentional processes, some of which are overlapping, and others which are task-specific. The community is suggested to consist in the common right hemisphere involvement.

Summarising the explanations provided in the literature, in healthy subjects the lateral bias is explained as the result of more right hemisphere activation due to the visuo-spatial nature of the stimulus [21–23,28]. It is argued that the differential activation of the right hemisphere generates a bias of attention to the left hemispace, creating an attentional imbalance. In UN patients, the lateral bias results from disturbed right hemisphere function. It is suggested [19,20,23,24] that each hemisphere controls a contralaterally directed attentional vector. Damage to one hemisphere results in dysfunction of the associated vector and gives rise to an ipsilesional bias. In all accounts, the perceptual asymmetry is explained in terms of functional cerebral asymmetry and more specifically in terms of differential attentional right hemisphere activation. One other alternative account was proposed by Nicholls et al. [27]. They suggested the possibility that the asymmetry may be related to effects of directional scanning. In support of this proposal, they reported a study by Sakhuja et al. [29] who found that readers of Hindi (left-to-right) showed the expected leftward bias, whereas readers of Urdu (right-to-left) showed the opposite bias. Nicholls and colleagues argue that the preferred directional scanning habit may lead to an over-representation of one side (i.e. ipsi-directional) of the stimulus and hence can influence the nature of the perceptual asymmetry. This conceptualisation, namely as a lateralisisation over-representation, also can be interpreted as an attentional account. It suggests an alternative nature or cause of attentional imbalance.

In our opinion, further alternative causes of the attentional imbalance cannot be ruled out on the basis of previous experiments. Mattingley et al. [23] demonstrated that patients no longer showing classical signs of UN, continued to show the ipsilesional attentional bias. The authors interpreted the persisting ipsilesional attentional bias in terms of a higher-order attentional right hemisphere dysfunction. However, five of the 13 patients also had visual field defects (VFDs), i.e. either homonymous hemianopia (HH) or quadranopia. Hence, the observed residual (group-) effects (in terms of the bias) could be attributable, not to a higher-order right hemisphere attentional problem, but alternatively to effects of the (lower-order) left-sided VFDs.

It is well recognised that visuo-spatial perception can be impaired in “pure” hemianopic patients (i.e. in patients with HH and without UN) [39]. Hemianopic patients have been reported to show impaired visuo-spatial exploration, especially in the hemianopic hemi-field [40]. Also a deviated subjective midline or subjective straight-ahead in visuo-spatial judgements has frequently been reported (e.g. [2,8,18]). Karnath and Ferber [17] discuss reports which show that misperception of horizontal space (hemimicropsia) exists in (some) pure hemianopic patients. It is thus apparent that a homonymous VFD can give rise to lateralised visual impairments. Hence, it is not inconceivable that HH, which results inherently in a chronic differential lateralised visual input, also gives rise to an imbalance in processing efficiency of the visual space. We thus suggest that an attentional imbalance is not necessarily the result of a higher-order attentional right hemisphere dysfunction, but also can arise by the presence of a lower-order VFD.

It is hence our aim to investigate what is or can be the cause of the attentional imbalance resulting in the observed lateral biases. As argued, hemispheric specialisation for
visuo-spatial processing, hemispheric specificity with respect to directional attentional vectors and reading habits or scanning direction have been suggested as underlying mechanisms. We investigate if homonymous VFDs (i.e. HH), resulting in asymmetric visual input, can also be added to the list of mechanisms or factors producing attentional imbalance. If so, it should do so both in left-sided and right-sided HH, but in opposing directions (i.e. both contralaterally to the side of the VFD). If this is confirmed, previous explanations of the attentional imbalance stressing exclusively higher-order right hemisphere involvement may have to be revised.

2. Method

2.1. Participants

2.1.1. Controls

Sixty-three control subjects participated in this study (25 females, 38 males). All participants were naive as to the aims and expected outcomes of the study and reported to be right-handed. They all had normal or corrected-to-normal visual acuity. Their mean age was 47 years, ranging from 17 to 86 years.

2.1.2. Patients

Prior to testing, we administered a screening battery to exclude dementia [5,9], aphasia [7] and apraxia [6]. No impairments were found. All patients performed within the normal limits on the form discrimination screening test [36] confirming perceptual functions to be adequate for form discrimination. The nature and extent of the VFD was determined using the Humphrey Field Analyzer, which is a clinically widely used automated perimeter. We used the Full Field 246, age corrected, 3-zone strategy, screening program. In order to identify patients with severe UN, we constructed a battery of clinical UN tests, namely, four clinical cancellation tasks, and a line bisection task. For Albert’s line cancellation test and on the line bisection task, on average three items were omitted (S.D. = 2) [30,31,34].

For each task, we additionally imposed more stringent “lateralisation-requirement”, namely that for a “UN-score” (as opposed to a “general attention deficit-score”) the difference between left-sided and right-sided omissions should be equal to or exceed the cut-off score. For example, if the cut-off score for a particular test is three omissions, a UN-score is obtained only if also the number of omissions on either side exceeds the other side by at least three. Two left-sided omissions and one right-sided omission hence would not result in a UN-score, although it is indicative of a general attention and scanning deficit.

We decided that using this battery and cut-off criteria, a patient is considered to suffer severe UN if at least three (of maximally five) UN-scores are obtained and if these scores are identical in laterality (i.e. reach the lateralisation-requirements of the respective tests due to omissions on the same side).

2.1.3. UN patients

Three patients were classified as UN patients using our criteria. They were all males and suffered a right-sided stroke, resulting in UN and left-sided HH. One patient underwent extensive clinical rehabilitation in a clinical setting before participating, but the UN persisted. The other two patients were referred by their ophthalmologists because of “peculiar visual behaviour”. Their mean time since lesion was 16 months. Their visual acuity and contrast sensitivity were within normal limits. Their mean age was 64 years. Additional clinical information is provided in Table 1. On average they omitted 13 items (S.D. = 9) on the Albert’s line cancellation test, 23 items (S.D. = 22) on the Mesulam structured shape cancellation, 17 items (S.D. = 9) on the Bells test, 17 items (S.D. = 14) on the Search for Os, and three lines (S.D. = 5) on the line bisection task.

2.1.4. HH patients

Thirty-two patients with HH participated in this study. Their mean age was 51 years. The mean time since lesion was 55 months (S.D. = 80). Sixteen patients had left-sided HH (11 males, 5 females). Sixteen patients had right-sided HH (16 males, 2 females). All patients had normal or corrected-to-normal visual acuity and normal contrast sensitivity. For additional clinical data, see Table 1. None of these patients fulfilled the aforementioned UN criteria. Neither of them had ever been treated for or diagnosed with UN. They omitted no items on the Albert’s line cancellation test and on the line bisection task, on average three items (S.D. = 9) on the Mesulam structured shape cancellation, three items (S.D. = 4) on the bells test, and one item (S.D. = 3) on the search for Os.

2.2. Stimuli

We used grey scales as described in Mattingley et al. [24]. Our version contains 26 items. An item consists of an A4 (landscape orientation) white sheet of paper with two vertically aligned rectangular grey scales of equal lengths. A grey scale is a rectangular bar with a thin black border (see Fig. 1). Its dimensions are 20 mm in height and 20–260 mm in width with 20 mm increments. This rectangular is filled-in by a sem-continuous scale of different grey shades varying
Table 1
Clinical data for the brain-damaged subjects

<table>
<thead>
<tr>
<th>S. no.</th>
<th>Age/gender</th>
<th>TSL(^a)</th>
<th>Type of HH(^b) and macular sparing</th>
<th>Location(^c) and cause(^d) of lesion</th>
<th>Other remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>UN group</td>
<td>Right-sided brain damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50/M</td>
<td>34</td>
<td>C–L, no</td>
<td>T-O-P IC, CVA</td>
<td>Extensive clinical rehabilitation</td>
</tr>
<tr>
<td>2</td>
<td>74/M</td>
<td>7</td>
<td>C–C, no</td>
<td>O dS, CVA</td>
<td>Left leg hemiparesic</td>
</tr>
<tr>
<td>3</td>
<td>70/M</td>
<td>7</td>
<td>C–C, no</td>
<td>O–P, CVA</td>
<td></td>
</tr>
<tr>
<td>Left-sided HH group</td>
<td>Right-sided brain damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>76/M</td>
<td>13</td>
<td>I–L, yes</td>
<td>T-O-P, CVA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>69/M</td>
<td>12</td>
<td>I–C, yes</td>
<td>O–P, CVA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>73/M</td>
<td>24</td>
<td>I–C, yes</td>
<td>O–P, CVA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>56/M</td>
<td>9</td>
<td>I–C, yes</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>49/M</td>
<td>18</td>
<td>I–L, yes</td>
<td>O–T, tumour</td>
<td>Blindsight</td>
</tr>
<tr>
<td>6</td>
<td>29/M</td>
<td>9</td>
<td>I–, yes</td>
<td>oC, CHI</td>
<td>Right eye blind</td>
</tr>
<tr>
<td>7</td>
<td>36/F</td>
<td>107</td>
<td>I–C, yes</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>56/F</td>
<td>157</td>
<td>I–C, no</td>
<td>O–T, CVA</td>
<td>Left hemiplegic</td>
</tr>
<tr>
<td>9</td>
<td>73/M</td>
<td>6</td>
<td>I–L, yes</td>
<td>O–P, CVA</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>31/M</td>
<td>12</td>
<td>C–C, yes</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>70/M</td>
<td>13</td>
<td>I–C, no</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>34/M</td>
<td>64</td>
<td>I–C, yes</td>
<td>O–P–F, CHI</td>
<td>Left hemiplegic</td>
</tr>
<tr>
<td>13</td>
<td>54/M</td>
<td>24</td>
<td>I–C, yes</td>
<td>T-O-P Th, CVA</td>
<td>Left hemiplegic, agnosia</td>
</tr>
<tr>
<td>14</td>
<td>53/M</td>
<td>11</td>
<td>C–C, no</td>
<td>O, CVA</td>
<td>Letter-by-letter reading</td>
</tr>
<tr>
<td>15</td>
<td>37/M</td>
<td>12</td>
<td>I–C, yes</td>
<td>O–P, tumour</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>67/M</td>
<td>47</td>
<td>C–C, no</td>
<td>O–T, CVA</td>
<td>Left hemiparesic</td>
</tr>
<tr>
<td>Right-sided HH group</td>
<td>Left-sided brain damage</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>50/M</td>
<td>390</td>
<td>C–C, yes</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>51/F</td>
<td>37</td>
<td>C–C, yes</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50/M</td>
<td>28</td>
<td>I–L, no</td>
<td>T–O–P, CVA</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39/F</td>
<td>142</td>
<td>I–C, yes</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>56/M</td>
<td>123</td>
<td>I–C, yes</td>
<td>O, CVA</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>18/M</td>
<td>225</td>
<td>I–C, yes</td>
<td>O–P, Hydrocephalus</td>
<td>Mild balance problem</td>
</tr>
<tr>
<td>7</td>
<td>43/F</td>
<td>60</td>
<td>C–C, yes</td>
<td>O–T, CVA</td>
<td>Letter-by-letter reading</td>
</tr>
<tr>
<td>8</td>
<td>52/M</td>
<td>6</td>
<td>I–C, yes</td>
<td>Nd, CVA</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>64/F</td>
<td>10</td>
<td>I–C, yes</td>
<td>O–T, CVA</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>65/M</td>
<td>32</td>
<td>I–C, yes</td>
<td>Na, CVA</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>48/F</td>
<td>11</td>
<td>I–L, yes</td>
<td>O–P, CVA</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>53/M</td>
<td>22</td>
<td>C–C, yes</td>
<td>O–T, CVA</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>56/M</td>
<td>14</td>
<td>I–L, no</td>
<td>O–T–P, CVA</td>
<td>Left hemiparesis, blindness</td>
</tr>
<tr>
<td>14</td>
<td>68/M</td>
<td>25</td>
<td>I–L, no</td>
<td>T–O–P CVA</td>
<td>Word finding difficulties</td>
</tr>
<tr>
<td>15</td>
<td>24/M</td>
<td>63</td>
<td>C–C, no</td>
<td>Nd, CHI</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>53/M</td>
<td>3</td>
<td>C–C, no</td>
<td>O, CVA</td>
<td>Word finding difficulties</td>
</tr>
</tbody>
</table>

\(^a\) Time since lesion in months. \\
\(^b\) Complete (C) vs. incomplete (I)—congruent (C) vs. incongruent (I) homonymous hemianopia. \\
\(^c\) O: occipital, T: temporal, P: parietal, F: frontal, Th: thalamus, IC: internal capsula, oC: optic chiasm, dS: diffuse subcortical damage, Nd: no abnormalities detected on CT, and Na: no CT available. \\
\(^d\) CVA: cerebrovascular accident and CHI: closed head injury. \\
\(^e\) Patient refused to give permission for scan inspection. Localisation is based on clinically motivated assumption and verbal description.

Fig. 1. Example of an item in the grey scales task. Upper and lower bar are identical but mirror-reversed.
asked to judge which of the two grey scales appears overall darker. The choice is indicated by saying "top" or "bottom" after which the page is turned and the next item is presented. The subject is encouraged to make a judgement based upon spontaneous and immediate apprehension rather than on pro-
longed and detailed inspection but is told that there is no time
limit and hence can view freely. Most patients responded
fluently and confidently. Many controls, on the other hand,
felt they were making arbitrary choices.

In addition to this standard procedure, on a second occa-
sion, we asked the UN patients to touch the left side of each
bar, prior to judging, to ascertain the perception of the full
length of the bars.

2.4. Scoring

Scoring is achieved as in Mattingley et al. [24]. For each
stimulus, a response is defined as left-bias or right-bias, re-
spectively, if the subject chose the grey scale with the black
side on the left and right side, respectively, as the darker
one. The asymmetry index (AI) was calculated as the num-
ber of items with a rightward bias, minus the number of
items with a leftward bias, divided by the total number of
items. This AI varies between −1 and +1, representing an
extreme leftward and rightward bias, respectively. An AI of
zero indicates no bias.

3. Results

We firstly checked whether we were able to replicate
previous findings with control subjects. The mean AI was
−0.3370 (S.D. = 0.4364) which is significantly different
from zero (t(62) = −6.215, P < 0.0005). This confirms
a significant leftward bias in control subjects. Secondly, we
confirmed the extreme lateral bias displayed by our three
UN patients. All AIs were equal to one (mean = 1, S.D. =
0), also on the second occasion, when both left ends of the
bars had to be touched.

We then performed a one-way ANOVA, with both
left-sided and right-sided HH groups and control subjects
as a between-subjects (group) factor. This revealed a sig-
ificant group effect (F(2, 92) = 40.757, P < 0.0005). The
mean AI for left-sided hemianopic patients was 0.6317
(S.D. = 0.3725) and for right-sided hemianopic patients
−0.5417 (S.D. = 0.3967). Post-hoc comparisons with Bon-
ferroni correction revealed the HH groups to differ from
each other (t(30) = 8.6, P < 0.0005) and the left-sided
HH patients to differ from the control group (t(77) = 8.2,
P < 0.0005). There was no significant difference between
the right-sided hemianopic patients and control subjects
(t(77) = −1.7, ns). The patients with UN were not in-
cluded in the ANOVA analysis because of the low number
of patients and the absence of variation in their AIs. To test
whether the AIs by the left-sided HH patients significantly
deviated from the AIs by the UN patients, we performed
a one sample T-test on the data by the left-sided hemi-
anopic patients with the AI from the UN patients (i.e. 1)
as test value. This analysis revealed a significant difference
(t(15) = −3.956, P < 0.001). With the same type of anal-
ysis but with the absolute value of the AI by the right-sided
HH patients as the test value, we confirmed that the strength
of the AI by both HH groups did not differ from each other
(t(15) = 0.966, ns).

In the control group, we found no effects of educational
level, nor of age. However, in the pooled HH-group, the
effect of age was marginally significant as indicated by a
Pearsons correlation of age with the absolute value of the
AI (r(32) = 0.338, P < 0.059). Further, time since lesion
proved to correlate significantly with the absolute value of
the AI (r(32) = −0.456, P < 0.05). Time since lesion and
age did not correlate in this sample (r(32) = −0.283, ns).
None of the measures of the clinical UN battery correlated
significantly with the absolute value of the AI.

We further had the opportunity to test 15 HH (seven
left-sided and eight right-sided) patients on two different oc-
casions (1 week interval, same standard procedure). The AIs
on both occasions correlated significantly (r(15) = 0.968,
P < 0.0005), and a paired T-test comparison showed no sig-
nificant difference (t(14) = −1.662, ns) between the means.

4. Discussion

We replicated previous findings confirming (left) percep-
tual asymmetries under free viewing conditions in control
subjects. Our AI (−0.337) clearly is in line with the AI re-
ported by Mattingley et al. [24] using similar grey scales
(−0.323). It is also well within the range of other AIs, us-
ing different types of chimeric stimuli ranging from −0.208
to −0.450 [21,23,24,27]. In controls, we found no effect of
age, nor of educational level, suggesting the lateral bias to
be a fairly robust phenomenon.

We secondly observed an extreme right-sided bias (AI =
1) in patients with UN. At first hand, our AIs might appear to
be more extreme than those reported by Mattingley et al. [24]
(AI = 0.849 for the grey scales). However, the authors report
that four of the 12 right-sided brain damaged) patients did
not have UN. Removing those four patients from their results
would increase their observed AI, since three of the four
lowest scores on the grey scales are by a non-UN patient.
Not including these non-UN patients would result in all AIs
(except one) to be above 0.9.

One of our patients with UN participated in a cognitive
rehabilitation program based on the principles mentioned in
Pizzamiglio et al. [28] and was relatively successfully trained
[32]. His AI, after rehabilitation, remained at its extreme.
This confirms claims made by Mattingley et al. [23] that the
AI represents a strong ipsilesional attentional bias which is
is insensitive to rehabilitation. We further confirmed the per-
sistency of the lateral bias by, additionally and on a sec-
ond occasion, asking our left-sided hemianopic UN patients

the attentional field. Damage to one hemisphere results in an asymmetric activation pattern. This had already been recognised very early on by Trevarthen [33].

Similarly, Nicholls et al. [27] discuss an activation model of perceptual asymmetry presented by Müller et al. [26]. This model suggests that the asymmetry can be conceptualised as an attentional imbalance between resources allocated to the left and right hemispheres. Activation of the right hemisphere generates a bias of attention to the left hemisphere, increasing the salience of stimuli located there. And since the right hemisphere is specialised for judgements of brightness [4], numerosity [25] and shape [10], performing the above discussed perceptual asymmetry tasks specifically activates the right hemisphere, resulting in a leftward bias. Nicholls et al. [27] argue that this activation model can account for numerous observations in controls (e.g. the relatively low intercorrelations between the different, but equal in size, asymmetry scores), but fail to explain how this model could account for the rightward bias in right hemisphere brain damaged patients.

As already briefly mentioned, other authors have attempted to explain the rightward bias present in UN patients and also stressed the involvement of the right hemisphere. Mattingley et al. [24] suggest that the lateral bias reflects a gradient in perceptuo-attentional processing efficiency and note that the observed rightward attentional bias is consistent with a model of spatial attention suggested by Kinsbourne [19,20] which stresses the directional nature of space-related behaviour. It is argued that each hemisphere controls a contralaterally directed attentional vector. The net effect of both vectors gives rise to an attentional gradient (which can be conceptualised as processing efficiency) imposed on the attentional field. Damage to one hemisphere results in dysfunction of the associated vector and hence results in an ipsilesional bias. As such the attentional field is characterised by a gradient which allocates “more weight” or processing efficiency to the ipsilesional side. A unilateral lesion would also release the opposing hemisphere from inhibition, and thereby further inducing a pathological ipsilesional bias. A second critical element in Kinsbourne’s vectorial model is that the strength of the attentional vectors controlled by either hemisphere can be modulated by the activation of that hemisphere.

Hence, Kinsbourne’s vectorial model in combination with the assumed hemispheric specialisation for visuo-spatial events, accommodates the rightward bias in UN and the leftward bias in controls (attentional/hemispheric account). By this view, the perceptual asymmetries reflect patterns of differential functional cerebral activity and specifically stress that right hemisphere activity is a key concept. This right hemisphere predominance is considered to be exclusively based on its own internal properties, i.e. its directional attentional nature or its specialisation for visuo-spatial stimuli or tasks. We however argue that, in addition to this hemispheric influence, also differential sensory input can be of influence. Several indications are provided by our results.

Firstly, we found differential performances within the right hemisphere brain damage group. Namely, all our UN patients presented extreme rightward biases, while the patients with left-sided HH were significantly less extreme, though clearly in the same direction and significantly different from no bias and from controls. The difference in performance, within the right hemisphere damage group, suggests that more right hemisphere involvement (as suggested by previous accounts) cannot be the sole explanation for the observed rightward bias. However, since we did not have access to detailed neurological information, we cannot rule out the possibility that the size of the right hemisphere lesion can account for the observed difference. A second confounding factor in our data is the marked difference in time since lesion between both right hemisphere brain damage groups. This difference could thus also, at least partly, account for the differential performance within this group. Hence, our data show differential performance in the right hemisphere brain damage group, suggesting other factors to be at hand than mere right hemisphere involvement. But alternatively, size of, and time since the right hemisphere lesion cannot be ruled out as valid determinants.

However, secondly, we showed that right- and left-sided HH patients present a qualitatively similar, but qualitatively opposite pattern of results. Both HH groups are virtually identical, but suffer a mirror-reversed visual dysfunction and present an identical but also reversed lateral bias. The side of the attentional imbalance is clearly linked to side of the HH. Hence, Kinsbourne’s vectorial model in combination with the assumed hemispheric specialisation for visuo-spatial events, accommodates the rightward bias in UN and the leftward bias in controls (attentional/hemispheric account). By this view, the perceptual asymmetries reflect patterns of differential functional cerebral activity and specifically stress that right hemisphere activity is a key concept. This right hemisphere predominance is considered to be exclusively based on its own internal properties, i.e. its directional attentional nature or its specialisation for visuo-spatial stimuli or tasks. We however argue that, in addition to this hemispheric influence, also differential sensory input can be of influence. Several indications are provided by our results.

Firstly, we found differential performances within the right hemisphere brain damage group. Namely, all our UN patients presented extreme rightward biases, while the patients with left-sided HH were significantly less extreme, though clearly in the same direction and significantly different from no bias and from controls. The difference in performance, within the right hemisphere damage group, suggests that more right hemisphere involvement (as suggested by previous accounts) cannot be the sole explanation for the observed rightward bias. However, since we did not have access to detailed neurological information, we cannot rule out the possibility that the size of the right hemisphere lesion can account for the observed difference. A second confounding factor in our data is the marked difference in time since lesion between both right hemisphere brain damage groups. This difference could thus also, at least partly, account for the differential performance within this group. Hence, our data show differential performance in the right hemisphere brain damage group, suggesting other factors to be at hand than mere right hemisphere involvement. But alternatively, size of, and time since the right hemisphere lesion cannot be ruled out as valid determinants.

However, secondly, we showed that right- and left-sided HH patients present a qualitatively similar, but qualitatively opposite pattern of results. Both HH groups are virtually identical, but suffer a mirror-reversed visual dysfunction and present an identical but also reversed lateral bias. The side of the attentional imbalance is clearly linked to side of the HH. We hypothesise, conceptually in line with the previously mentioned “reading habit” assertion, that the VFDs lead to an over-representation of the ipsilesional hemi-space. It is commonly assumed that visual attention has two aspects, namely exogenous (stimulus-induced) and endogenous
In previous literature, it was not clear whether the attentional imbalance could be demonstrated (e.g. [23,24]), suggesting an attentional/hemispheric component. We found that HH also gives rise to a qualitatively similar bias, suggesting a sensory component. We therefore conclude that the attentional imbalance can be multiply influenced and is hence a consequence rather than cause. This has the further implication that an attentional imbalance is not necessarily and unequivocally to be associated with UN.

We feel that the grey scales task has strong clinical potential. Firstly, as was suggested in previous literature, the AI can be considered a sensitive measure of attentional imbalance, with UN as its extreme. Secondly, the AI can give the clinician a clear indication of the possible presence and side of a homonymous VFD. Namely, in our brain damaged patient group with homonymous VFDs, we observed a sensitivity and specificity of 0.94 and 0.88 in predicting the side of the HH, given the direction of the AI. Thirdly, contrary to most cancellation tasks or other tasks clinically used to diagnose differential lateral performance, almost any patient can perform the grey scales task, because it has no identification component. We hence successfully applied this test to a patient with complete object-agnosia, while all cancellation tasks appeared unachievable. Finally, although not extensively investigated, we feel that the AI can also have some practical significance. In a larger study investigating practical fitness to drive in patients with HH (to be published), we found evidence that the AI was significantly related to visual performance during driving ($r(29) = -0.510$, $P < 0.005$), while AIs from other tasks were not or significantly less strongly related. This suggests the grey scales task to have some practical significance to at least this type of activity of daily living.

In conclusion, we do not refute that perceptual biases reflect a pattern of functional cerebral asymmetry. But the imbalance cannot be uniquely related to specialisation of the right hemisphere for visuo-spatial attentional function, since left- and right-sided hemianopic patients, with right- and left-sided brain damage, respectively, show similar but inverse lateral biases. Asymmetric activation of one hemisphere can be the result of asymmetric sensory input, caused by the HH.

To further understand the nature and cause of the different components which can give rise to the attentional imbalance, future research could concentrate on patients with left- and right-sided brain damage, without clinical signs of UN and without VFDs. This could elucidate the possible differential hemispheric involvement. Further, other types of homonymous VFDs could also contribute to the insight into the involvement of the sensory influences. In bilateral superior and inferior quadrantanopia (i.e. missing a lower and upper hemifield, respectively) and with the grey scales items 90° rotated, the attentional imbalance should result in a quantitatively similar upper and lower bias, respectively. We also envisaged experiments where different types of homonymous VFDs can be simulated on (non-brain damaged) controls using sophisticated eye-movement equipment.