Synthesis of Optically Active beta- or gamma-Alkyl-Substituted Alcohols through Copper-Catalyzed Asymmetric Allylic Alkylation with Organolithium Reagents

Guduguntla, Sureshbabu; Fañanás-Mastral, Martín; Feringa, B.L.

Published in:
Journal of Organic Chemistry

DOI:
10.1021/jo401536u

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
2013

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

Download date: 15-08-2017
Synthesis of Optically Active β- or γ-Alkyl-Substituted Alcohols through Copper-Catalyzed Asymmetric Allylic Alkylation with Organolithium Reagents

Sureshbabu Guduguntla, Martín Fañanás-Mastral,* and Ben L. Feringa*

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands

Supporting Information

ABSTRACT: An efficient one-pot synthesis of optically active β-alkyl-substituted alcohols through a tandem copper-catalyzed asymmetric allylic alkylation (AAA) with organolithium reagents and reductive ozonolysis is presented. Furthermore, hydroboration–oxidation following the Cu-catalyzed AAA leads to the corresponding homochiral γ-alkyl-substituted alcohols.

INTRODUCTION

Chiral nonracemic alcohols (and derivatives) are very important building blocks in the synthesis of numerous biologically active compounds. In particular, optically active primary alcohols bearing alkyl substitution at the β- or γ-positions are key intermediates in the total synthesis of several natural products including arundic acid,1 Lyrica,2 bongkrekic acids,3 gynnastatin A,4 and vitamins E and K.5 There are a number of methods available for the synthesis of this type of alcohol based on chiral auxiliaries6 and enzyme-catalyzed kinetic resolution of racemic compounds.7 In 1995, Negishi reported a Zr-catalyzed asymmetric carboalumination of alkenes followed by a lipase catalyzed resolution method to access these building blocks in good yields with excellent enantiomeric excess.8 The development of alternative catalytic enantioselective protocols remains an important challenge in view of the potential of these highly versatile building blocks.

Cu-catalyzed AAA is among the most powerful enantioselective C–C bond-forming reactions.9 In sharp contrast with the well-known Pd-catalyzed asymmetric allylic alkylation reaction,10 which is characterized by the use of soft and stabilized nucleophiles, Cu-catalyzed asymmetric allylic alkylation is characterized by the formation of C–C bonds with organometallic reagents, resulting in a complementary method. The reaction usually proceeds with high $S_{N}2^\#$ selectivity and provides access to a carbon stereocenter next to a terminal olefin which can readily be further functionalized. Pioneered by Bäckvall and van Koten,11 Cu-catalyzed AAA has been widely studied and its synthetic utility has been shown in the total synthesis of several natural products and biologically active compounds.12 Recently, our group reported for the first time the use of highly reactive organolithium reagents in copper-catalyzed asymmetric allylic alkylation of allyl bromides with excellent regio- and enantioselectivity using Taniaphos as a chiral ligand.13 We also implemented this methodology for both allyl bromides and chlorides in the enantioselective synthesis of tertiary and quaternary stereocenters using phosphoramidite ligands.14

Herein we present a highly enantioselective one-pot synthesis of β-alkyl-substituted alcohols through Cu-catalyzed AAA of allyl bromides with various organolithium reagents followed by a reductive ozonolysis reaction. The direct use of organolithium reagents is also extended to the synthesis of γ-alkyl-substituted alcohols through Cu-catalyzed AAA of allyl bromides with RLi reagents followed by a hydroboration oxidation reaction (Scheme 1).15

RESULT AND DISCUSSION

Our strategy is based on a tandem Cu-catalyzed AAA/reductive ozonolysis to achieve highly enantioenriched β-alkyl-substituted alcohols in a chemo-, regio-, and enantioselective one-pot operation with no racemization. Using the well-established conditions for the Cu-catalyzed AAA with organolithium reagents,13,14 we optimized the conditions for the synthesis of highly enantioenriched β-alkyl-substituted alcohols in a one-pot protocol (Table 1). We started our study with commercially
available cinnamyl bromide 1a. After Cu-catalyzed AAA of 1a,13, the reaction mixture was quenched with EtOH and purged with ozone for 20 min followed by purging with nitrogen. When 2.5 equiv of NaBH4 was added to reduce the ozonide, a mixture of desired alcohol 4a and aldehyde 5 was obtained in a 70:30 ratio (Table 1, entry 1). Doubling the amount of NaBH4 did not lead

Table 1. Optimization Conditions for the One-Pot Cu-Catalyzed Asymmetric Allylic Alkylation Followed by Reductive Ozonolysis

<table>
<thead>
<tr>
<th>entry</th>
<th>NaBH4 (x equiv)</th>
<th>4a:5 (%)</th>
<th>4a</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>70:30</td>
<td>4a</td>
<td>90:10</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>90:10</td>
<td>4a</td>
<td>90:10</td>
</tr>
<tr>
<td>3b</td>
<td>10</td>
<td>100:0</td>
<td>4a</td>
<td>90:10</td>
</tr>
</tbody>
</table>

“a”The ratio was determined by 1H NMR and GC-MS. “b”10 equiv of water was added to the reaction mixture. L1 = (+)-[(R,Rp)-Taniaphos (see Table 2).

Table 2. One-Pot Synthesis of β-Alkyl-Substituted Alcohols through Cu-Catalyzed Asymmetric Allylic Alkylation of Allyl Bromides with Organolithium Reagents Followed by Reductive Ozonolysis

<table>
<thead>
<tr>
<th>entry</th>
<th>1</th>
<th>R′</th>
<th>L</th>
<th>2.3+ (%)</th>
<th>4, yield (%)</th>
<th>4, ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>Me</td>
<td>L1</td>
<td>90:10</td>
<td>85</td>
<td>4a, 98</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>n-Bu</td>
<td>L1</td>
<td>90:10</td>
<td>60</td>
<td>4b, 99</td>
</tr>
<tr>
<td>3</td>
<td>1a</td>
<td>n-Hex</td>
<td>L1</td>
<td>88:12</td>
<td>70</td>
<td>4c, 99</td>
</tr>
<tr>
<td>4</td>
<td>1a</td>
<td>i-Bu</td>
<td>L1</td>
<td>88:12</td>
<td>70</td>
<td>4d, 84</td>
</tr>
<tr>
<td>5</td>
<td>1b</td>
<td>Me</td>
<td>L1</td>
<td>90:10</td>
<td>84</td>
<td>4e, 99</td>
</tr>
<tr>
<td>6</td>
<td>1b</td>
<td>n-Bu</td>
<td>L1</td>
<td>85:15</td>
<td>75</td>
<td>4f, 97</td>
</tr>
<tr>
<td>7</td>
<td>1b</td>
<td>n-Hex</td>
<td>L1</td>
<td>87:13</td>
<td>90</td>
<td>4g, 99</td>
</tr>
<tr>
<td>8</td>
<td>1c</td>
<td>n-Hex</td>
<td>L1</td>
<td>100:0</td>
<td>60</td>
<td>4h, 97</td>
</tr>
<tr>
<td>9</td>
<td>1c</td>
<td>Me</td>
<td>L1</td>
<td>100:0</td>
<td>30f</td>
<td>4i, 72</td>
</tr>
<tr>
<td>10</td>
<td>1d</td>
<td>n-Hex</td>
<td>L1</td>
<td>90:10</td>
<td>65</td>
<td>4j, >99:1 (dr)</td>
</tr>
<tr>
<td>11</td>
<td>1d</td>
<td>Me</td>
<td>L1</td>
<td>80:20</td>
<td>50</td>
<td>4k, >99:1 (dr)</td>
</tr>
<tr>
<td>12g</td>
<td>1e</td>
<td>n-Bu</td>
<td>L1</td>
<td>100:0</td>
<td>73</td>
<td>4l, 97</td>
</tr>
</tbody>
</table>

“a”Reactions were run on a 0.2–0.5 mmol scale using 1.2 equiv of R′Li diluted with hexane (1.5 equiv diluted with toluene in the case of MeLi) which was added over 2 h using a syringe pump to a 0.1 M solution of substrate in CH2Cl2. “+R′SN2 products was determined by GC-MS and 1H NMR analysis of a sample taken before ozonolysis. “The corresponding alcohol obtained from the Sn2 product could be separated by column chromatography unless otherwise noted (see the Experimental Section). “determined by chiral HPLC. “The low yield is due to volatility issues. “dr determined by 1H NMR. “10% of double 1,2-addition product A was isolated in this case.
to full conversion toward the desired alcohol either (Table 1, entry 2), probably due to the formation of the corresponding acetal in the reaction mixture which was hydrolyzed during the workup giving rise to aldehyde 5. In order to achieve full conversion to alcohol 4a, 10 equiv of NaBH₄ and 10 equiv of water were used to hydrolyze the acetal in situ (Table 1, entry 3). Under these conditions, no aldehyde 5 was observed, and the desired alcohol 4a was obtained in good overall yield with very high enantioselectivity (see Table 2, entry 1).

Having optimized conditions for the one-pot protocol for the synthesis of β-alkyl substituted alcohols, the scope of the reaction was examined. We employed this tandem consecutive Cu-catalyzed AAA/reductive ozonolysis protocol with organolithium reagents and allyl bromides. This one-pot protocol, based on readily available compounds, avoids the isolation of β-alkyl-substituted aldehydes in good yield 70% with very high diastereomeric ratio (anti/syn = 99:1) without affecting the integrity of the stereogenic center (Scheme 2).

Table 3. Synthesis of γ-Alkyl-Substituted Alcohols through Cu-Catalyzed Asymmetric Allylic Alkylation of Allyl Bromides with Organolithium Reagents Followed by a Hydroboration/Oxidation

<table>
<thead>
<tr>
<th>entry</th>
<th>R</th>
<th>R′</th>
<th>L</th>
<th>2:3 (%)</th>
<th>(2 + 3) yield (%)</th>
<th>6, yield (%)</th>
<th>6, ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>n-Bu</td>
<td>L1</td>
<td>90:10</td>
<td>88</td>
<td>67</td>
<td>6a, 99</td>
</tr>
<tr>
<td>2</td>
<td>1a</td>
<td>n-Hex</td>
<td>L1</td>
<td>90:10</td>
<td>86</td>
<td>74</td>
<td>6b, 99</td>
</tr>
<tr>
<td>3</td>
<td>1b</td>
<td>Me</td>
<td>L1</td>
<td>90:10</td>
<td>90</td>
<td>70</td>
<td>6c, 99</td>
</tr>
<tr>
<td>4</td>
<td>1b</td>
<td>n-Hex</td>
<td>L1</td>
<td>87:13</td>
<td>93</td>
<td>90</td>
<td>6d, 99</td>
</tr>
<tr>
<td>5</td>
<td>1f</td>
<td>Me</td>
<td>L1</td>
<td>85:15</td>
<td>81</td>
<td>75</td>
<td>6e, 81</td>
</tr>
<tr>
<td>6</td>
<td>1f</td>
<td>n-Li</td>
<td>L1</td>
<td>85:15</td>
<td>85</td>
<td>93</td>
<td>6f, 88</td>
</tr>
</tbody>
</table>

Reactions were run on a 0.2 mmol scale using 1.2 equiv of R′Li diluted with hexane (1.5 equiv diluted with toluene in the case of MeLi) which was added over 2 h using a syringe pump to a 0.1 M solution of substrate in CH₂Cl₂. Ratio of S₁₂ : S₂₂ products was determined by GC–MS and crude ¹H NMR. Calculated based on 2. Determined by chiral HPLC.

The allyl bromide 1c bearing an aliphatic bromide (BrCH₂ substituent) was converted with n-HexLi affordong alcohol 4b in 60% yield and again with excellent enantioselectivity (97% ee) (Table 2, entry 8). A decrease in the enantioselectivity was observed when 1c was treated with MeLi as an alkylating source (Table 2, entry 9). The allyl bromide 1d bearing an acetal protected chiral 1,2-diol functionality upon the tandem application with MeLi and n-HexLi provided excellent diastereoselectivity (anti/syn ratios of >99:1) (Table 2, entries 10 and 11). An ester functionality is also tolerated, and the one-pot Cu-catalyzed AAA/reductive ozonolysis of 1e led to an exclusive S₁₂' substitution that provided the desired alcohol 4l in 73% yield with 97% ee (Table 2, entry 12).

As the results summarized in Table 2 show, a highly versatile one-pot catalytic protocol to access a range of homochiral β-substituted alcohols is now available using common organolithium reagents and allyl bromides. This one-pot protocol, based on readily available compounds, avoids the isolation of the branched alkenes, which can be volatile (especially methyl-substituted compounds), thus affording better overall yields than the corresponding two step version.

It is important to note that when the Cu-catalyzed AAA followed by ozonolysis was performed of 1d with subsequent Me₃S treatment we were able to isolate the corresponding α-alkyl substituted aldehyde in good yield 70% with very high diastereomeric ratio (anti/syn = >99:1) without affecting the integrity of the stereogenic center (Scheme 2).
We also explored a similar strategy for the synthesis of highly enantioenriched \(\gamma \)-alkylated alcohols via Cu-catalyzed AAA followed by a hydroboration/oxidation reaction. First, we performed the Cu-catalyzed AAA on cinnamyl bromide \(1 \alpha \) using \(n \)-BuLi and \(n \)-HexLi. The corresponding olefins were formed in good yields of 88% and 86%, respectively, with excellent enantioselectivity. The hydroboration/oxidation reaction of these olefins using commercially available 9-BBN led to the corresponding \(\gamma \)-alkylated alcohols \(6a \) and \(6b \) in good yields (67% and 74%) without erosion of the enantiomeric excess (Table 3, entries 1 and 2). Olefins bearing a \(p \)-bromo substituent, obtained via Cu-catalyzed AAA from \(1b \), were converted in a hydroboration/oxidation sequence to the corresponding alcohols \(6c \) and \(6d \) in 70% and 90% yield, respectively, being optically pure (99% ee) (Table 3, entries 3 and 4). Allyl bromide \(1f \), bearing a benzyl ether functionality, was also subjected to the Cu-catalyzed AAA/hydroboration/oxidation sequence providing the corresponding alcohols \(6e \) and \(6f \) in good yields (75% and 93%) albeit with slightly lower enantioselectivities (81% and 88% ee, respectively) (Table 3, entries 5 and 6).

As illustrated in Scheme 3, a \(\beta \)-alkyl-substituted aldehyde can also be readily synthesized. For instance, the oxidation of the corresponding primary alcohol \(6e \) with Dess–Martin periodinane (DMP) provided aldehyde \(8 \), an important intermediate in the total synthesis of danshenspiroketal lactone.\(^{18}\)

Scheme 3. Oxidation of Primary Alcohols to Aldehydes with Dess–Martin Periodinane

![Scheme 3. Oxidation of Primary Alcohols to Aldehydes with Dess–Martin Periodinane](image)

CONCLUSIONS

In summary, we have developed a highly enantioselective synthesis of \(\beta \)-alkyl-substituted alcohols through a one-pot Cu-catalyzed asymmetric allylic alkylation with organolithium reagents followed by reductive ozonolysis. The synthesis of \(\gamma \)-alkyl-substituted alcohols was also achieved through Cu-catalyzed asymmetric allylic alkylation with organolithium reagents followed by a hydroboration oxidation. These protocols do not compromise the stereochemical integrity and provide ready access to highly valuable chiral building blocks.

EXPERIMENTAL SECTION

General Procedures. Chromatography was performed on silica gel (230–400 mesh). Thin-layer chromatography was performed on silica plates. Compounds were visualized by UV and cerium/molybdenum or potassium permanganate staining. Progress and conversion of the reaction were determined by GC–MS. Mass spectra were recorded on a mass spectrometer using an Orbitrap analyzer. \(^1H\) and \(^13C\) NMR were recorded on 400 and 100.59 MHz using CDCl\(_3\) as solvent. Chemical shift values are reported in ppm with the solvent resonance as the internal standard (CHCl\(_3\); \(\delta 7.26 \) for \(^1H\), \(\delta 77.0 \) for \(^13C\)). Data are reported as follows: chemical shifts, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, br = broad, m = multiplet), coupling constants (Hz), and integration. Optical rotations were measured on a polarimeter with a 10 cm cell (\(c \) given in g/100 mL).

Enantiomeric excesses were determined by chiral HPLC analysis using a diode array detector.

All reactions were carried out under a nitrogen atmosphere using oven-dried glassware and using standard Schlenk techniques. All the reagents, starting materials, and ligand \(L1 \) were purchased from commercial sources and used without further purification. Dichloromethane and toluene were used from the solvent purification system. \(n \)-Hexane was dried and distilled over sodium. Allyl bromides \(1b \), \(6f \), and \(1f \) were prepared following literature procedures. Phosphoramidite ligand \(L2 \) was prepared as reported in the literature.\(^{23}\)

Racemic products were synthesized by reaction of the allyl bromides \(1 \) and the corresponding organolithium reagent at \(\sim 78 \) °C in CH\(_2\)Cl\(_2\) in the presence of CuI (10 mol %) and PPh\(_3\) (20 mol %).

General Procedure for the One-Pot Synthesis of \(\beta \)-Alkyl Substituted Alcohols through Cu-Catalyzed Asymmetric Allylic Akylation of Allyl Bromides with Organolithium Reagents Followed by Reductive Ozonolysis. A Schlenk tube equipped with septum and stirring bar was charged with CuBr-SMe\(_2\) (0.01 mmol, 2.06 mg, 5 mol %) and the appropriate ligand (0.012 mmol, 6 mol %). Dry dichloromethane (2 mL) was added, and the solution was stirred under nitrogen at room temperature for 15 min. Then, allyl bromide \(1 \) (0.2 mmol) was added, and the resulting solution was cooled to \(\sim 80 \) °C. A separate Schlenk tube, the corresponding organolithium reagent (0.24 mmol, 1.2 equiv) was diluted with hexane (toluene in the case of MeLi, combined volume of 1 mL) under nitrogen and added dropwise to the reaction mixture over 2 h using a syringe pump. Once the addition was complete, the mixture was stirred for another 2 h at \(\sim 80 \) °C. The reaction was quenched with EtOH (2 mL), and then ozone was bubbled through the solution for 20 min. After being stirred for 20 min (solution stays blue), the reaction mixture was purged with nitrogen to remove excess ozone (disappearance of blue color). Sodium borohydride (75.66 mg, 2 mmol, 10 equiv) was added, followed after 10 min by the addition of H\(_2\)O (10 equiv). Subsequently, the reaction mixture was warmed to room temperature and stirred vigorously. The mixture was quenched by addition of extra water (5 mL). The layers were separated, and the aqueous layer was extracted with DCM (2 × 10 mL). The combined organic layers were dried with sodium sulfate and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using different mixtures of n-pentane/Et\(_2\)O as eluent.

Note: The \(S_2: S_2 \) ratio was determined by GC–MS analysis on a sample obtained after quenching with EtOH, which was passed through a short plug of silica gel to remove transition-metal residues. (R)-2-Phenylpropan-1-ol \((4a) \). Purification by column chromatography (SiO\(_2\), 10–30% Et\(_2\)O/pentane, gradient) afforded an inseparable mixture of \(4a \) and benzyl alcohol in the ratio of 90:10 (51 mg, yield = 85%) as a colorless oil: 98% ee, \([\alpha]_D^{24} = +5.0 \) (c = 1 in CHCl\(_3\)); \([\alpha]_D^{11} = 16.2 \) (c = 1 in CHCl\(_3\)); \(\delta \) H NMR (400 MHz, CDCl\(_3\)) \(\delta 7.42–7.18 \) (m, 5H), 4.68 (s, 2H), 3.69 (d, J = 6.8 Hz, 2H), 2.9–3.0 (m, 1H), 1.63 (s, 1H), 1.28 (d, J = 7.1 Hz, 3H); \(\delta ^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta 143.7, 140.9, 128.6, 128.5, 127.6, 127.0, 126.7, 68.5, 65.3, 42.4, 17.6; HRMS (APCI+, m/z) calc for C\(_9\)H\(_{11}\) \([M + H]^+\) = 119.08553, found 119.08549. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OB-H column, n-heptane/i-PrOH 90:10, 40 °C, 217 nm, retention times (min): 10.40 (major) and 11.11 (minor).

(R)-2-Phenylhexan-1-ol \((4b) \). Purification by column chromatography (SiO\(_2\), 5–20% Et\(_2\)O/pentane, gradient) afforded \(4b \) (25 mg, yield = 60%) as a colorless oil. 99% ee, \([\alpha]_D^{20} = -11.0 \) (c = 1 in CHCl\(_3\)); \([\alpha]_D^{11} = -18.0 \) (c = 3.73 in CHCl\(_3\)); \(\delta ^1H\) NMR (400 MHz, CDCl\(_3\)) \(\delta 7.38–7.18 \) (m, 5H), 3.79–3.68 (m, 2H), 2.82–2.72 (m, 1H), 1.75–1.65 (m, 1H), 1.62–1.51 (m, 1H), 1.49–1.11 (m, 4H), 0.84 (t, J = 7.3 Hz, 3H); \(\delta ^{13}C\) NMR (100 MHz, CDCl\(_3\)) \(\delta 142.5, 128.6, 128.1, 126.7, 67.4, 48.7, 31.8, 29.5, 22.7, 14.0; HRMS (APCI+, m/z) calc for C\(_9\)H\(_{11}\) \([M + H]^+\) = 161.13248, found 161.13245. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OD-H column, n-heptane/i-PrOH 95:5, 40 °C, 220 nm, retention times (min): 13.51 (major) and 14.17 (minor).
(R)-2-Phenyl octan-1-ol (4c). Purification by column chromatography (SiO₂, 5–20% Et₂O/pentane, gradient) afforded 4c (33 mg, yield = 70%) as a colorless oil: 99% ee, [α]₂⁰°D = −14.2 (c = 1 in CHCl₃); [lit.²⁸ (S)-enantomer (92% ee): [α]₂⁰°D = +15.1 (c = 0.99 in CHCl₃)]; 1H NMR (400 MHz, CDCl₃) δ 7.37–7.18 (m, 5H), 3.81–3.66 (m, 2H), 2.82–2.72 (m, 1H), 1.77–1.63 (m, 1H), 1.62–1.50 (m, 1H), 1.34–1.11 (m, 1H); 13C NMR (100 MHz, CDCl₃) δ 142.5, 128.6, 128.0, 126.6, 67.4, 38.2, 30.1, 29.7, 23.7, 22.6, 14.0; HRMS (APCI+, m/z) calcld for C₁₀H₁₈O [M + H⁺] = 163.1328 found 163.1328. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OJ-H column, n-heptane/-i-PrOH 95:5, 40 °C, 220 nm, retention times (min): 10.63 (major) and 11.33 (minor).

(R)-4-Methyl-2-phenylpentan-1-ol (4d). Purification by column chromatography (SiO₂, 5–20% Et₂O/pentane, gradient) afforded 4d (30 mg, yield = 70%) as a colorless oil: 84% ee, [α]₂⁰°D = −10.2 (c = 1 in CHCl₃); 1H NMR (400 MHz, CDCl₃) δ 7.38–7.19 (m, 1H), 3.76–3.64 (m, 2H), 2.95–2.84 (m, 1H), 1.64–1.51 (m, 1H), 1.49–1.36 (m, 3H), 0.86 (t, J = 6.7 Hz, 6H); 13C NMR (100 MHz, CDCl₃) δ 142.4, 128.6, 128.1, 126.7, 68.0, 46.4, 41.1, 25.2, 23.5, 21.8; HRMS (APCI+, m/z) calcld for C₁₁H₂₁O [M + H⁺] = 161.13284, found 161.13284. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OD-H column, n-heptane/-i-PrOH 95:5, 40 °C, 212 nm, retention times (min): 12.26 (major) and 13.04 (minor).

(R)-2-(4-Bromo phenyl) propan-1-ol (4e). Purification by column chromatography (SiO₂, 10–20% Et₂O/pentane, gradient) afforded an inseparable mixture of 4e and p-bromobenzyl alcohol in a ratio of 9:1 (40:10) (27 mg, yield = 84%) as a colorless oil: 99% ee, [α]₂⁰°D = −8.6 (c = 1 in CHCl₃); 1H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 7.11 (d, J = 8.5 Hz, 2H), 4.64 (s, 2H), 3.72–3.62 (m, 2H), 2.96–2.86 (m, 1H), 1.25 (d, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl₃) δ 142.7, 139.8, 131.6, 131.6, 129.2, 128.6, 121.4, 120.4, 68.4, 64.5, 41.9, 17.5; HRMS (APCI+, m/z) calcld for C₁₁H₁₀Br [M + H⁺] = 209.06904, found 209.06904. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OB-H column, n-heptane/-i-PrOH 95:5, 40 °C, 224 nm, retention times (min): 14.37 (minor) and 14.9 (major).

(R)-2-(4-Bromo phenyl) hexan-1-ol (4f). Purification by column chromatography (SiO₂, 10–20% Et₂O/pentane, gradient) afforded 4f (34 mg, yield = 75%) as a colorless oil: 97% ee, [α]₂⁰°D = −13.8 (c = 1 in CHCl₃); 1H NMR (400 MHz, CDCl₃) δ 7.45 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 3.77–3.64 (m, 2H), 2.78–2.68 (m, 1H), 1.80–1.60 (m, 1H), 1.58–1.45 (m, 1H), 1.38–1.04 (m, 1H), 0.84 (t, J = 7.1 Hz, 3H); 13C NMR (100 MHz, CDCl₃) δ 141.6, 131.7, 129.8, 120.4, 67.4, 42.8, 31.6, 29.4, 22.7, 13.9; HRMS (APCI+, m/z) calcld for C₁₁H₁₂Br [M + H⁺] = 239.04261. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel AD-H column, n-heptane/-i-PrOH 95:5, 40 °C, 230 nm, retention times (min): 15.04 (major) and 16.01 (minor).

(R)-2-(4-Bromo phenyl) octan-1-ol (4g). Purification by column chromatography (SiO₂, 10–20% Et₂O/pentane, gradient) afforded 4g (25 mg, yield = 80%) as a colorless oil: 97% ee, [α]₂⁰°D = −23.0 (c = 1 in CHCl₃); [lit.²⁹ (94% ee): [α]₂⁰°D = −24 (c = 0.4 in CHCl₃)]; 1H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 7.3 Hz, 2H), 7.56 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.9 Hz, 2H), 5.20–5.12 (m, 1H), 3.85–3.71 (m, 2H), 2.29 (br s, 1H), 1.82–1.62 (m, 2H), 1.47–1.29 (m, 4H), 0.90 (t, J = 7.0 Hz, 3H); 13C NMR (100 MHz, CDCl₃) δ 166.9, 133.1, 130.2, 129.7, 128.4, 64.9, 30.4, 27.5, 22.6, 13.9; HRMS (APCI+, m/z) calcld for C₁₂H₂₁O [M + H⁺] = 245.11482, found 245.11461. Enantiomeric excess was determined by chiral HPLC analysis, Chiralcel OB-H column, n-heptane/-i-PrOH 95.5:4.5, 40 °C, 225 nm, retention times (min): 15.08 (major) and 15.91 (minor).

General Procedure for the Synthesis of γ-Alkyl-Substituted Alcohols through Cu-Catalyzed Asymmetric Allylic Alkylation of Allyl Bromides with Organolithium Reagents Followed by a Hydroboration/Oxidation. To a solution of the alkenyl (0.2 mmol) in dry THF (1 mL) was added 9-BBN in THF (0.5 M, 0.6 mmol, 3 equiv), and the mixture was stirred at room temperature for 2 h. Then the mixture was cooled to 0 °C, ethanol (2.0 mL), an aq. solution of NaOH (6.0 M, 1.2 mL), and H₂O₂ (30% in water, 4 mL) were added. The reaction was quenched with an aqueous solution of Na₂SO₄ (5 mL) and the mixture extracted with dichloromethane (3 × 5 mL). The organic layer was dried with MgSO₄ and filtered and the solvent evaporated in vacuo. The crude product was purified by flash chromatography on silica gel using various mixtures of n-pentane/ Et₂O as eluent.

(R)-2-Phenyl octan-1-ol (6a). Purification by column chromatography (SiO₂, 5–20% Et₂O/pentane, gradient) afforded 6a (29 mg, yield = 67%) as a colorless oil: 99% ee, [α]₂⁰°D = −1.6 (c = 1 in CHCl₃); [lit.²⁹ (94% ee): [α]₂⁰°D = −1.28 (c = 1.02 in CHCl₃)]; 1H NMR (400 MHz, CDCl₃) δ 7.30–7.05 (m, 5H), 3.52–3.37 (m, 2H), 2.68–2.58 (m, 1H), 1.97–1.85 (m, 1H), 1.83–1.70 (m, 1H), 1.69–
General procedure for the One-Pot Synthesis of α-Alkyl-Substituted Aldehydes through Cu-Catalyzed Asymmetric Allylic Alkylation of Allyl Bromides with Organolithium Reagents Followed by Ozonolysis. A Schlenk tube equipped with septum and stirring bar was charged with CuBr·SMe2 (0.01 mmol, 2.06 mg, 5 mol %) and the appropriate ligand (0.012 mmol, 6 mol %). Dry dichloromethane (2 mL) was added, and the solution was stirred under nitrogen at room temperature for 15 min. Then, allyl bromide 1 (0.2 mmol) was added, and the resulting solution was cooled to −80 °C. In a separate Schlenk flask, the corresponding organolithium reagent (0.24 mmol, 1.2 equiv) was diluted with hexane (toluene in the case of MeLi, combined volume of 1 mL) under nitrogen, and the solution was added dropwise to the reaction mixture over 2 h using a syringe pump. Once the addition was complete, the mixture was stirred for another 2 h at −80 °C. The reaction was quenched with EtOH (2 mL) and ozone was bubbled for 20 min through the reaction mixture. After being stirred for 20 min (solution stays blue), the reaction mixture was purged with nitrogen (disappearance of blue color). Dimethyl sulfide (0.08 mL, 1 mmol, 5 equiv) was added and the mixture was allowed to warm to room temperature while stirred overnight. The reaction mixture was concentrated in vacuo. The crude product was purified by flash chromatography on silica gel using different mixtures of n-pentane/EtO as eluent.

Note: The S2-S\textsubscript{2} ratio was determined by GC–MS analysis on a sample obtained after quenching with EtOH, which was passed through a short plug of silica gel to remove transition metal residues.

General procedure for the Synthesis of β-Alkyl-Substituted Aldehydes through the Oxidation of γ-Alkyl-Substituted Primary Alcohols with Dess–Martin Periodinane. To a stirred suspension of Dess–Martin periodinane (99 mg, 0.24 mmol, 1.2 equiv) and NaHCO\textsubscript{3} (33 mg, 0.39 mmol, 3 equiv) in dichloromethane (2 mL) at 0 °C was added dropwise a solution of the alcohol (25 mg, 0.13 mmol, 1 equiv) in 1 mL of dichloromethane. The reaction mixture was stirred at 0 °C for 2 h, silica gel was added, and the solvents were removed in vacuo. The crude mixture was purified by flash chromatography on silica gel using different mixtures of n-pentane/EtO as eluent.

Supporting information

General procedure for the synthesis of benzoate ester of the alcohols 4h and 4i. 1H and 13C NMR spectra and HPLC analysis for new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

ASSOCIATED CONTENT
AUTHOR INFORMATION

Corresponding Author
*E-mail: b.l.feringa@rug.nl, m.fananas.mastral@rug.nl.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support from The Netherlands Organization for Scientific Research (NWO-CW, NSF program), the National Research School of Catalysis (NRSC-C), and the Ministry of Education, Culture and Science (Gravity Program 024.001.035) is gratefully acknowledged. We thank M. Smith (GC and HPLC) and T. D. Tiemersma-Wegman (HRMS) (University of Groningen) for technical assistance.

REFERENCES

(15) For the construction of optically active bifunctional building blocks through Cu-catalyzed AAA with Grignard reagents, see: van Zijl, A. W.; López, F.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2007, 72, 2558.