Voice Prosthetic Biofilm Formation and *Candida* Morphogenic Conversions in Absence and Presence of Different Bacterial Strains and Species on Silicone-Rubber

Henny C. van der Mei1*, Kevin J. D. A. Buijssen2*, Bernard F. A. M. van der Laan2, Ekatarina Ovchinnikova1, Géssinda I. Geertsema-Doornbusch1, Jelly Atema-Smit1, Betsy van de Belt-Gritter1, Henk J. Busscher1

1 University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, the Netherlands, 2 University of Groningen and University Medical Center Groningen, Department of Otorhinolaryngology and Head and Neck Surgery, Groningen, the Netherlands

Abstract

Morphogenic conversion of *Candida* from a yeast to hyphal morphology plays a pivotal role in the pathogenicity of *Candida* species. Both *Candida albicans* and *Candida tropicalis*, in combination with a variety of different bacterial strains and species, appear in biofilms on silicone-rubber voice prostheses used in laryngectomized patients. Here we study biofilm formation on silicone-rubber by *C. albicans* or *C. tropicalis* in combination with different commensal bacterial strains and lactobacillus strains. In addition, hyphal formation in *C. albicans* and *C. tropicalis*, as stimulated by Rothia dentocariosa and lactobacilli was evaluated, as clinical studies outlined that these bacterial strains have opposite results on the clinical life-time of silicone-rubber voice prostheses. Biofilms were grown during eight days in a silicone-rubber tube, while passing the biofilms through episodes of nutritional feast and famine. Biofilms consisting of combinations of *C. albicans* and a bacterial strain comprised significantly less viable organisms than combinations comprising *C. tropicalis*. High percentages of *Candida* were found in biofilms grown in combination with lactobacilli. Interestingly, *L. casei*, with demonstrated favorable effects on the clinical life-time of voice prostheses, reduced the percentage hyphal formation in *Candida* biofilms as compared with *Candida* biofilms grown in absence of bacteria or grown in combination with *R. dentocariosa*, a bacterial strain whose presence is associated with short clinical life-times of voice prostheses.

Editor: Tom Coenye, Ghent University, Belgium

Received February 6, 2014; Accepted July 10, 2014; Published August 11, 2014

Copyright: © 2014 van der Mei et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was entirely funded by the University Medical Center Groningen, Groningen, The Netherlands. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: h.c.van.der.mei@umcg.nl

* Current address: Albert Schweitzer Hospital, Dordrecht, the Netherlands

Introduction

Verbal communication in patients after laryngectomy can be restored (Figure 1) by placing a silicone-rubber voice prosthesis into a surgically created puncture between the trachea and esophagus [1]. By closing the stoma with a finger, air from the lungs can be forced through the silicone-rubber valve to produce tissue vibration and accompanying voice. In the non-sterile environment of the esophagus, valves sides of voice prostheses become rapidly colonized by microorganisms, leading to increased airflow resistance or leakage of food and liquid [2], which results in frequent replacements of prostheses. *Candida albicans* and *Candida tropicalis* are regarded as the main fungal species in voice prosthetic biofilms, and seldom exist alone in a biofilm. Next to *Candida* species, several other bacterial members of the commensal oral and skin flora of the host have been detected in voice prosthetic biofilms [1,3], mainly comprising streptococci, staphylococci and lactobacilli. Clearly, these commensal have easy access to prosthesis site. Recently it was shown that the diversity (i.e. number of bacterial species detected) of pathogens detected on voice prostheses correlated positively with the diversity of pathogens in the oral cavity [4].

An important aspect of *Candida* pathogenicity [5] is the morphogenic conversion between yeast and filamentous forms of hyphal growth [6]. Hyphae have been associated with the invasive characteristics of *Candida* species and their growth into silicone-rubber, when exposed to cycles of feast and famine [7]. A mature biofilm on a voice prosthetic surface consists of densely packed *Candida* and bacteria, embedded within a matrix of exopolysaccharides [8] with a high degree of interspecies interaction [9] and co-adhesion occurring on a spatio-temporal basis. The presence of bacteria is essential for the integrity of voice prosthetic biofilms [10] and like in the oral cavity, metabolic cooperation among the organisms may be of importance to the establishment of stable biofilm communities [11]. Interestingly, combinations of different bacterial strains, like *Rothia dentocariosa* with *C. albicans* have
been associated with a clinical life-time of voice prostheses lower than average, while combinations with lactobacilli have been suggested to prevail in prostheses with extended clinical life-times [1,3]. It is currently unknown why certain combinations of bacteria with Candida are more or less harmful than others.

The aim of this study was to investigate early biofilm formation on silicone-rubber by combinations of Candida (C. albicans or C. tropicalis) with different commensal bacterial strains and strains of lactobacilli. In addition, hyphal formation in C. albicans and C. tropicalis, as stimulated by R. dentocariosa or lactobacilli was evaluated, as clinical studies outlined that these bacterial strains have opposite results on the life-time of silicone-rubber voice prostheses in vivo [1,3]. All strains and species used in this study, except the lactobacilli, were originally isolated from biofilms on explanted voice prostheses.

Materials and Methods

Silicone-rubber

Commercially available silicone-rubber tubes (inner diameter 4.0 mm) were used (Rubber B.V., Hilversum, The Netherlands). Silicone-rubber surfaces were characterized by water contact angles, taken at 25°C using the sessile drop (3 μL) technique and a homemade counter monitor. This monitor registers the contour of a liquid droplet based on grey value thresholding, after which contact angles are calculated from the height and base width of a droplet.

Biofilm Formation

Two yeast strains (C. albicans GB 13/4A and C. tropicalis GB 9/9) and seven bacterial strains (Staphylococcus aureus GB 2/1, Staphylococcus epidermidis GB 9/6, Streptococcus salivarius GB 24/9, R. dentocariosa GB 52/2B, Lactobacillus casei ATCC 393, Lactobacillus acidophilus ATCC 4356 and Lactobacillus crispatus ATCC 33820) were selected for this study. All strains, except for the lactobacilli, were clinical isolates from biofilms on voice prosthesis. Yeast and bacteria were cultured in a mixture of 30% brain heart infusion broth (OXOID, Basingstoke, UK) and 70% defined yeast medium (per liter: 7.5 g glucose, 3.5 g (NH₄)₂SO₄, 1.5 g L-asparagine, 10 mg L-histidine, 20 mg DL-methionine, 20 mg DL-tryptophane, 1 g KH₂PO₄, 500 mg MgSO₄·7H₂O, 500 mg NaCl, 500 mg CaCl₂·2H₂O, 100 mg yeast extract, 500 μg H₃BO₃, 400 μg ZnSO₄·7H₂O, 120 μg Fe(III)Cl₃, 200 μg Na₂MoO₄·2H₂O, 100 μg KI, 40 μg CuSO₄·5H₂O). Each strain was grown overnight at 37°C for 24 h. Subsequently, cultures of a yeast and bacterial strain were mixed in one to one volume ratio and comprised approximately 3×10⁷ yeast per mL and 2×10⁹ bacteria per mL. The resulting dual species suspension was used for biofilm growth (see also Table 1).

Biofilms were grown in silicone-rubber tubes and maintained at a temperature between 36°C and 37°C during an experiment [1]. To grow biofilms, the silicone-rubber tubes were filled for 5 h with the dual species suspension. After 5 h, adhering bacteria and yeast were allowed to grow into a biofilm on the silicone-rubber tubes during three days, by filling the tubes with growth medium. From day four till day seven, the tubes were perfused three times a day with 250 mL phosphate buffered saline (10 mM potassium phosphate and 150 mM sodium chloride, pH 6.8). Subsequently, the tubes were left in the moist environment. At the end of each day, the tubes were filled with growth medium during 30 min and left overnight in the moist environment of the drained tubes (see Figure 2A). This cycle of feast and famine was performed in order to mimic the pattern of eating and drinking of a patient and found necessary to stimulate ingrowth of hyphae into the silicone rubber (see also Figure 2B).

Evaluation of Biofilms: Amount of Biofilm

On day eight of the experiment, the silicone-rubber tubes were removed to assess the number of colony forming yeast and bacteria [1]. To this end, tubes were cut open and biofilms were removed by cotton swabs and sonication in Reduced Transport Fluid (per liter: NaCl 0.9 g, (NH₄)₂SO₄ 0.9 g, KH₂PO₄ 0.45 g, MgSO₄ 0.19 g, K₂HPO₄ 0.43 g, EDTA 0.37 g, L-Cysteine HCl 0.2 g, pH 6.8), after which the resulting suspension was serially dilution.
diluted and plated on MRS (de Man, Rogosa and Sharpe) agar for yeast and blood agar for bacteria. Plates were incubated at 37°C in an aerobic incubator for 3 days prior to enumeration. In case of combinations with lactobacilli, the resulting suspension was plated on MRS plates with incubation in 5% carbon dioxide incubator, while Candida strains were plated on Sabouraud agar plates (incubation at 26°C).

In order to demonstrate the presence of a biofilm in the silicone-rubber tubes, biofilms were imaged using optical coherence tomography (OCT) and confocal laser scanning microscopy (CLSM). OCT allowed in situ imaging of biofilms within the silicone-rubber tubes without additional staining or sectioning using a spectral domain OCT (Ganymade, Thorlabs Inc., Munich, Germany) with an axial resolution of 5.8 μm and a lateral resolution of 8 μm. CLSM images were collected using a Leica TCS-SP2 CSLM (Leica Microsystems Heidelberg GmbH, Heidelberg, Germany) after taking transversal sections from the silicone-rubber tube. Sections were placed on a microscope glass slide and biofilm stained by live/dead stain (BacLight™, Molecular probes Europe BV) for 30 min in the dark, after which images were taken.

Evaluation of Biofilms: Hyphal Induction by Selected Bacterial Strains

Biofilms grown with combinations of *Candida* and *R. dentocariosa* or *lactobacilli*, were further examined immediately after suspending of the biofilm in RTF. The resulting microbial suspension was analyzed using phase-contrast microscopy in order to determine the percentage of fungi in a yeast or hyphal morphology after observing 500 *Candida* cells in total in one experiment.

Table 1. Total number of CFU/cm² (*Candida* and bacteria) grown on silicone-rubber in an eight day time period after inoculation with a combination of *C. albicans* or *C. tropicalis* and a commensal bacterial strain or a lactobacillus strain, together with the percentage prevalence of the yeast in the final biofilm.

<table>
<thead>
<tr>
<th>C. albicans combined with</th>
<th>Total CFUs (10⁶/cm²)</th>
<th>C. albicans (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No bacteria</td>
<td>455 ± 20.6⁹</td>
<td>100⁰</td>
</tr>
<tr>
<td>Rothia dentocariosa</td>
<td>4.4 ± 0.4⁹</td>
<td>1.1 ± 0.2⁹</td>
</tr>
<tr>
<td>Strepctococcus salivarius</td>
<td>3.5 ± 0.3⁹</td>
<td>15.7 ± 2.0⁹</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>17.0 ± 1.3⁴</td>
<td>3.2 ± 0.1⁴</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>0.2 ± 0.1⁴</td>
<td>3.4 ± 2.6⁷⁶</td>
</tr>
<tr>
<td>Lactobacillus casei</td>
<td>5.0 ± 0.5⁹</td>
<td>45.4 ± 6.8⁸</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>1.3 ± 0.3⁹</td>
<td>74.7 ± 25.9⁶</td>
</tr>
<tr>
<td>Lactobacillus crispatus</td>
<td>0.9 ± 0.1⁴</td>
<td>36.5 ± 6.1⁹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. tropicalis combined with</th>
<th>CFU (10⁹/cm²)</th>
<th>C. tropicalis (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No bacteria</td>
<td>19 ± 8⁴</td>
<td>100⁰</td>
</tr>
<tr>
<td>Rothia dentocariosa</td>
<td>50 ± 5⁴</td>
<td>0.3 ± 0.1³</td>
</tr>
<tr>
<td>Strepctococcus salivarius</td>
<td>9 ± 1⁴</td>
<td>0.6 ± 0.1³</td>
</tr>
<tr>
<td>Staphylococcus epidermidis</td>
<td>47 ± 3⁸</td>
<td>5.4 ± 0.5⁷</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>280 ± 70⁸</td>
<td>0.3 ± 0.1³</td>
</tr>
<tr>
<td>Lactobacillus casei</td>
<td>200 ± 30⁷</td>
<td>27.2 ± 6.1⁹</td>
</tr>
<tr>
<td>Lactobacillus acidophilus</td>
<td>62 ± 10⁶⁴</td>
<td>8.9 ± 2.1⁸</td>
</tr>
<tr>
<td>Lactobacillus crispatus</td>
<td>15 ± 3⁴</td>
<td>34.9 ± 10.5⁸</td>
</tr>
</tbody>
</table>

During the growth period, biofilms were exposed to nutritional feast and famine. All results are from triplicate experiments with separate microbial cultures and are presented ± SD. a = b = c = d = e = f at p<0.05 analyzed per column and separately for *C. albicans* and *C. tropicalis*.

Statistical Analysis

All experiments were done in triplicate and data were compared using a Student t-test, accepting p<0.05 as statistically significant.

Results

Water contact angles on the silicone-rubber tubing amounted 110±1 degrees, attesting to the hydrophobic nature of the material and corresponding with water contact angles on medical-grade silicone-rubber voice prostheses [12].

Examples of OCT and CLSM images of biofilms grown with different combinations of yeast and bacteria are shown in Figure 3. Note that biofilms consisting of a combination of *C. tropicalis* with *L. crispatus* are thicker than observed for a combination of *C. albicans* with *R. dentocariosa* regardless of the technique applied, although biofilms thicknesses obtained using OCT do not match numerically with those from CLSM. This is most likely related with the fact that tubes with biofilm were sectioned for CLSM, while OCT was done on in situ biofilms. Moreover, CLSM requires staining.

Table 1 summarizes the total numbers of CFU/cm² of the mixed species biofilm on the silicone-rubber tubes. In general, biofilms consisting of combinations of *C. albicans* with a bacterial strain comprised significantly less viable organisms than *C. albicans* biofilms grown in the absence of bacteria. *C. tropicalis* on the other hand, showed a higher number of viable organisms when grown in combination with a bacterial strain, except when grown in combination with *S. salivarius*. The percentage of *Candida* present in biofilms grown in combination with *lactobacilli*, was systematically higher than when grown in combination with other commensal bacterial strains. In general, biofilms comprising *C. tropicalis* harvested higher numbers of viable
organisms than when *C. albicans* was involved, in line with the biofilm thicknesses observed using OCT and CLSM (compare Figure 3 and Table 1).

In *C. albicans* biofilms however, growth in presence of *R. dentocariosa* significantly stimulated hyphal formation (see Table 2), while especially *L. casei* significantly suppressed morphogenetic conversion of *C. albicans* to its hyphal form. In *C. tropicalis* biofilms, we did not see a significant stimulation by *R. dentocariosa* on hyphal formation, while *L. casei* reduced hyphal formation.

Discussion

The clinical life-time of silicone-rubber voice prostheses varies over extremely wide ranges within different laryngectomized patients. Sub-division of 692 failed voice prostheses into a short lifetime group (implantation-period less than 4 months) and an extended lifetime group (implantation-period over 9 months) revealed that *R. dentocariosa* and *C. albicans* and *C. tropicalis* were predominant strains in the short lifetime group. In the extended lifetime group *R. dentocariosa* was found with a fourfold...
lower isolation frequency and C. albicans was found with a twofold lower isolation frequency [3]. In a separate study, it was shown that daily consumption of a fermented milk containing L. casei yielded an increased prosthesis lifetime by a factor of 3.76 as compared to a historical control in the same group of patients [13]. In the present study, we only find a significant reduction in C. albicans hyphal formation for L. casei with respect to Candida growth in absence of bacteria, while for C. tropicalis reductions observed are not statistically significant. For C. albicans however, the percentage hyphal formation when grown in presence of L. casei is tenfold lower (statistically significant at p<0.05) than when grown in presence of R. dentocariosa. A similar comparison exists for C. tropicalis but is not statistically significant. Thus we conclude that R. dentocariosa stimulates morphogenic conversion in Candida toward a hyphal morphology, coinciding with short clinical life-times of voice prostheses from which R. dentocariosa was isolated [3]. In addition it is concluded that especially L. casei reduces hyphal formation in Candida, which coincides with clinical observations that the consumption of a fermented milk with L. casei extends the clinical life-time of voice prostheses in laryngectomized patients [13]. These conclusions are based on relatively small differences in hyphal formation. However, these differences were established over a time period of only eight days, whereas the above clinical observations were made over a period of several months to years. Likely, larger effects will develop over time. Moreover, a small number of hyphae may be sufficient to grow into the silicone-rubber and the close proximity of Candida and bacteria in pockets created in silicone-rubber [16] will enhance the effects of bacterial presence on morphogenic conversion of Candida. Since hyphal ingrowth is a major factor in the strong binding of initial Candida biofilms to silicone-rubber [16,17], biofilm maturation after initial adhesion does not necessarily have to involve Candida in its hyphal morphology. This is in line with the high percentages of Candida prosthetic biofilms, morphogenic conversions in Candida biofilms depend on the bacterial strain present, corresponding with effects on the clinical life-time of the prostheses.

The percentage hyphae in Candida biofilms grown in absence of bacteria amounts 0.7% to 3.0% (see Table 2). Other studies, in which Candida biofilms were grown in serum demonstrate much higher percentages of hyphae up to 100%, which is due to the hyphal transforming activity in serum associated with the signaling molecules prostaglandin and thromboxane [15]. Also the periods of nutritional feast and famine applied in the current study to mimic the conditions in the oropharynx more closely, may have a reducing effect on morphogenic conversions in Candida. More importantly, interactions between Candida and lactobacilli have been described to regulate Candida morphogenesis and therewith its virulence and invasiveness. Short chain fatty acids produced by different strains of lactobacilli (L. casei, Lactobacillus paracasei and Lactobacillus rhamnosus) inhibited hyphal formation, as well as culture supernatants of lactobacilli and live lactobacilli [15]. In the present study, we presented different strains of Candida biofilms grown in absence of Candida, with demonstrated favorable effects on Candida growth in absence of bacteria, while for C. tropicalis reductions observed are not statistically significant. For C. albicans however, the percentage hyphal formation when grown in presence of L. casei is tenfold lower (statistically significant at p<0.05) than when grown in presence of R. dentocariosa. A similar comparison exists for C. tropicalis but is not statistically significant.

Table 2. Percentage hyphae occurring in Candida biofilms grown in the absence or presence of selected bacterial strains on silicone-rubber in an eight day time period.

<table>
<thead>
<tr>
<th>Candida combined with</th>
<th>C. albicans (% hyphae)</th>
<th>C. tropicalis (% hyphae)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No bacteria</td>
<td>0.7± 0.8</td>
<td>3.0</td>
</tr>
<tr>
<td>R. dentocariosa</td>
<td>1.9± 0.8</td>
<td>2.1± 1.8</td>
</tr>
<tr>
<td>L. casei</td>
<td>0.2± 0.1</td>
<td>1.6± 1.3</td>
</tr>
<tr>
<td>L. acidophilus</td>
<td>0.7± 0.3</td>
<td>2.0± 1.4</td>
</tr>
<tr>
<td>L. crispatus</td>
<td>0.5± 0.2</td>
<td>2.6± 3.0</td>
</tr>
</tbody>
</table>

During the growth period, biofilms were exposed to nutritional feast and famine. All results are from triplicate experiments with separate microbial cultures and are presented ± SD. Data are normalized with respect to the average percentage of hyphae in Candida biofilms grown in absence of bacteria. a=b at p<0.05.

doi:10.1371/journal.pone.0104508.g003
in biofilms grown in the presence of lactobacilli, despite low conversions to the hyphal morphology (compare Tables 1 and 2).

Acknowledgments

Authors like to thank B. de Vries for her technical assistance.

References

Figure 4. Association between yeast and lactobacilli in an in vivo formed biofilm on a voice prosthesis. Overlay images of a biofilm from an explanted voice prosthesis (life time 318 days) hybridized with the FITC-labelled EUK516 probe indicating all yeasts (with hyphae) and Cy3-labelled Lab158 probe illustrating presence of lactobacilli. The high magnification panel on the right clearly shows the association of lactobacilli (red) and yeasts (green). Bars equal 20 μm and 5 μm for the left and right panels, respectively. Taken with permission from [14].

doi:10.1371/journal.pone.0104508.g004

Author Contributions

Conceived and designed the experiments: HM KB BL EO HB. Performed the experiments: KB EO BBG GGD JAS. Analyzed the data: HM KB EO GGD JAS BBG BL HB. Wrote the paper: HM KB BL HB. Editing of final paper: HM KB EO GGD JAS BBG BL HB.