Spinal efferents and afferents of the periaqueductal gray
Mouton, Leonora

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
References


Berman AL (1968) The brainstem of the cat. A cytoarchitectonic atlas with stereotaxic
References

coordinates. The University of Winsconsin Press, Madison.

projections from the spinal cervical enlargement to the parabrachial area and periaqueductal

Besson JM, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiological
Reviews 67:67-186.

Besson JM, Fardin V, Oliveras JL (1991) Analgesia produced by stimulation of the periaque-
ductal gray matter: true antinociceptive effects versus stress effects. In Depaulis A, Bandler
R (eds) The midbrain periaqueductal gray matter: functional, anatomical, and neurochemical


Blok BFM, De Weerd H, Holstege G (1995) Ultrastructural evidence for a paucity of projec-
tions from the lumbosacral cord to the pontine micturition center or M-region in the cat:
a new concept for the organization of the micturition reflex with the periaqueductal gray

Blok BFM, Holstege G (1994) Direct projections from the periaqueductal gray to the pontine
micturition center (M-region). An anterograde and retrograde tracing study in the cat.

Blok BFM, Holstege G (1996) The neuronal control of micturition and its relation to the

Blok BFM, Sturms L, Holstege G (1997a) A PET study on cortical and subcortical control of

Blok BFM, Willemsse TM, Holstege G (1997b) A PET study on brain control of micturition in
humans. Brain 120:111-121.

121:2033-2042.

Blomqvist A, Craig AD (1991) Organization of spinal and trigeminal input to the PAG. In
Depaulis A and Bandler R (eds) The midbrain periaqueductal gray matter. Plenum Press,
New York, pp 345-363.

Neuroanatomy of the oculomotor systems. Elsevier Science Publishers BV, Amsterdam,
pp 119-176.

In Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter: functional,

and neuronal organization. Behav Brain Res 58:27-47.

Carrive P, Bandler R (1991a) Control of extracranial and hindlimb blood flow by the midbrain

Carrive P, Bandler R (1991b) Viscerotopic organization of neurons subserving hypothensive
reactions within the midbrain periaqueductal grey: a correlative functional and anatomical

with the defence reaction in the cat is mediated by a direct projection from a restricted
portion of the midbrain periaqueductal grey to the subretrofacial nucleus of the medulla.
Brain Res 460:339-345.
References


References

Holstege G (1988a) Direct and indirect pathways to lamina I in the medulla oblongata and spinal cord of the cat. Prog Brain Res 77:47-94.
References


References


References


Wiberg M, Blomqvist A (1984) The spinomesencephalic tract in the cat: its cells of origin and