Effects of structure, morphology and heparin(-like) coatings on the tissue reaction to poly(ethylene terephthalate)

Bilsen, Paulus Hubertus Jacobus van

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
2009

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bilsen, P. H. J. V. (2009). Effects of structure, morphology and heparin(-like) coatings on the tissue reaction to poly(ethylene terephthalate) s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 21-10-2017
Appendices
ABBREVIATIONS

Ab Antibody
BARE Uncoated PET
BSA Bovine Serum Albumin
Coll III Collagen type III
DSC Differential Scanning Calorimetry
ECM Extracellular Matrix
EtO Ethylene Oxide
FBGC Foreign Body Giant Cell
FBR Foreign Body Reaction
FCS Fetal Calf Serum
FCS Fetal Calf Serum
FGF Fibroblast Growth Factor
G-CSF Granulocyte-colony Stimulating Factor
GM-CSF Granulocyte Macrophage Colony Stimulating Factor
HEP Heparin-coated PET
HP Hydroxylysyl Pyridinoline
HRP Horseradish Peroxidase
Hyl Hydroxylsine
Hyp Hydroxyproline
IgG Immunoglobulin G
IL4 Interleukin 4
IL6 Interleukin 6
IL8 Interleukin 8
IL13 Interleukin 13
LP Lysyl Pyridinoline
MIP1α Macrophage Inflammatory Protein 1 alpha
MMP Matrix metalloproteinase
MNC Mononuclear Cells
PBS Phosphate Buffered Saline
PDGF Platelet Derived Growth Factor
PEI Poly(ethylene imine)
PEO Poly(ethylene oxide)
PET Poly(ethylene terephthalate)
PMMA Poly(methyl methacrylate)
pNPP Alkaline Phosphate Yellow
PP Poly(propylene)
PTFE Poly(tetrafluoro ethylene)
PVC Poly(vinyl chloride)
RGD Arginine – Glycine – Aspartic acid
RG-PET Rough Goodfellow PET
RGTA ReGeneraTing Agent
SG-PET Smooth Goodfellow PET
TBS Tris Buffered Saline
TMB Tetramethyl Benzidine
TGA Thermogravimetric Analysis
TGFβ Transforming Growth Factor beta
TH Collagen Triple Helix
TMB Tetramethyl Benzidine
TNFα Tumor Necrosis Factor alpha
VEGF Vascular Endothelial Growth Factor
WCA Water Contact Angle
WS-PET Woven Sefar PET

COLOR FIGURES

Figure 3. Pg. 30. Chapter 3.
Visiopharm-mediated histological analysis
Slides were scanned and analyzed using Visiopharm software. First, background (white areas), muscle, fat (F), artifacts (*) and the PET implant were excluded from analysis. These areas are marked by horizontal lines. Then, blood vessels (V) were defined, as shown in red. Dark blue stained cells were defined, as shown in black (C). The relative surface area of both the blood vessels and cells was calculated.

Figure 4. Pg. 32. Chapter 3.
Thermogravimetric analysis results
The x-axis displays the increasing temperature in °C at which the different samples were weighed. The y-axis displays the weight change in % that occurred as a result of increasing temperature. A) 5G-PET and WS-PET show a clean weight drop at the same temperature. B) SB-PET has less residual weight than 5G-PET.
Figure 8. Pg. 34. Chapter 3.
ED1 Immunostaining of SG-PET, RG-PET and WS-PET
Micrographs (40x) taken from SG-PET, RG-PET and WS-PET. Red immunostaining marks ED-1 positive macrophages. The PET implants are indicated by P; macrophages are indicated by M; giants cells are indicated by G.

Figure 9. Pg. 35. Chapter 3.
Col III Immunostaining of SG-PET, RG-PET and WS-PET
Micrographs (40x) taken from SG-PET, RG-PET and WS-PET. Dark red immunostaining marks collagen type III. The PET implants are indicated by P.

Figure 10. Pg. 37. Chapter 3.
Cellular density in the tissue surrounding SG-PET and SB-PET
The acute inflammatory reaction against SG-PET and SB-PET was evaluated up to 10 days after implantation. Inflammation around SB-PET was less than around SG-PET. **p < 0.01.**
The bottom part of the figure displays micrographs (10x) taken from SG-PET and SB-PET at day 10. Red immunostaining marks ED-1 positive macrophages. The PET implants are indicated by P.

Figure 2. Pg. 60. Chapter 5. **Visiopharm-mediated histological analysis**
Slides were scanned and analyzed using Visiopharm software. Firstly, background (white areas), artifacts and the biomaterial (PET) were excluded from analysis. Then, blood vessels (BV) were defined, as shown in red. Dark blue cell nuclei were defined, shown in black. The relative surface area of both the blood vessels and cells was calculated. **A** shows a representative section before digital analysis, **B** shows the same section after analysis.
A) After plasma treatment, acrylamide and acrylic acid are polymerized onto the PET, resulting in a poly(acrylamide) graft, providing amide and carboxyl groups for further treatment. B) Poly(ethylene imine) is coated onto the acrylamide graft, after which the RGTA is covalently bound through random ring opening chemistry.

Figure 1. Pg. 58. Chapter 5. RGTA coating of poly(ethylene terephthalate) (PET)

Figure 7. Pg. 65. Chapter 5. Collagen deposition in the tissue surroundings at day 10
Micrographs (20x) taken from picrosirius red stained slides of explants at day 10. Examples of red-colored collagenous areas are indicated by arrows. Examples of PET fibers are indicated by double arrowheads. RGTA-S showed less collagen deposition compared to BARE-S. In addition, BARE-R showed less collagen than both BARE-S and BARE-H. Lastly, RGTA-R showed less collagen than any of the other samples.

Figure 8. Pg. 66. Chapter 5. Collagen deposition between the PET fibers at day 21
Micrographs (20x) taken from picrosirius red stained slides of explants at day 21. Examples of red-stained collagen sections are indicated by arrows. Examples of PET fibers are indicated by double arrowheads. RGTA-S, RGTA-H and RGTA-R showed less collagen between the PET fibers than any of the BARE samples. RGTA coating therefore prevents collagen deposition.
REFERENCES

93. Sanders JE, Rochefort JR. Fibrous encapsulation of single polymer microfibers depends on their
87. Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric
85. Di Lorenzo ML, Errico ME, Avella M. Thermal and morphological characterization of
84. Hakelius L, Ohlsen L. Tendency to capsular contracture around smooth and textured gel-filled
83. Parker JA, Walboomers XF, Von den Hoff JW, Maltha JC, Jansen JA. Soft-tissue response to
82. Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP,
Anderson JM. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic

Parker JA, Walboomers XF, Von den Hoff JW, Maltha JC, Jansen JA. Soft-tissue response to
silicone and poly-L-lactic acid implants with a periodic or random surface micropattern. J Biomed

Halhelus L, Ohlsen L. Tendency to capsular contracture around smooth and textured gel-filled

Di Lorenzo ML, Errico ME, Avella M. Thermal and morphological characterization of poly(ethylene

Cheng S, Shank RS. The crystallization kinetics of filled poly(ethylene terephthalate). Journal of
applied polymer science 1993;47(12):2149-60.

Hallab NJ, Bundy KJ, O'Connor K, Moses RL, Jacobs JJ. Evaluation of metallic and polymeric
bioimplant surface energy and surface roughness characteristics for directed cell adhesion. Tissue

Zdolek J, Eaton JW, Tang L. Histamine release and fibrinogen adsorption mediate acute

Steele JG, Johnson G, Underwood PA. Role of serum vitronectin and fibronectin in adhesion of

den Braber ET, de Ruijter JE, Ginsel LA, von Recum AF, Jansen JA. Orientation of ECM
protein deposition, fibroblast cytoskeleton, and attachment complex components on silicone

Lampin M, Warocquier C, Legris C, Degrange M, Sigot-Luizard MF. Correlation between
substratum roughness and wettability, cell adhesion, and cell migration. J Biome Mater Res

Sanders JE, Stiles CE, Hayes CL. Tissue response to single-polymer fibers of varying diameters:

Sanders JE, Rochefort JR. Fibrous encapsulation of single polymer microfibers depends on their

Sanders JE, Lamont SE, Mitchell SB, Malcolm SG. Small fiber diameter fibro-porous meshes: tissue

Regnault WF, Iengo NL, Antonucci JM, Skrict D. Amorphous calcium phosphate/urethane

Kaplan SS. Biomaterial-host interactions: consequences, determined by implant retrieval analysis.

Ongoing foreign body reaction to subcutaneous implanted (heparin) modified Dacron in rats. J

Bellon JM, Bujan J, Contreras L, Hernando A. Integration of biomaterials implanted
into abdominal wall: process of scar formation and macrophage response. Biomaterials

Desai NP, Hubbell JA. Biological responses to polyethylene oxide modified polyethylene

Desai NP, Hubbell JA. Tissue response to intraperitoneal implants of polyethylene oxide-modified

Brodbeck WG, Patel J, Voskerician G, Christenson E, Shive MS, Nakayama Y, Matsuda T, Ziats NP,
Anderson JM. Biomaterial adherent macrophage apoptosis is increased by hydrophilic and anionic

101. Rosenberg RD. Chemistry of the hemostatic mechanism and its relationship to the action of

102. Rosenberg RD, Damus PS. The purification and mechanism of action of human antithrombin-

103. Tyrell DJ, Kilsheather S, Page CP. Therapeutic uses of heparin beyond its traditional role as an

104. Elsayed E, Becker RC. The impact of heparin compounds on cellular inflammatory responses:
a construct for future investigation and pharmaceutical development. J Thromb Thrombolysis

105. Zak-Nejmark T, Krasnowska M, Jankowska R, Jutel M. Heparin modulates migration of human
peripheral blood mononuclear cells and neutrophils. Arch Immunol Ther Exp (Warsz)

107. Frommherz KJ, Faller B, Bieth JG. Heparin strongly decreases the rate of inhibition of neutrophil

108. Tamim M, Demircin M, Guvenen M, Peker O, Yilmaz M. Heparin-coated circuits reduce
complement activation and inflammatory response to cardiopulmonary bypass. Pnaminerva Med

of CD14+ monocytes into endothelial cells on degradable biomaterials. Biomaterials

complex in vitro models for multiparameter characterization of human blood-material/device

111. Duval JL, Letort M, Sigot-Luizard MF. Comparative assessment of cell/substratum static
adhesion using an in vitro organ culture method and computerized analysis system. Biomaterials

112. Sigot-Luizard MF, Lanfranchi M, Duval JL, Benslimane S, Sigot M, Guidoin RG, King MW. The
cytocompatibility of compound polyester-protein surfaces using an in vitro technique. In Vitro

113. Luck M, Paulke BR, Schroder W, Blunk T, Muller RH. Analysis of plasma protein adsorption
on polymeric nanoparticles with different surface characteristics. J Biomed Mater Res

114. Erickson HP, Fowler WE. Electron microscopy of fibrinogen, its plasmic fragments and small

115. Slayter HS. Electron microscopic studies of fibrinogen structure: historical perspectives and recent
116. Ugarova TP, Lishtso VK, Podolnikova NP, Okumura N, Merkulov SM, Yakubenko VP, Yee VC, Lord ST, Haas TA. Sequence gamma 377-395(P2), but not gamma 190-202(P1), is the binding site for the alpha MI-domain of integrin alpha M beta 2 in the gamma C-domain of fibrinogen. Biochemistry 2003;42(31):9365-73.

