Wet work in relation to occupational dermatitis
Jungbauer, Franciscus Henricus Wilhelmus

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research.portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Continuous observation of wet work in the cleaning industry using a time-study method.
Chapter 7

Characteristics of wet work in the cleaning industry

Contact Dermatitis 2004: 51:131-134

Abstract

Wet work is the main cause of occupational contact dermatitis in the cleaning industry. Dermatologists and occupational physicians need to base their primary and secondary prevention counseling in workers in the cleaning industry on the characteristics of wet work exposures. We quantified the burden of wet work in professional office cleaning activities with a continuous standardized observation by trained observers of 41 office cleaners. Duration and frequency of wet work exposure and of different cleaning activities were assessed. Wet work made up 50% of the cleaning work. Within a typical 3-hour shift a mean frequency of 68 episodes of wet work was observed, which classifies office cleaning as wet work. Skin exposure to irritants was markedly different among cleaners who did the same cleaning activities. Reduction in skin irritation can be achieved by training the workers. Because this group of workers who have a low level of education, has a high risk of developing irritant hand dermatitis, a special effort on training and instruction should be made. A reduction of exposure can be achieved by:

- using gloves more often,
- using gloves for a shorter period of time
- using gloves while doing activities that otherwise cause the skin to be in contact with water and cleaning substances.
- washing hands with only water, while only using soap when the hands are visibly dirty

Introduction

Hand dermatitis has a high prevalence among workers in the cleaning industry (1-5). Employees in the office cleaning industry have their hands exposed to water and other skin irritants a large part of the day. 'Wet work' is one of the most important causes of occupational skin disease (2,3,6,7). Table 1 shows an overview of different skin exposures; it is based on a descriptive study by The Netherlands Ministry of Social Affairs & Employment on exposures to skin hazards in the cleaning industry (8).
assessment of the potency of different exposures to skin irritating substances, an accurate assessment of the quantity of exposure to irritants is also important. Therefore, understanding of the burden and characteristics of wet work in the cleaning industry is important for both the dermatologists’ and the occupational physicians’ advisory role in prevention of contact dermatitis.

Method

Similar to our wet work assessments in nursing, we defined wet work as all occupational activities that:

1. cause the skin of one or two hands to be in contact with water or watery soap solutions
2. necessitate the wearing of protective gloves over a prolonged period of time, thus causing the hands to become moist from perspiration.

In this study we applied a specific observation method to assess the duration and frequency of wet hands and protective gloves.

We used a method for labour observation techniques, developed by the IMAG institute: it is a time-study method developed by Barnes and adjusted for efficiency studies in agriculture by Hendrix. Time-studies can be done by continuous observation or by interval observations. Although an interval study is far less time consuming we decided to use a continuous observation because this method is more accurate. We trained 3 observers in accurately using this time study method.

A video film of office cleaning activities was made and used to train the observers. For accurate observations all observers should use same starting and end points of cleaning activities, and, even more important, the same definitions for different wet exposures.

For the observation we used a list of the most frequent office cleaning activities and skin exposures to irritants, in accordance with the instructions by Hendrix. For our purpose we could use the basic principles and definitions of these instructions.

In the Netherlands the largest subsection in the cleaning industry is office cleaning, employing approximately 170,000 people. About 65% of the employees is female, and a large proportion is part-timer. Because it is the largest subsection in the cleaning industry we chose to observe the characteristics of wet work exposure in office cleaning. The observations were among part-time cleaners who worked according a so-called 4-bucket method (two clean water buckets: one for restrooms, one for other rooms and two dirty water buckets: one for restrooms, one for other rooms). All cleaners had an ‘area duty allocation’ (cleaning all floors, offices and restroom in an area) instead of an ‘activity duty allocation’ (cleaning only offices or only floors or only restrooms). An area duty allocation is widely seen in this subsection of the industry.

A sample of 41 randomly chosen office cleaners was observed during their occupational activities on 41 different 3-hour afternoon shifts of office cleaning.
in the same office building. Cleaners with medical restrictions that interfered with their work were excluded from the study. Occupational skin exposures to irritants in office cleaning activities were divided into exposure of the skin to occlusion: use of gloves; exposure of the skin to water and soap (with detergents) and having dry hands. Office cleaning activities with possible skin exposure to irritants, were divided into furniture cleaning; restroom cleaning; floor cleaning; dustbin cleaning; kitchen cleaning; other cleaning activities and hand washing. Recording a wet activity started when one of the hands became wet and lasted until both hands were dried. The recording of a glove activity started when a glove was put on one of the hands and terminated when both hands were free of gloves.

Because our observations should not interfere with normal activities, our observers were instructed not to ask why an activity was done with gloves.

Results

On average, during the 3-hour observation period the skin of the hands was exposed to wet work activities during 90 minutes (50% of the working time) with a mean frequency of 70 episodes. The skin of the hands was exposed to occlusion (in gloves) for a mean of 62 minutes, with a mean frequency of 44 episodes, in this 3-hour period. Table 2 shows the observed duration of different office cleaning activities and the number of wet episodes during the 3-hour observation period.

<table>
<thead>
<tr>
<th></th>
<th>Glove use</th>
<th>Wet hands</th>
<th>Dry hands</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration, all activities</td>
<td>62 (58)*</td>
<td>28 (28)*</td>
<td>51 (36)*</td>
</tr>
<tr>
<td>Episodes of wet work in 3 h shift</td>
<td>44 (47)</td>
<td>24 (26)</td>
<td>32 (27)</td>
</tr>
<tr>
<td>Duration in minutes furniture cleaning</td>
<td>13 (16)</td>
<td>18 (20)</td>
<td>0 (1)</td>
</tr>
<tr>
<td>Duration in minutes kitchen cleaning</td>
<td>0 (3)</td>
<td>1 (3)</td>
<td>0 (4)</td>
</tr>
<tr>
<td>Duration in minutes floor cleaning</td>
<td>11 (12)</td>
<td>0 (0)</td>
<td>18 (16)</td>
</tr>
<tr>
<td>Duration in minutes dustbin cleaning</td>
<td>17 (14)</td>
<td>1 (3)</td>
<td>11 (12)</td>
</tr>
<tr>
<td>Duration in minutes restroom cleaning</td>
<td>12 (9)</td>
<td>4 (5)</td>
<td>1 (2)</td>
</tr>
<tr>
<td>Duration in minutes other wet work</td>
<td>11 (14)</td>
<td>3 (3)</td>
<td>21 (14)</td>
</tr>
</tbody>
</table>

Table 2: Duration and frequency of wet work exposure in office cleaning; average duration in minutes *(with standard deviation) and average number of episodes (with standard deviation) in 45 cleaners during a 3-hour shift.

The hands were washed with a mean of less than once during this period and a mean duration of about 30 seconds, 78% of the hand washings were done with water and soap.
Discussion

The mean duration of wet work during our 3-hour observations was 90 minutes, i.e. 50% of the time, with a frequency of 70 episodes of wet hands. Although wet work causes occupational skin problems, many countries have no regulations regarding wet work exposure. In Germany TRGS 531 (Technische Regeln für Gefahrstoffe) regulates the duration of wet work. This guideline stipulates that work that consists for more than 25% of activities involving wet hands (more than 2 hours and/or frequent; more than 20 times per 8-hour shift) should be considered as an occupation with a risk for hand dermatitis. Specific prevention programs should be implemented for such occupations.

The Netherlands has no regulations regarding wet work; the part-time cleaning work described in this paper would qualify for the German wet work regulations. The standard deviations from the mean duration and frequency of the different skin exposures revealed during our observations were relatively large, while the standard deviations from the mean duration and frequency for the actual cleaning activities were relatively small. This implies that different cleaners performed similar tasks but with different levels (duration, frequency) of skin exposure.

Dry work was often unnecessarily carried out using gloves, while wet work activities were often carried out without glove protection. Hands were washed with soap, whereas hand alcohol or even just water could also have been used. Many cleaners started their work wearing occlusive gloves and only took them off after finishing the 3-hour shift. Others did not want to use gloves at all and even cleaned toilets with bare hands. None of the observed cleaners used an emollient during the observation period.

Office cleaners need to protect their skin because of their wet work occupation. The broad scale of occupation-related skin diseases in office cleaning, as in other wet work occupations, indicate the need for implementing a skin protection program (1,8). Skin protection programs are based on reducing the level of exposure to skin irritants and increasing the use of protection and skin care products (28). A skin protection program can only be successful when adequate changes are realised in the attitude of the exposed worker. A change in attitude towards exposure to irritants and the use of personal skin protection and skin care products will only be achieved if people know why and how to use it. The level of education in this group of employees is generally low. An education and training in work practices program needs to be set up for this group of workers which suffers from a high risk of developing irritant hand dermatitis.

Based on our observations and the dermatological effects when wearing gloves (23,24) this educational program could focus on:

1. Using gloves more often
2. Using gloves during activities that would cause the skin to be in contact with water and cleaning substances.
3. Using gloves only for short periods of time and not during dry work activities.
4. Washing hands with water only, using soap only when the hands are visibly dirty.
References

This report labels all types of cleansers used in office cleaning as agents containing skin-allergens and irritating substances.

<table>
<thead>
<tr>
<th>Type cleanser</th>
<th>Skin contact</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Floor cleanser</td>
<td>No</td>
<td>Weekly</td>
</tr>
<tr>
<td>Floor maintenance</td>
<td>No</td>
<td>Monthly</td>
</tr>
<tr>
<td>Daily restroom cleanser*</td>
<td>Yes</td>
<td>Daily</td>
</tr>
<tr>
<td>Periodic restroom cleanser**</td>
<td>Yes</td>
<td>Weekly</td>
</tr>
<tr>
<td>Toilet cleanser</td>
<td>No</td>
<td>Daily</td>
</tr>
<tr>
<td>Furniture cleanser</td>
<td>Yes</td>
<td>Daily</td>
</tr>
<tr>
<td>Glass/ window cleanser</td>
<td>No</td>
<td>Twice monthly</td>
</tr>
<tr>
<td>Moquette shampoo</td>
<td>No</td>
<td>Twice yearly</td>
</tr>
<tr>
<td>Kitchen cleanser</td>
<td>Yes</td>
<td>Weekly</td>
</tr>
</tbody>
</table>

Table 1: Overview of skin exposure with the use of several types of cleaning products used in office cleaning

* Daily restroom cleansers are slightly acid to neutral and are mainly composed of water, surface-active substances, acids, solvents and additives (stabilizers, foam, fragrances etc.).

** Periodic restroom cleansers are acid fluids from water, surface-active substances, acids and additives (stabilizers, foam, fragrances etc.).

Cleaning activities, like nursing, can cause hand dermatitis in many ways\(^{5-7,9-24}\). The main risk factor for developing hand dermatitis in cleaning activities is formed by exposure to agents that are weakly toxic to the skin (irritants), i.e. water and detergents and the use of occlusive gloves. The most important activities in office cleaning are: floor cleaning; restroom cleaning; furniture cleaning and dustbin cleaning. All these activities carry a risk to the skin. Products that contain irritating and allergenic substances are used on a daily basis; skin contacts with these products occur often. Most surface-active substances irritate the skin because they dissolve the lipids of the upper skin layer (stratum corneum). Additional risk factors with respect to skin irritation are the multiple contacts of the hands with water and the occlusion of the skin by wearing gloves.

Hand dermatitis, as any occupational disease, has a large economic impact. Cleaning is a labour-intensive enterprise: approximately 80% of the operating costs are wages\(^9\). The turn-over of personnel and sickness absence is very high. Prevention activities, primary as well as secondary, for irritant contact dermatitis focus on reduction of (occupational) exposure to skin irritants. Reducing the risk of occupational irritant hand dermatitis will need long-lasting adjustments in professional behaviour\(^{27,28}\). The risk to the skin from exposure to irritants depends upon the quality as well as on the quantity of the exposure. Besides

