GTP\textsubscript{S} Regulation of a 12-Transmembrane Guanylyl Cyclase Is Retained after Mutation to an Adenylyl Cyclase*

Received for publication, June 5, 2001, and in revised form, August 14, 2001
Published, JBC Papers in Press, August 24, 2001, DOI 10.1074/jbc.M105154200

Jeroen Roelofs, Harriët M. Loovers, and Peter J. M. Van Haastert‡
From the Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands

DdGCA is a Dictyostelium guanylyl cyclase with a topology typical for mammalian adenylyl cyclases containing 12 transmembrane-spanning regions and two cyclase domains. In Dictyostelium cells heterotrimeric G-proteins are essential for guanylyl cyclase activation by extracellular cAMP. In lysates, guanylyl cyclase activity is strongly stimulated by guanosine 5′-3-O-(thio)triphosphate (GTP\textsubscript{S}), which is also a substrate of the enzyme. DdGCA was converted to an adenylyl cyclase by introducing three point mutations. Expression of the obtained DdGCAkqd in adenylyl cyclase-defective cells restored the phenotype of the mutant. GTP\textsubscript{S} stimulated the adenylyl cyclase activity of DdGCAkqd with properties similar to those of the wild-type enzyme (decrease of \(K_m\) and increase of \(V_{max}\)), demonstrating that GTP\textsubscript{S} stimulation is independent of substrate specificity. Furthermore, GTP\textsubscript{S} activation of DdGCAkqd is retained in several null mutants of Ga and G\(\beta\)\(\gamma\) proteins, indicating that GTP\textsubscript{S} activation is not mediated by a heterotrimeric G-protein but possibly by a monomeric G-protein.

Adenylyl cyclases (ACs)1 and guanylyl cyclases (GCs) have a high degree of amino acid sequence identity and are expected to have a similar structure of their catalytic sites (1–3). Despite these similarities, the mechanism of activation is essentially different for ACs and GCs. Mammalian 12-transmembrane adenylyl cyclases are regulated by G-protein-coupled receptors (GPCRs). Ligand binding to the GPCR causes intracellular dissociation of the heterotrimeric G-protein into its Ga and G\(\beta\)\(\gamma\) subunits. These subunits can activate (Ga\(\alpha\), G\(\beta\)\(\gamma\)) or inhibit (Ga\(\alpha\), G\(\beta\)\(\gamma\)) AC (4–6). In cell lysates GTP\textsubscript{S}, a GTP analogue that cannot be hydrolyzed by Ga, is often used as indication for G-protein regulation (7–9). Mammalian GCs can be separated into two groups, soluble and membrane-bound enzymes (10, 11). The soluble GCs form a heterodimer and are activated by NO, which binds to a heme group that is associated to the dimer (12). Membrane bound GCs have an extracellular domain, which often functions as a receptor, and ligands have been identified for a number of these GCs.

Recently, several unusual GCs have been cloned in lower eukaryotes. We have characterized a GC in Dictyostelium, DdGCA, that has the topology of mammalian ACs, consisting of two stretches each with six membrane-spanning regions and two cyclase domains (13). In Paramecium, Tetrahymena, and Plasmodium, GCs with the same topology have been found, but at the N terminus these proteins contain a P-type ATPase, providing an additional 10 membrane-spanning region (14, 15). The regulation of GC in these last three organisms is essentially unknown. Although G-protein regulation has been considered for the Paramecium and Tetrahymena GCs, no 40-kDa heterotrimeric G-protein family members have been found in these organisms (16).

In Dictyostelium, activation of GC in vivo is known to be dependent on GPCRs and on heterotrimeric G-proteins. cAMP and folic acid are two well known extracellular ligands that induce a transient rise in cGMP. Disruption of the single G\(\beta\) gene abandons the cGMP response to both stimuli (17), whereas disruption of Ga\(\alpha\), or Ga\(\alpha\) inhibits the cGMP response to cAMP and folic acid, respectively (18–24). In cell lysates of wild-type cells, GTP\textsubscript{S} stimulates AC and GC activity. However, in lysates of the g\(\beta\)-cell line, this activation is lost for AC but not for GC (17). Thus, the GTP\textsubscript{S} activation of ACA depends on heterotrimeric G-proteins. The mechanism by which GTP\textsubscript{S} regulates GC activity is still unclear, especially because GTP\textsubscript{S} is known to be a substrate of GC from Dictyostelium and several other organisms (25, 26). It has been speculated that GTP\textsubscript{S}-mediated stimulation of cGMP formation is a substrate effect (17, 26).

To study the mechanism by which GTP\textsubscript{S} regulates GC activity, we converted DdGCA to an adenylyl cyclase. The results demonstrate that a protein with three point mutations, DdGCAkqd, shows strong AC activity and can rescue the phenotypic defects of the adenylyl cyclase null mutant, aca-null. Next we analyzed the effect of GTP\textsubscript{S} on DdGCAkqd and show that GTP\textsubscript{S} stimulates AC activity; this indicates that the GTP\textsubscript{S} effect is independent of substrate specificity and not acting on the catalytic site. Finally, by expressing DdGCAkqd in several Ga and G\(\beta\) deletion mutants, we have demonstrated that a heterotrimeric G-protein does not mediate GTP\textsubscript{S} activation of GC. The role of monomeric G-proteins in GC regulation is discussed.

EXPERIMENTAL PROCEDURES

Strain and Culture Conditions—The following strains were used in this study: wild-type strain AX3, g\(\beta\)\(\gamma\) strain LW6 (27), g\(\alpha\)\(4\) strain JH104 (20), g\(\alpha\)\(4\) g\(\delta\)\(4\) (28), g\(\alpha\)\(2\) g\(\delta\)\(4\) (29), g\(\delta\)\(4\) (13), and g\(\alpha\)\(2\) g\(\delta\)\(4\) (see below).

Cells were grown in HG5 medium supplemented with 10 μg/ml blasticidin S or 10 μg/ml neomycin based upon the selection marker present. To study morphogenesis, cells were plated on non-nutrient agar at different densities (2 × 10\(^4\), 4 × 10\(^4\), and 8 × 10\(^4\) cells/cm\(^2\)) and incubated at 22 °C to develop. Cells were transfected with DNA by electroporation as described (30).

Double Knock-out Strain g\(\alpha\)\(2\) g\(\delta\)\(4\) / g\(\alpha\)\(2\) g\(\delta\)\(4\) —To make a double null of g\(\alpha\) and g\(\delta\) cells were transformed with a G2 knock-out construct obtained as follows. A PCR fragment, obtained by using primers g\(\alpha\)2f1 (5′- AGCTCT GCGGG GCGGC AGAAT TGGAT TTGTG AC-TC-3′) and g\(\alpha\)2r1 (5′- CTAGT GCAC ACC ACC ACCAC AGAAT TA-40740

This paper is available on line at http://www.jbc.org

Printed in U.S.A.

© 2001 by The American Society for Biochemistry and Molecular Biology, Inc.
A GTPγS-regulated Guanylyl Cyclase

40741

A GTPγS-regulated Guanylyl Cyclase

AACC AGC-S') on genomic Dictyostelium DNA, was cloned into the pCR2.1 vector (Invitrogen). A Bsr cassette (31) was cloned in the HindIII site of the obtained plasmid. The resulting G02 knock-out construct was digested with EcoRI, and the fragment containing the Bsr cassette with the G02 flanks was isolated and used as template in a PCR reaction with primers G02F1 and G02R1. In this way a sufficient knock-out fragment was obtained devoid of any residual circular plasmid that could cause a high background of random insertion in the transformation of Dictyostelium cells. Transformation by electroporation and selection of clones was done as described previously (13).

Mutagenesis of DdGCA—All mutations were made using PCR (32). Before creating the mutant cyclases, two silent mutations were introduced in pGEM7GCA (13) at nucleotide positions 1365 (A to T) and 2049 (C to T), to create unique EcoRI and HindIII restriction sites, respectively, that flanked the coding region of the first cyclase domain. The plasmid obtained was used as the template for PCR mutagenesis to introduce three point mutations, E440K, S502Q, and H504D, which have been confirmed by sequencing. The obtained PCR products were cloned in the PstI and HindIII sites of full-length DdGCA, which were subsequently cloned in the expression plasmids MB12N (bar selection) and MB12Neo (G418 selection) (33) to create DdGCA^{mut}. The sequence of the plasmid is similar to that of A₁[−]ΔA₅−A_G−GCA (13) with the exception of the introduced restriction sites and point mutations. DdGCA^{mut} was transformed to [−]a_c cells, and DdGCA^{mut} was transformed to the other Dictyostelium strains depending on the selection markers available for the specific strain.

Guanylyl and Adenylyl Cyclase Assays—GC assays were performed as described previously (34). In short, cells (10⁶ cells/ml) in lysis buffer (40 mM Hepes/NaOH, 6 mM MgSO₄, and 6 mM EGTA, pH 7.5) with or without GTPγS (0.1 mM) were lysed by forced filtration through a Nucleopore filter (pore size, 3 μm). The reactions were started at 30 s after lysis by the addition of an equal amount of assay mixture (10 mM dithiothreitol and 1 mM GTP). Reactions were terminated at the indicated time points by the addition of an equal amount of 3.5% (v/v) perchloric acid; the time zero sample was taken immediately after cell lysis. The AC assay was performed similar to the GC assay, except that DdGCA^{mut} was digested with EcoRI and HindIII restriction sites, respectively. The obtained PCR products were cloned in the AC[−]AC[−]-A₅−A_G−GCA (13) with the exception of the introduced restriction sites and point mutations. DdGCA^{mut} was transformed to [−]a_c cells and DdGCA^{mut} was transformed to another D. gondii strain depending on the selection markers available for the specific strain.

In Vivo Responses—To measure responses to cAMP, cells were starved for 5 h and resuspended at 10⁶ cells/ml in 10 mM phosphate buffer. Cells were stimulated with 10 μM 2-oxo-cAMP, and reactions were terminated by the addition of an equal volume of 3.5% perchloric acid. cAMP and cGMP levels were measured in the neutralized lysates.

RESULTS

Regulation of DdGCA Activity by GTPγS—The guanylyl cyclase activity of DdGCA is strongly dependent on GTPγS (13). To analyze the catalytic activity in more detail, DdGCA was overexpressed in AX3 cells, and guanylyl cyclase activity was determined at different concentrations of GTP or GTPγS (see Fig. 1A). The Lineweaver-Burk plot shows that the <i>K</i>_m for GTP and GTPγS are 340 and 200 μM, respectively, with a similar <i>V</i>_{max} of 75 pmol/min/mg for both substrates. Thus, it seems that GTPγS is a better substrate than GTP; however, GTPγS is also a potent activator of GC activity in Dictyostelium (26). GC activity was measured at different GTP concentrations in the presence of 50 μM GTPγS. Without GTP no cGMP formation was detected at this concentration of GTPγS. The results reveal that GTPγS leads to a reduction of the <i>K</i>_m for GTP from 340 to 88 μM and to an increase of the <i>V</i>_{max} with a factor of 1.5 (Fig. 1A). The <i>K</i>_m of GTPγS stimulation is about 5 μM as determined by measuring GC activity with 500 μM GTP at increasing concentrations of GTPγS (Fig. 1B).

These measurements have two intrinsic caveats. First, GTPγS is an activator as well as a substrate of the enzyme, making it difficult to distinguish substrate-related effects from non-catalytic activation. Second, although the measurements were done in cell lysates from DdGCA-overexpressing cells, these cells still express another GC (13). We may circumvent both problems upon mutation of DdGCA to an adenylyl cyclase and expression in [−]a_c cells, because GTPγS will no longer be a substrate and [−]a_c cells do not contain AC activity under our assay conditions.

Change of Substrate Specificity—DdGCA has a typical mammalian AC topology consisting of two clusters each with six transmembrane-spanning regions and two cyclase domains (Fig. 2A). The cyclase domains show homology to the domains of eukaryotic ACs and GCs. Sequence analysis clearly show that the C1 domain of DdGCA is functionally equivalent to the C2 domains of mammalian ACs, and the C2 domain of DdGCA corresponds to the mammalian C1 domains (13). The crystal structure of a homodimer of the rat AC type II C2 domain and a heterodimer of canine AC type V C1 and rat AC type II C2 domains together with modeling studies gave a good indication of which amino acids are involved in substrate binding and catalysis (1–3). Based on this information and on alignments of several AC and GC sequences (Fig. 2B), we might be able to predict which amino acids in DdGCA are involved in determining substrate specificity.

In ACs, three amino acids seem to be most important for ATP recognition: a lysine (Lys-938 in ACII), a glutamine (Gln-1016 in ACII), and an aspartate (Asp-1018 in ACII). These three amino acids are highly conserved in higher eukaryotes. Their counterparts in GsCs, a glutamate (Glu-938 in GCE), an arginine (Arg-998 in GCE), and a cysteine (Cys-1000 in GCE), are also strongly conserved among GCs. In DdGCA, the glutamate (Glu-440 in DdGCA) is conserved as well, but the other amino acids are unique, being a serine (Ser-502 in DdGCA) and a histidine (His-504 in DdGCA). To study the involvement of these amino acids in substrate specificity, we mutated all three amino acids to their counterparts in AC, creating DdGCA^{mut}.

Fig. 1. Lineweaver-Burk plots of guanylyl cyclase activity in cell lysates of AX3 cells overexpressing DdGCA. A, guanylyl cyclase activity (v) was measured in the presence of 3 mM EGTA, 3 mM Mg²⁺, 10 mM dithiothreitol, 40 mM Hepes (pH 7.0), and increasing substrate concentrations of GTP (), GTPγS (), or GTP in the presence of 50 μM GTPγS (). B, guanylyl cyclase activity was measured with () or without () 500 μM GTP in combination with increasing concentrations of the activator GTPγS; the results show that 10 μM GTPγS is not a substrate but stimulates cGMP formation from GTP. Experiments were performed in triplicate.
Adenylyl Cyclase Activity of DdGCA_{kqd} and Rescue of aca[−] Cells—Disruption of the DdACA gene leads to an aggregation defective phenotype of the aca[−] cells (29). As demonstrated in Fig. 3, expression of DdGCA_{kqd} in aca[−] cells resulted in the formation of small aggregates that developed into fruiting bodies with spores. Expression of DdGCA did not result in any kind of rescue. AC activity in lysates from in aca[−] cells is very low under our assay conditions (~2 pmol/min/mg protein). Expression of DdGCA in aca[−] cells did not yield AC activity, whereas expression of DdGCA_{kqd} resulted in enhanced AC activity (25 pmol/min/mg protein; Fig. 4A). GC activity levels as well as basal cGMP levels are significantly higher upon expression of DdGCA in aca[−] or wild-type cells (Fig. 4B and Ref. 13). Expression of DdGCA_{kqd} in aca[−] cells did not result in enhanced GC activity or a higher basal cGMP level (Fig. 4B). Thus, by making three point mutations DdGCA was successfully converted to an adenylyl cyclase.

Regulation of DdGCA_{kqd} by Ca²⁺ in Vitro and cAMP in Vivo—To investigate the effect of known regulators of GC activity, the inhibition of DdGCA_{kqd} by calcium in vitro (35) and stimulation by cAMP in vivo was tested. As shown in Fig. 5, AC activity of aca[−] cells overexpressing DdGCA_{kqd} is strongly inhibited by similar Ca²⁺ concentrations as GC activity of wild-type AX3 cells. This finding suggests that both DdGCA_{kqd} and DdGCA are regulated by a protein that strongly binds calcium, like e.g. guanylyl cyclase activating protein (GCAP) modulating GC activity in the retina (36, 37).

<i>Dictyostelium</i> cells show a transient rise in cGMP levels, peaking at 10–15 s after stimulation with cAMP. Overexpression of DdGCA_{kqd} in aca[−] cells may result in a similar response, but now a transient rise in cAMP should occur. This cell line has the important advantage that the simultaneous detection of cGMP and cAMP levels provides information on the activation of endogenous GC enzymes and overexpressed DdGCA_{kqd}, respectively. Cells were stimulated with 2′-deoxy-cAMP, an analogue that stimulates the receptor but does not interfere with cAMP determinations. As shown in Fig. 6, cGMP levels increase about 8-fold to a maximum at 10 s after stimulation. In addition, cAMP levels produced by DdGCA_{kqd} increase about 4-fold; the response is biphasic with enhanced cAMP levels after prolonged stimulation. This difference in cGMP and cAMP response could be because of the phosphodiesterases that degrade cGMP and cAMP, respectively, which have very different regulatory properties in <i>Dictyostelium</i> (38–44). These results of Fig. 6 demonstrate that DdGCA_{kqd} is activated by extracellular cAMP, probably via a cA1 receptor dependent pathway.

The effect of GTP_γS on the AC Activity of DdGCA_{kqd}—To study the effect GTP_γS on the activity of GCA, we used aca[−] cells expressing DdGCA_{kqd} as shown in Table 1, AC activity is hardly detectable without GTP_γS, whereas in the presence of GTP_γS substantial production of cAMP is observed. The kinetic constants of DdGCA_{kqd} were determined from activity measurements at different substrate concentrations (Fig. 7), demonstrating that GTP_γS regulates AC activity of DdGCA_{kqd} by reducing the <i>Kₘ</i> from 270 to 141 μM ATP and by increasing the <i>Vₘₐₓ</i> from 17 to 38 pmol/min/mg. These kinetic data for the AC activity of DdGCA_{kqd} are essentially identical to the effect of GTP_γS on the kinetic data for the GC activity of DdGCA (Fig. 1), suggesting that the mechanism of stimulation by GTP_γS did not change dramatically upon mutation of DdGCA.

The activation of <i>Dictyostelium</i> GCs was studied in vitro and...
in vivo using several cell lines in which subunits of heterotrimeric G-protein have been deleted. To investigate the role of heterotrimeric G-proteins in the regulation of DdGCA by GTP\(_\gamma\)S, we expressed DdGCA\(^{kqd}\) in the different knock-out cell lines (\(\gamma^\beta\), \(\gamma^\alpha\), \(\alpha^\beta\), \(\alpha^\gamma\), and \(\alpha^\alpha\)) and measured the AC activities in lysates plus and minus GTP\(_\gamma\)S. The endogenous DdIACA, which is also stimulated by GTP\(_\gamma\)S in some of these cells, has not been deleted but is expressed at very low levels in vegetative cell and does not cause interference in the assay (data not shown).

Dictyostelium cells possess only one \(\beta\) subunit (27), which is essential for cAMP and cGMP response in vivo. Unexpectedly, expressing DdGCA\(^{kqd}\) in \(\gamma^\alpha\) cells results in AC activity that is still strongly activated by GTP\(_\gamma\)S (Table I).

At least nine \(\alpha\) subunits have been described in Dictyostelium: G_{\alpha-1} (28), G_{\alpha-2} (29), G_{\alpha-3} (30), G_{\alpha-4} (31), G_{\alpha-5} (32), G_{\alpha-6} (33), G_{\alpha-7} (34), G_{\alpha-8} (35), and G_{\alpha-9} (36). The AC activity in these cells is regulated by GTP\(_\gamma\)S and is still strongly activated by GTP\(_\gamma\)S in \(\gamma^\alpha\) cells (Table I).

Fig. 5. Calcium inhibition of guanylyl cyclase activity in AX3 and adenylyl cyclase activity in DdGCA\(^{kqd}\) expressed in \(\alpha^-\) cells. Cells were lysed in the presence of 50 \(\mu\)M GTP\(_\gamma\)S and different concentrations of free calcium as achieved by a calcium/EGTA buffer. Activities at 10\(^{-9}\) free calcium were set at 100%.

Fig. 6. In vivo cAMP and cGMP response \(\alpha^-/DdGCA^{kqd}\) cells. Vegetatively growing \(\alpha^-\) cells overexpressing DdGCA\(^{kqd}\) were washed twice in PB, starved in PB at 10\(^7\) cells/ml for 5 h, washed and resuspended to 10\(^5\) cells/ml. These cells were stimulated with 10\(^{-5}\) M 2'-deoxy-cAMP and cells were lysed by addition of an equal amount of 3.5% PCA. The levels of cGMP (\(\bullet\)) and cAMP (\(\odot\)) were determined in the neutralized lysates.

Table I

<table>
<thead>
<tr>
<th>Cells expressing DdGCA(^{kqd})</th>
<th>Adenylyl cyclase activity</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-GTP(_\gamma)S</td>
<td>+GTP(_\gamma)S</td>
</tr>
<tr>
<td></td>
<td>pmol/min/mg</td>
<td>pmol/min/mg</td>
</tr>
<tr>
<td>(\alpha^-)</td>
<td>-2 ± 1.5</td>
<td>25 ± 1.6</td>
</tr>
<tr>
<td>(\gamma^\beta)</td>
<td>1.7 ± 1.8</td>
<td>33 ± 2.0</td>
</tr>
<tr>
<td>(\gamma^\alpha)</td>
<td>-3.8 ± 6.5</td>
<td>44 ± 1.8</td>
</tr>
<tr>
<td>(\alpha^\beta)</td>
<td>0.4 ± 3.0</td>
<td>36 ± 4.0</td>
</tr>
<tr>
<td>(\alpha^\alpha)</td>
<td>-1.0 ± 2.5</td>
<td>45 ± 0.9</td>
</tr>
</tbody>
</table>

DISCUSSION

Dictyostelium GCA is an unusual GC because it has the topology of an AC and is activated by GTP\(_\gamma\)S. We have converted DdGCA to an AC, expressed it in \(\alpha^-\) null cells that have no endogenous AC activity, and demonstrated that the obtained AC activity is still stimulated by GTP\(_\gamma\)S. This clearly demonstrates that GTP\(_\gamma\)S stimulates DdGCA not by binding in the catalytic site or being a better substrate but via a modulator such as a GTP-binding protein.

Substrate Recognition—For GCs it has been proposed that a glutamate (Glu-928 in GCE, see Fig. 2B) is the most important amino acid for specific recognition of GTP as it probably interacts with the N-1 nitrogen of the guanine ring of GTP. This hypothesis has been supported experimentally, because mutant GCs without this glutamate have no AC activity (47, 48). This glutamate is also present in evolutionary distant GCs, such as GCs from *Paramaecium, Plasmodium* (14, 15), and *Dictyostelium* GCA (13), which most likely have evolved from the traditional GCs independently from the traditional GCs. In ACs the counterpart of this glutamate is a lysine (Lys-998 in ACII) that interacts with the N-1 of the P-site inhibitor 2'-deoxy-3'-AMP in the x-ray structure (1). Mutation of the glutamic acid to a lysine (E440K yielding DdGCA\(^{kqd}\)) caused GC activity to be abandoned but did not yield detectable AC activity (data not shown).

Two other amino acids expected to be important for nucleotide specificity are an arginine (Arg-998 in GCE) and cysteine (Cys-1000 in GCE) in GCs; their counterparts in ACs are a glutamine (Glu-1016 in ACII) and an aspartate (Asp-1018 in ACII).
ACII), respectively. The cysteine in GCs (Cys-1000 in GCE) is expected to stabilize the double bound oxygen of GTP (3, 47, 48). The aspartate counterpart in AC has been shown to form a hydrogen bond with the N-6 of 2′-deoxy-3′-AMP and is expected to do the same with ATP. At the position of the very conserved cysteine present in nearly all GCs, DdGCA has a histidine (His-504 in DdGCA), making this a very unusual GC (Fig. 2B). We expect the N\(^\text{\text{H}}\) of histidine to still stabilize the double bound oxygen of GTP. The arginine of GCs (Arg-998 in GCE) is speculated to be important for proper orientation of the glutamate (47). The function of these amino acids in ATP and GTP recognition are supported by mutagenesis studies of mammalian and Paramecium cyclases (16, 47, 48).

In addition to mutating the glutamate at position 440 to a lysine, we additionally mutated the serine at position 502 to a glutamine and a histidine at position 504 to an aspartic acid. Expression of the resulting mutant, DdGCAkd, in \textit{aca} − yields strong AC activity but no GC activity. This shows that DdGCA is a GC with a similar structure of the catalytic pocket as in mammalian ACs and GCs. Predictions based upon that structure proved to be correct, suggesting that the unusual histidine side chain of DdGCA is actually located in the catalytic cleft as we speculated previously (13). Second, the results imply that the amino acids that determine substrate specificity of DdGCA are located in the C1 domain, unlike mammalian ACs where they are located in the C2 domain, giving experimental proof of the previously observed inverted domain localization within the protein if compared with mammalian ACs.

The mutated DdGCAkd provides the possibility of studying the regulation of DdGCA in great detail by expressing the mutant DdGCAkd in \textit{aca} −, which has no background AC activity. GC activity in \textit{Dictyostelium} is inhibited by calcium, probably via a calcium-binding protein like GCAP (26, 35, 49), whereas \textit{Dictyostelium} AC activities are Ca2+-insensitive (50, 51). As shown in Fig. 5, the AC activity of DdGCAkd is still inhibited by calcium, indicating that in cell lysates the interaction of DdGCAkd with other proteins is not disrupted by the mutations. Furthermore, cAMP induces a fast 4-fold increase of AC activity by cAMP receptor. The activation of DdGCAkd shows the kinetics of activation of DdGCA with a maximum after about 10 s, which is very different from the activation of the adenyl cyclase ACA, which peaks at about 90 s after stimulation. Despite the differences in activation kinetics of ACA and DdGCAkd, the expression of DdGCAkd restores largely the aggregation minus phenotype of \textit{aca} − cells. This suggests that cAMP production \textit{per se} is sufficient to induce cAMP signalling, as was shown previously by expression of the constitutively active DdACG, an AC normally expressed only during late development in the spores (29).

Activation of DdGCA by GTP\textsubscript{γS}—All 12 transmembrane-spanning ACs are regulated by heterotrimeric G-proteins (4–6) in opposition to the soluble or membrane-bound GCs. DdGCA has the topology of G-protein-regulated Acs, and ample evidence suggests its regulation by G-proteins, because activation of GC activity by cAMP in \textit{vivo} requires the presence of the single G\(β\) and the G\(α\)Sport subunit. GC activity in the DdGCA overexpressor strains is stimulated by the presence of GTP\textsubscript{γS} (Fig. 1), as has been shown previously for GC activity of wild-type strains (26, 52). This activation by GTP\textsubscript{γS} may suggest regulation of DdGCA by a G-protein, because activation occurs at very low GTP\textsubscript{γS} concentrations (K\textsubscript{m} \approx 5 \text{ mM}). However, GTP\textsubscript{γS} is a substrate of DdGCA (K\textsubscript{m} = 200 \text{ mM}), and binding of GTP\textsubscript{γS} in the catalytic site might stabilize the enzyme or increase activity for GTP hydrolysis in an unknown manner. However, in the DdGCAkd mutant, which does not recognize GTP in the catalytic site, GTP\textsubscript{γS} still stimulates enzyme activity. The V\textsubscript{max} or K\textsubscript{m} of ATP for DdGCAkd and of GTP for DdGCA differ by less than 2-fold, indicating that the mechanism of catalysis was not severely affected by the mutations. This could be expected because the mutations are located in the region of the catalytic pocket where the purine is bound, which is relatively far away from the region with the catalytic amino acids. In both wild-type DdGCA and mutant DdGCAkd, GTP\textsubscript{γS} results in an increase of V\textsubscript{max} and reduction of K\textsubscript{m}, suggesting the mechanism of activation by GTP\textsubscript{γS} is not affected.

GTP\textsubscript{γS} stimulates DdGCA and DdGCAkd with a K\textsubscript{m} of about 5 \text{ mM}, which is 50-fold lower than the K\textsubscript{m} of DdGCA for GTP\textsubscript{γS}, indicating that the stimulatory effect is mediated by a site with high affinity for GTP\textsubscript{γS}. In our perception there are two obvious candidates: 1) GTP\textsubscript{γS} activates heterotrimeric G-proteins, and one of the G\(α\) subunits or the G\(βγ\) subunit activates the enzyme; 2) GTP\textsubscript{γS} activation of DdGCA is mediated by a monomeric G-protein. Either way means that DdGCA is regulated by a modulator that is also the substrate.

DdGCA Stimulation by Heterotrimeric or Monomeric G-proteins?—In addition to DdGCA, other effectors are known to be activated via the cAR1 receptor in \textit{vivo}, e.g., DdACA and DdPLC. In lysates from \textit{g\(α\)2}− cells, GTP\textsubscript{γS} no longer stimulates phospholipase C activity, indicating the involvement of G\(α\)\textsubscript{2} in this activating path (53). On the other hand, ACA stimulation by GTP\textsubscript{γS} is still present in lysates from \textit{g\(α\)2}− cells but lost in lysates from \textit{g\(β\)8}− cells, suggesting the G\(β\) subunit mediates activation of ACA (17). For GC activation the mechanism seems more complicated, because in \textit{vivo} experiments show that G\(β\) is essential in combination with either G\(α\)\textsubscript{2} for cAMP stimulation or G\(α\)\textsubscript{4} for folic acid stimulation (17, 24, 54). However, in \textit{vitro} neither of the three subunits is necessary to obtain GTP\textsubscript{γS} activation of endogenous GC activity or AC activity by ectopic expression DdGCAkd. These data indicate that none of the heterotrimeric G-protein subunits known to be essential for GC activation in \textit{vivo} is a mediator of GTP\textsubscript{γS} activation in \textit{vitro}. The biochemical properties of GC regulation by GTP\textsubscript{γS} and other guanine nucleotides have been studied previously (26, 52, 55). GDP\textsubscript{S} inhibits GTP\textsubscript{γS}-mediated activation of GC. GTP has no effect but inhibits when added before GTP\textsubscript{γS}. These data suggest that the protein mediating GTP\textsubscript{γS} stimulation of GC rapidly hydrolyses GTP and slowly releases bound GDP; activation is possible only with the non-hydrolyzable GTP analogue. These properties are very different for the regulation of \textit{Dictyostelium} adenyl cyclase ACA, where both GTP and GTP\textsubscript{γS} stimulate the enzyme via the heterotrimeric G-protein G\(α\)\textsubscript{2}G\(β\)G\(γ\) (17, 20) but are similar to the regulation of actin polymerization in \textit{Dictyostelium} and leukocytes mediated by the monomeric G-protein Cdc42 (56). The biochemical and genetic data on GC regulation in \textit{Dictyostelium} are consistent with the essential role of heterotrimeric G-protein for cAMP-mediated activation in \textit{vivo}, and monomeric G-protein for GTP\textsubscript{γS}-mediated activation in \textit{vitro}, which leads to the following model. Extracellular cAMP or folic acid bind to surface receptors thereby activating the heterotrimeric G-proteins G\(α\)\textsubscript{2}G\(β\)G\(γ\) and G\(α\)G\(β\)G\(γ\), respectively. The activated G\(α\) subunits activate a monomeric GTP-binding protein that stimulates GC activity. Regulation of a monomeric G-protein by a heterotrimeric G-protein might be more common, e.g., in the yeast \textit{Saccharomyces cerevisiae} a G\(βγ\) recruits Far1p leading to the activation of Cdc42p (57); other studies in fibroblasts, COS-7 cells, and human airway smooth muscle cells show that G\(γ\) mediates the activation of p21ras (58–60).
In Dictyostelium an unexpectedly large number of Ras and Rho GTTPases have been identified (61, 62). The heterotrimeric-monomeric G-protein model for GC regulation in Dictyostelium may help to resolve the pathway and function of cGMP as well as the function of monomeric G-proteins in Dictyostelium.

Acknowledgments—We thank Ina Hummel for practical assistance and Jeff A. Hadwiger for providing gα4 cells.

REFERENCES