The health-economic studies of HPV vaccination in Southeast Asian countries
Setiawan, Didik; Oktora, Monika Puri; Hutubessy, Raymond; Riewpaiboon, Arthorn; Postma, Maarten

Published in:
Expert review of vaccines

DOI:
10.1080/14760584.2017.1357472

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 01-09-2017
The health-economic studies of HPV vaccination in Southeast Asian countries: a systematic review

Didik Setiawan, Monika Puri Oktora, Raymond Hutubessy, Arthorn Riewpaiboon & Maarten J. Postma

To cite this article: Didik Setiawan, Monika Puri Oktora, Raymond Hutubessy, Arthorn Riewpaiboon & Maarten J. Postma (2017) The health-economic studies of HPV vaccination in Southeast Asian countries: a systematic review, Expert Review of Vaccines, 16:9, 933-943, DOI: 10.1080/14760584.2017.1357472

To link to this article: http://dx.doi.org/10.1080/14760584.2017.1357472

Accepted author version posted online: 21 Jul 2017.
Published online: 28 Jul 2017.

Submit your article to this journal

Article views: 134

View related articles

View Crossmark data
1. Introduction

Cervical cancer is the fourth most common cancer in the world. The total incidence and mortality rate of cervical cancer in 2012 was more than 500,000 and 250,000 cases, respectively [1]. Notably, the incidence of cervical cancer was twice as high in developing countries as in the developed countries, and mortality is three times as high [1]. Cervical cancer generates not only a clinical burden but also social and economic burdens, for example, reduction of social interaction, productivity, and also income [2–4].

Cervical cancer burden is considerably preventable as the cause of cervical cancer is well understood. Sexually transmitted infection with high-risk human papillomavirus (hrHPV), in particular, HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68 are responsible for cervical cancer [5,6]. Therefore, several factors, including the numbers of sexual partners and start age of sexual intercourse, are responsible for the transmission of HPV infections [7,8].

According to World Health Organization (WHO) position paper [9], several strategies should be undertaken in order to prevent cervical cancer. This comprehensive strategy should include education about sexual behavior, screening, diagnosis, and treatment of both precancer and cancer itself. In addition, training of health workers and providing an accessible screening and treatment should be included in the prevention of cervical cancer strategy. Ultimately, the introduction of HPV vaccine as primary prevention of cervical cancer should not remove the cervical screening activity since the vaccines do not protect people from HPV infection completely.

Two available HPV (bivalent and quadrivalent) vaccines have been approved and implemented as a national policy in most developed and some developing countries [9]. Recently, a nonavalent HPV vaccine has also been approved in the US, Canada and the European Union [10]. Each vaccine has its own additional advantages beyond the main effect of preventing HPV16 and HPV18 infections, including prevention of genital warts for quadrivalent vaccine [11–13], cross protection on other hrHPV types bivalent vaccines [14], and also protection for most of the types of hrHPV for the nonavalent vaccine [15].

Although HPV vaccines provide potentially high benefits for cervical cancer disease prevention, the implementation of HPV vaccine as a national vaccination program in a country is challenging. There may be social barriers, such as rejection from communities on vaccination or parents misunderstanding on vaccination [7,16]. In addition, since HPV vaccine is generally expensive, most countries, especially developing countries, require strong evidence of vaccine benefit including not only on clinical but also economic benefits before implementing a vaccination program. In addition, improvement of the available infrastructure will be required in order to introduce HPV vaccine in the developing countries [17].

Compared to developed countries, budget allocation is considerably vital in developing countries as they have not only the more limited budget but also more cervical cancer incidence and mortality cases [18]. On the other hand, higher
potential benefits are possibly produced by the implementation of HPV vaccine in developing countries. The Southeast Asian (SEA) region consists of 11 different countries which have similar characteristics on its social and culture. Meanwhile, the economic level is considerably diverse as according to world bank, there are two high-income countries (Singapore and Brunei Darussalam), two higher middle-income countries (Thailand and Malaysia), six lower middle-income countries (Indonesia, Philippines, Vietnam, Laos, Timor Leste and Myanmar) and one low-income country (Cambodia) in this region [19,20]. As the incidence and mortality rate of cervical cancer in this region are on top 10 highest [1,21], the economic diversity may influence the implementation of HPV vaccination in the region.

Recently, there are only three countries (Thailand, Malaysia and Lao PDR) in the region which are implemented the HPV vaccination. The scale up plan of HPV vaccination in Thailand has been started since 2010 and the result from a pilot study was considerably promising since 88.1% of the study population received three doses of vaccination [22]. In Malaysia, HPV vaccines are provided for free since 2010 for girls up to age 26 years old at any of the government clinics nationwide. Surprisingly, the vaccine coverage on 2011 was already high (87%) [20,23]. Both countries have successfully maintained the vaccine coverage among their target population [24]. As the first South East Asian Region (SEAR) country which has support from Global Alliance for Vaccine and Immunization (GAVI) initiative, Lao People’s Democratic Republic [25,26] was considerably succeed with about 26,000 girls were immunized in the Vientiane city and province [27]. However, the sustainability of the program could not be guaranteed as it relied on external funding.

Cost-effectiveness analysis is a well-accepted method to provide evidence for decision makers in a country as it generally measures the clinical, economic and most importantly humanistic outcomes, particularly Quality of Life, from a health technology investment. This is also applied in guidelines for national immunization program [28]. In addition to know cost-effectiveness of the intervention, threshold analysis is beneficial for price negotiation. For instance in Thailand, originally, HPV vaccine was not cost-effective based on market price at the time of the study. In the analysis, break-even price of the incremental cost-effectiveness ratio (ICER) at willingness-to-pay was explored. Then, as a result of the study, the market price has been decreased [23]. This information are notably important for the decision maker in health policy as they have a limited budget for an enormous option of health technology [29,30]. Therefore, the objective of this study is to systematically review the health economic studies in SEA countries in order to evaluate the cost-effectiveness of HPV vaccination.

3. Results
From the initial search, we found 33 and 87 articles from the PubMed and Embase databases, respectively. After removing 22 duplicated articles, the remaining 98 articles were screened based on title and abstract. There were 79 articles excluded in the screening process, of which 56 articles were not health economic studies, 19 articles were performed outside the SEA
countries, one article was not about HPV, two articles were meeting reports and one article was not written in English. Furthermore, a thorough reading of the articles the allowed exclusion of 10 articles: seven articles were abstracts of poster presentations, two articles were not in Southeast Asian countries, and one article was about HPV vaccination in boys. A snowball search strategy found one study evaluating the cost-effectiveness of HPV vaccination in 72 GAVI eligible countries including several countries in the region, however, only one country, which is Vietnam that has complete information about the study. Finally, 10 articles were included in this study (Figure 1).

3.1. Study characteristics

In this review, 10 included studies were from five different countries: the Philippines (n = 1) [35], Thailand (n = 3) [36–38], Singapore (n = 1) [39], Malaysia (n = 3) [40–42], and Vietnam (n = 2) [43,44] (Table 1). The Philippines and Vietnam represented lower-middle income countries (gross domestic product [GDP] per capita: US $1046 to US $4125) [19,35,43,44], while Thailand and Malaysia represented upper-middle income countries (GDP per capita: US $4125 to US $12,734) [36–38,40–42], and Singapore represented high income countries (GDP per capita: >US $4125) [39]. A cost-utility analysis (CUA), adopting Quality Adjusted Life Years (QALYs) as the main study outcome, was performed by two different studies [35,37], while cost-effectiveness analysis, adopting clinical parameters as the study outcome, was implemented by three studies [38,43,44]. Additionally, four studies performed cost utility analysis (CUA) and cost effectiveness analysis (CEA) simultaneously [36,39,41] and one study performed cost-minimization analysis (CMA) to compare all attributable cost of two available vaccines in the market [40]. As also shown in Table 1, one studies compared HPV vaccines against no vaccination [37], two studies looked at quadrivalent versus bivalent vaccines [39,40], and seven studies looked at vaccination in combination with screening against screening alone [35,36,38,41–44].

![Flow chart for study selection](image)

Figure 1. Flow chart for study selection.

Table 1. Study characteristics of the health economic studies of HPV vaccination in South East Asia Region.

<table>
<thead>
<tr>
<th>Authors, years of publication</th>
<th>Country</th>
<th>Economic classification</th>
<th>GDP per capita (US $ 2014)</th>
<th>Type of study</th>
<th>Study objective</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guerrero et al. (2015) [35]</td>
<td>The Philippines</td>
<td>Lower-middle income</td>
<td>2873</td>
<td>CUA</td>
<td>To evaluate the health and economic benefits of HPV vaccination and its combination with different screening strategies</td>
</tr>
<tr>
<td>Termnronguangert et al. (2012) [37]</td>
<td>Thailand</td>
<td>Upper-middle income</td>
<td>5977</td>
<td>CUA</td>
<td>To simulate the lifetime health and economic impact of HPV vaccination</td>
</tr>
<tr>
<td>Praditsithikorn et al. (2011) [36]</td>
<td>Thailand</td>
<td>Upper-middle income</td>
<td>5977</td>
<td>CEA, CUA</td>
<td>To identify the optimum mix of cervical cancer prevention and control that are cost effective</td>
</tr>
<tr>
<td>Sharma et al. (2011) [38]</td>
<td>Thailand</td>
<td>Upper-middle income</td>
<td>5977</td>
<td>CEA</td>
<td>To assess the health and economic outcomes of various screening and vaccination strategies for cervical cancer prevention</td>
</tr>
<tr>
<td>Lee et al. (2011) [39]</td>
<td>Singapore</td>
<td>High income</td>
<td>56,285</td>
<td>CEA, CUA</td>
<td>To explore the cost-effectiveness of two HPV vaccines in Singapore</td>
</tr>
<tr>
<td>Aljunid et al. (2010) [40]</td>
<td>Malaysia</td>
<td>Upper-middle income</td>
<td>11,307</td>
<td>CMA</td>
<td>To estimate the clinical and economic burden of disease attributable to HPV in Malaysia</td>
</tr>
<tr>
<td>Ezat et al. (2010) [41]</td>
<td>Malaysia</td>
<td>Upper-middle income</td>
<td>11,307</td>
<td>CEA, CUA</td>
<td>To undertake cost analysis of management of cervical cancer cases by government health care providers and to estimate the economic burden of cervical cancer</td>
</tr>
<tr>
<td>Kim et al. (2008) [43]</td>
<td>Vietnam</td>
<td>Lower-middle income</td>
<td>2052</td>
<td>CEA</td>
<td>To assess the cost-effectiveness of cervical cancer prevention strategies and the tradeoffs between a national and region-based policy</td>
</tr>
<tr>
<td>Goldie et al. (2008) [44]</td>
<td>Vietnam</td>
<td>Lower-middle income</td>
<td>2052</td>
<td>CEA</td>
<td>To estimate the health and economic consequences expected with HPV 16 and 18 vaccination of young adolescent girls in 72 GAVI-eligible countries</td>
</tr>
</tbody>
</table>

CUA: cost utility analysis; HPV: human papillomavirus; CEA: cost effectiveness analysis; CMA: cost minimization analysis; GAVI: Global Alliance for Vaccine and Immunization.
3.2. Study design

Since the clinical outcomes of HPV vaccination, such as reduction in cervical cancer incidence and mortality are difficult to obtain from clinical trials, a mathematical model is commonly used in the cost-effectiveness analysis of HPV vaccination. Seven studies implemented modeling: five Markov models [35–37,39,43], two mathematical models [38,44] and one prevalence-based model using 1-year cross-sectional data [40]. Two studies from Malaysia were performed using 3-year cross-sectional data from tertiary and teaching hospitals that provide oncology services in Malaysia [41].

In health-economic studies, study perspective plays an important role as it not only influences the data required in the analysis but also the conclusion generated from the studies. Various perspectives were implemented in the studies performed in the SEA countries including societal (five studies) [36,38,40,43,44], patients (two studies) [41], provider (two studies) [36,37], payer (one study) [40] and health care system (two studies) [35,39]. In order to obtain a complete description of the cost-effectiveness of HPV vaccination, the implementation of lifetime horizon is important as the cost and effectiveness of HPV vaccination as cancer incidence and mortality reduction will only be shown several decades after vaccination. Most studies included in this review modeled a lifetime horizon for their studies [35–39,44,43], however, there were one and two studies modeled 1 [40] and 10 years [41] as their time horizon, respectively.

There were several strategies of HPV vaccination which is identical among included studies: three doses of administration [35–38,41,43,44], vaccination of young age girls (11–15 years old) [35–41,43,44], and vaccine coverage of 70% or higher [35–41,43,44]. The vaccine price used across included studies, which is ranged from IS$12 to IS$1463, were considerably wide. Furthermore, only three studies reported the delivery and administration costs and it ranged from the lowest of I$6 to the highest of I$40 [35,36,43]. Those costs were obtained from different sources: from previous vaccination program implementation [35], from the national vaccine committee office [36] and assumption [43]. In addition to HPV vaccination, cervical screening for older women is also important strategy on preventing cervical cancer disease. Cytology-based screening/pap smear (n = 7) was implemented in most of included studies [35,36,38,39,41,43] followed by visual inspection with acetic acid (VIA) screening (n = 3) [35,36,38]. The cervical screening was targeted for women ages 25 years old until 65 years old and most countries have so far faced low coverage (n = 6) [35,36,38,39,43]. Three studies implemented 5 years screening interval [35,36,43] and one study from Singapore implemented 3 years screening interval [39]. Additionally, a study from Thailand varied several screening interval (from 1 year to 5 years) in their study [38].

As there is only few guideline available on how to perform a cost-effectiveness analysis in SEA countries [45,46], a recommendation from the Commission on Macroeconomic in Health on 3% discounting for both cost and effect in the cost-effectiveness analysis is usually adopted. Almost all included studies (N = 7) applied 3% discounting for both future cost and effect in the analysis [36–39,41,43,44]. Only one study, from the Philippines, used a 3.5% discount rate [35] and one study did not incorporate discounting as the time horizon was 1 year [40] (Table 2).

3.3. Study outcomes

With regard to cervical cancer prevention strategies observed in the study (Table 3), there were six studies that explored the combination of screening and vaccination in a country [35,36,38,41–43], one study analyzed the addition of vaccination on top of screening only [37] and two other studies compared the cost-effectiveness of both bivalent and quadrivalent vaccines [39,40]. Since not all studies reported the clinical outcomes, including cancer related incidence and mortality, as the results of cervical cancer prevention strategies, there were only five studies reporting the percentage of cervical cancer incidence averted by HPV vaccination [37–40,43,44]. The highest prevention of cervical cancer incidence was generated by the implementation of bivalent vaccine in Malaysia (89.4% of efficacy) [40]. Vaccine efficacy on preventing cervical cancer-related mortality was reported by three studies [37,39,41] and there was high efficacy was reported by the addition of bivalent vaccine over pap smear in Singapore [39] and the combination of quadrivalent over pap smear in Malaysia [41].

The main information provided by health economic studies is the ICER which explains the cost-effectiveness of a new intervention in comparison with a gold standard, previous recommendation or existing intervention. Only seven studies provided the value of ICER from their base case analysis [35–37,39,41,44], since two studies, from Thailand and Vietnam, explored various scenarios of HPV vaccination and/or screening [38,43], and one study from Malaysia reported CMA [40]. Studies from Philippines, Singapore, and Malaysia showed that HPV vaccination was considered as a very cost-effective intervention [35,39,41] since the ICER generated from the study lies below 1× GDP. Two studies from Thailand showed that HPV vaccine was a cost-effective intervention since the ICER lies below 3× Thailand’s GDP [36,37].

Two studies exploring the combination of HPV vaccination and screening generated different recommendations on cervical cancer prevention strategies. A study from Thailand proposed that HPV vaccination in addition to screening five times over lifetime was an effective strategy if the vaccine price is low (IS$2 per dose) [38]. A study from Vietnam considered HPV vaccination as a promising strategy if several requirements were met including high vaccination coverage, low vaccine price (<IS$5 per dose), and screening has to be performed for older women (35–45 years old) [43]. A cost minimization study from Malaysia, comparing the bivalent and quadrivalent vaccines, showed that clinical and economic benefits provided by bivalent vaccine were notably higher than the quadrivalent vaccine [40].

3.4. Sensitivity analysis

As the mathematical model has been widely used in health economic studies, there are several issues regarding the model-related uncertainties. Therefore, a sensitivity analysis is needed to compensate the uncertainties. There are two main sensitivity analyses, univariate and probabilistic sensitivity
<table>
<thead>
<tr>
<th>Authors, years of publication</th>
<th>Method</th>
<th>Perspective</th>
<th>Time horizon</th>
<th>Vaccination strategy</th>
<th>Delivery and administration cost (2014; I$)</th>
<th>Age target</th>
<th>Coverage</th>
<th>Type of screening</th>
<th>Age target</th>
<th>Coverage</th>
<th>Interval</th>
<th>Cost</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guerrero et al. (2015)</td>
<td>Semi-Markov model</td>
<td>Health care system</td>
<td>A lifetime</td>
<td>3 doses</td>
<td>156</td>
<td>6</td>
<td>11</td>
<td>20% and 80%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Termunrugrunglert et al. (2012)</td>
<td>Markov model</td>
<td>Health care provider</td>
<td>A lifetime</td>
<td>3 doses</td>
<td>577</td>
<td>NS</td>
<td>12</td>
<td>100%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Praditsitthikorn et al. (2011)</td>
<td>Markov model</td>
<td>Societal and healthcare provider</td>
<td>A lifetime</td>
<td>3 doses</td>
<td>1463</td>
<td>20</td>
<td>9–26</td>
<td>100%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sharma et al. (2011)</td>
<td>Mathematical model</td>
<td>Societal</td>
<td>A lifetime</td>
<td>3 doses</td>
<td>12–615</td>
<td>NS</td>
<td>12</td>
<td>80%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Lee et al. (2011)</td>
<td>Markov model</td>
<td>Health services</td>
<td>A lifetime</td>
<td>NS</td>
<td>547</td>
<td>NS</td>
<td>12</td>
<td>100%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Aljunid et al. (2010)</td>
<td>Prevalence-based model using 1-year cross-sectional data</td>
<td>Societal and payer</td>
<td>1-year</td>
<td>NS</td>
<td>NA</td>
<td>NA</td>
<td>12</td>
<td>100%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Ezat et al. (2010)</td>
<td>Cross sectional study</td>
<td>Patient</td>
<td>10 years</td>
<td>3 doses</td>
<td>253</td>
<td>NS</td>
<td>15</td>
<td>96%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Ezat et al. (2010)</td>
<td>Cross sectional study</td>
<td>Patient</td>
<td>10 years</td>
<td>NS</td>
<td>248</td>
<td>NS</td>
<td>13</td>
<td>96%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Kim et al. (2008)</td>
<td>Markov model</td>
<td>Societal</td>
<td>A lifetime</td>
<td>3 doses</td>
<td>110</td>
<td>40</td>
<td>12</td>
<td>70%</td>
<td>35–45</td>
<td>70%</td>
<td>5 years</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Goldie et al. (2008)</td>
<td>Mathematical model</td>
<td>Societal</td>
<td>A lifetime</td>
<td>3 doses</td>
<td>25</td>
<td>NS</td>
<td>12</td>
<td>70%</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

*Coverage per year. NA: not applicable; VIA: visual inspection with acetylic acid; NS: not specified.
Table 3. Clinical and economic outcomes of health economic studies of HPV vaccine in South East Asian Region.

<table>
<thead>
<tr>
<th>Study</th>
<th>Strategies observed</th>
<th>Clinical outcome</th>
<th>ICER (2014 US $/QALYs)</th>
<th>Study conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guerrero et al. [35]</td>
<td>VIA screening, pap-smear, and HPV vaccination</td>
<td>Incidence averted: NS; Mortality averted: NS</td>
<td>1884</td>
<td>Scale up VIA screening coverage is the best option.</td>
</tr>
<tr>
<td>Termrungruanglert et al. [37]</td>
<td>HPV vaccination</td>
<td>55.1% (QV); 54.8% (BV)</td>
<td>14,947</td>
<td>Nationwide coverage of HPV vaccination is cost-effective strategy</td>
</tr>
<tr>
<td>Praditsithikorn et al. [36]</td>
<td>Pap smears, VIA screening, and HPV screening</td>
<td>NS</td>
<td>17,656</td>
<td>Increase the coverage of VIA and Pap-smear screening is the most cost-effective policy</td>
</tr>
<tr>
<td>Sharma et al. [38]</td>
<td>HPV vaccination, VIA screening, HPV DNA testing, and Pap smear</td>
<td>4.7–70.1% (BV); NS (QV)</td>
<td>-</td>
<td>Low cost pre-adolescent HPV vaccination (152 per dose) followed by HPV screening five times per lifetime is an efficient strategy for Thailand</td>
</tr>
<tr>
<td>Lee et al. [39]</td>
<td>Pap smear and HPV vaccines (bivalent and quadrivalent vaccine)</td>
<td>76.9% (QV); 86.0% (BV)</td>
<td>12,414 (BV); 14,222</td>
<td>The addition of HPV vaccination (both vaccines) to current pap smear is a cost-effective strategy</td>
</tr>
<tr>
<td>Aljunid et al. [40]</td>
<td>HPV vaccines (bivalent and quadrivalent vaccine)</td>
<td>89.4% (BV); 81.0% (QV)</td>
<td>NA</td>
<td>Vaccination with the bivalent vaccine is estimated to prevent more precancerous lesions, cervical cancer cases and HPV-related treatment costs, while quadrivalent vaccine prevents more genital warts</td>
</tr>
<tr>
<td>Ezat et al. [42]</td>
<td>Pap smear and HPV vaccines (bivalent and quadrivalent vaccine)</td>
<td>NS</td>
<td>4166 (BV); 5590</td>
<td>The QV combined strategy was more cost-effective than any method including Pap smear screening at high population coverage</td>
</tr>
<tr>
<td>Ezat et al. [41]</td>
<td>Pap smear, quadrivalent vaccine and its combination</td>
<td>946 (PS); 1081 (QV); 2027 (Comb)</td>
<td>1311 (PS); 42,111 (QV); 9341 (Comb)</td>
<td>The most cost effective strategy is increasing the Pap smear coverage to 70% or higher</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>Screening (HPV test and Pap smear), HPV vaccination, and its combination</td>
<td>20.4–76.1% (QV)</td>
<td>NA</td>
<td>Providing high coverage and low cost of vaccination can be an attractive intervention</td>
</tr>
<tr>
<td>Goldie et al. [44]</td>
<td>HPV vaccination</td>
<td>49.4%</td>
<td>1078</td>
<td>HPV 16 and 18 vaccination could be very cost-effective in Vietnam</td>
</tr>
</tbody>
</table>

NA: not applicable; NS: not specified; PS: Pap smear; QV: quadrivalent; QALYs: quality adjusted life years.

Table 4. Sensitivity analysis of health economic studies of HPV vaccination in South East Asian Region.

<table>
<thead>
<tr>
<th>Study</th>
<th>Sensitivity analysis</th>
<th>Sensitive parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guerrero et al. [35]</td>
<td>One-way sensitivity analysis, threshold analysis and PSA</td>
<td>Discount rate, cost of treatment, cost of Pap smear, cost of vaccine, duration of vaccine protection and the coverage of screening</td>
</tr>
<tr>
<td>Termrungruanglert et al. [37]</td>
<td>One-way sensitivity analysis</td>
<td>Cost of vaccine, the efficacy of vaccine, and the vaccine coverage</td>
</tr>
<tr>
<td>Praditsithikorn et al. [36]</td>
<td>Probabilistic sensitivity analysis (PSA)</td>
<td>NA</td>
</tr>
<tr>
<td>Sharma et al. [38]</td>
<td>One-way sensitivity analysis</td>
<td>Vaccine price, vaccine efficacy, availability of HPV DNA testing, screening coverage, and vaccination coverage</td>
</tr>
<tr>
<td>Lee et al. [39]</td>
<td>One- and two-way sensitivity analyses</td>
<td>Vaccine effectiveness, vaccine coverage, and transition probabilities (CIN 1 to CIN 2–3, HPV to CIN 1, and CIN 2/3 to pCIN 2/3)</td>
</tr>
<tr>
<td>Aljunid et al. [40]</td>
<td>Univariate sensitivity analysis</td>
<td>The degree of cross protection, unit costs of cervical cancer and genital warts</td>
</tr>
<tr>
<td>Ezat et al. [42]</td>
<td>Scenario based sensitivity analysis</td>
<td>NA</td>
</tr>
<tr>
<td>Ezat et al. [41]</td>
<td>Scenario based sensitivity analysis</td>
<td>NA</td>
</tr>
<tr>
<td>Kim et al. [43]</td>
<td>One- and two-way sensitivity analysis</td>
<td>Vaccination coverage, screening coverage, vaccine efficacy, vaccine cost and screening costs</td>
</tr>
<tr>
<td>Goldie et al. [44]</td>
<td>Univariate sensitivity analysis</td>
<td>Discount rate and vaccine cost</td>
</tr>
</tbody>
</table>

HPV: human papillomavirus; PSA: probabilistic sensitivity analysis; NA: not applicable; DNA: deoxyribonucleic acid; CIN: cervical intraepithelial neoplasia.
(contain HPV type 16 and 18) while cost-minimization analysis from Malaysia suggested that bivalent vaccine prevents more cervical cancer incidence and cervical cancer-related cost than quadrivalent vaccine. Different findings on the comparison of two available vaccines are apparently found from other studies, for example, several studies performed in Colombia, Ireland, Canada and UK [53,59–61] showed the superiority of quadrivalent while studies from Italy and Taiwan showed that bivalent vaccine is more cost-effective [62,63]. HPV vaccines are considered beneficial for not only preventing cervical cancer but also genital warts, genital cancer and oropharyngeal cancer [53,59,61]. The inclusion of these additional outcomes in the analysis will considerably influence the results of this comparative study.

Two studies, from Thailand and Vietnam [38,43], explored the various scenario of HPV vaccination in combination with several types of screening and compared the ICER with the Commission on Macroeconomic in Health recommendation on cost-effectiveness threshold [33]. In order to maintain the cost-effectiveness ratio of below the threshold, both studies proposed a significantly lower price of HPV vaccine if vaccination would be implemented as a policy in addition to cervical screening. The lower price of HPV vaccine apparently becomes an important issue when a country wants to implement a universal coverage of HPV vaccination as it is recommended by studies from not only developing countries [53] but also developed countries [55,64]. Therefore, a reasonable price recommendation for acceptable HPV vaccine price according to countries’ GDP could be interesting information.

There is some discussion on the implementation of the Commission on Macroeconomic in Health recommendation on cost-effectiveness threshold in low and middle-income countries (LMICs). Several studies showed that this threshold was not suitable for all countries. Therefore, a country-specific threshold should be soon decided using the various approach such as human capital approach, preference approaches or league table approach [65] as it provides a better language for the decision maker.

A budget impact analysis is also considered useful for decision maker as it generally provides the impact of HPV vaccination on the national budget for the health care. However, only one study from the Philippines performed budget impact analysis and it showed that the implementation of HPV vaccination on top of VIA screening was considerably challenging for the Philippines government as it required a mobilization of additional budget to ensure the implementation [35].

A dynamic model provides a better description on how infectious disease, in this context HPV infection, is spread in a population since it also considers the impact of waning immunity in the population [59,66]. However, none of the cost-effectiveness analysis, which is included in this study, implemented dynamic model as their prediction tool. An explainable reason of this issue is that dynamic model requires more complex, large and rarely available information especially in SEA countries such as sexual contact matrix and force of infection, the rate at which individuals acquire an infectious disease, such as HPV infection. Obtaining a specific number of the sexual contact for SEA countries is challenging as eastern society generally consider this information as a taboo [3,67]. Therefore, a static model (known as Markov model) is considerably sufficient on describing the natural history of cervical cancer in a population especially when the vaccination coverage is potentially high.

There are several limitations in our study. Firstly, a complete overview on how the cost-effectiveness of HPV vaccine in SEA countries could not be obtained since the cost-effectiveness analysis of HPV vaccination had not been performed in all countries located in the region. A country-specific cost-effectiveness study is rarely performed since it has not been considered as an obligation in a drug registration system in all SEA countries. However, our review suggested that the implementation of HPV vaccination will generate the optimum health and clinical benefit if several conditions, including low vaccine price, high vaccination coverage, and availability of cervical screening, were achieved.

As the development of cervical cancer disease generally requires several decades of time. A lifetime horizon is a necessary in the cost-effectiveness analysis of HPV vaccination as the cervical cancer prevention strategy. Since studies from Malaysia implemented 1 year and 10 years as the study periods, it is difficult to capture the complete cost- and health-related information generated by cervical cancer disease [41]. However, a general impression of how HPV vaccine will influence the cost- and health-related outcome was clearly explained.

5. Expert commentary

The implementation of HPV vaccination will generate substantial health and economic benefit in SEA countries since the number of cervical cancer cases in this region is generally high. However, an initial investment for promotion, infrastructure, human resources [68], and most importantly, HPV vaccine apparently requires a large proportion of the national budget. This investment could be an important issue as most of the countries in SEA countries are included in the low- or middle-income country and having a limited health-care budget. Consequently, a clear recommendation on how HPV vaccination should be implemented in a country, for example on how many doses will be used, how much cost is required or is it a school based- or clinical based-delivery, is critically required.

Another consideration of cervical cancer prevention strategy in SEA countries were low performances of cervical screening. Although a free-of-charge cervical screening has been provided in several countries, the adherence and coverage of the screening were considered as the main challenges. Additionally, the importance of disease prevention has not been integrated completely in the society. A comprehensive health promotion is generally required in SEA countries especially in the rural area or in the population with low awareness of health.

6. Five-year view

Recently, there are two main updates on HPV vaccination: the update version of quadrivalent vaccine ‘nonavalent HPV vaccine’ [10,13] and two doses administration of the vaccine
Previously, each HPV vaccine, quadrivalent and bivalent vaccine, proposed their own advantages in addition to the main benefit on cervical cancer. The quadrivalent vaccine provides an additional benefit on genital warts prevention since the vaccine not only contains HPV16 and HPV18 but also HPV6 and HPV11 [53,70]. On the other hand, the bivalent vaccine provides a higher additional benefit of HPV-related cancer, including penile, vaginal, and oropharyngeal cancer than quadrivalent vaccine, as bivalent vaccine possess a cross-protection against another type of high-risk HPV: HPV31, HPV33, HPV45, HPV52, and HPV58 which are also responsible for the development of HPV-related cancer [14,71]. The existence of nonavalent HPV vaccine noticeably propose even higher protection on HPV infection compared to the bivalent and quadrivalent vaccine, which means also HPV related cancer, into society [10,13]. However, as the vaccine price is also higher than both available vaccines [72], the cost-effectiveness of the new vaccine has to be observed.

Key issues

- Pooling cost-effectiveness data on HPV vaccination from a specific region allows the assessment of the health and economic aspects from different countries with considerably similar characteristics.
- In line with other studies from different regions, the addition of HPV vaccination on top of cervical screening is a cost-effective prevention strategy for most countries in SEA region.
- The threshold recommendation from The Commission on Macroeconomic in Health are commonly used by the countries which have not define their country-specific threshold. However, there are several other aspects to be considered in the decision-making process including budget impact.
- A clear recommendation on how HPV vaccination should be implemented in a country is critically required.
- A comprehensive health promotion is generally required in SEA countries especially in the rural area or in the population with low awareness of health.

Funding

These findings are the result of work supported by Directorate General of Higher Education (DIKTI) Scholarship, Ministry of National Education, Indonesia. The views expressed in this paper are those of the authors, and no official endorsement by Ministry of National Education is intended or should be inferred.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

ORCID

Maarten J. Postma http://orcid.org/0000-0002-6306-3653

References

Papers of special note have been highlighted as of interest (-) to readers.

17. LaMontagne DS, Barge S, Le NT, et al. Human papillomavirus vaccine delivery strategies that achieved high coverage in low-
25. GAVI. Lao people’s democratic republic (the) [Internet]. 2016 [cited 2016 Sep 13]. Available from: http://www.gavi.org/country/lao-pdr/
33. An important paper for decision-making process based on cost-effectiveness study.

44. The first model based health economic study about cervical cancer prevention in Indonesia.

72. La Vigne P Gardasil 9 vaccine prompts push for national program [Internet]. 2016 [cited 2017 Mar 5]. Available from: http://www.thecancerreductionproject.org/2016/06/gardasil-9-vaccine-prompts-push-for-national-program/
Appendix 1

1. PUBMED

Set 1 (HPV terms):

Set 2 (Vaccine terms):
"Vaccines"[Mesh] OR "Vaccination"[Mesh] OR vaccine[tw] OR vaccination [tw]

Set 1 AND 2 OR "Papillomavirus Vaccines"[Mesh]

Set 3 (Economic evaluation/Cost terms):

Set 4 (ASEAN countries):

2. Embase

Set 1 (HPV terms):
"Human papillomavirus infection"/exp OR 'wart virus'/exp OR 'alphapapillomavirus'/exp OR papillomavirus:ab,ti OR hpv:ab,ti

Set 2 (Vaccine terms):
"vaccine"/exp OR 'vaccination'/exp OR vaccine:ab,ti OR vaccination:ab,ti

Set 1 and Set 2 OR 'wart virus vaccine'/exp OR 'hpv vaccination':ab,ti OR 'human papillomavirus vaccine':ab,ti

Set 3 (Economic evaluation/Cost terms):
"cost"/exp OR 'economic evaluation'/exp OR 'cost analysis':ab,ti OR 'cost benefit analysis':ab,ti OR 'cost utility':ab,ti OR 'cost effectiveness':ab,ti OR 'economic evaluation':ab,ti OR 'cost':ab,ti OR 'costs':ab,ti OR 'economics':ab,ti

Set 4 + (ASEAN countries):
southeast asia/exp OR 'philippines'/exp OR 'philippines':ab,ti OR 'indonesia':ab,ti OR 'malaysia':ab,ti OR 'singapore':ab,ti OR 'laos':ab,ti OR 'vietnam':ab,ti OR 'myanmar':ab,ti OR 'cambodia':ab,ti OR 'thailand':ab,ti OR 'brunei':ab,ti OR 'timor leste':ab,ti