
Allott K & Redman J (2007) Are there sex differences associated with the effects of ecstasy/3,4-methylenedioxymethamphetamine (MDMA)? *Neurosci Biobehav Rev* (31) 327-347.

Bankson MG & Cunningham KA (2002) Pharmacological studies of the acute effects of (+)-3,4-methylenedioxymethamphetamine on locomotor activity: role of 5-HT(1B/1D) and 5-HT(2) receptors. *Neuropsychopharmacology* (26) 40-52.

REFERENCE LIST

REFERENCES

Colado MI, Granados R, O'Shea E, Esteban B, Green AR (1999b) The acute effect in rats of 3,4-methylenedioxyethamphetamine (MDEA, "eve") on body temperature and long term degeneration of 5-HT neurones in brain: a comparison with MDMA ("ecstasy"). *Pharmacol Toxicol* (84) 261-266.

methyleneoxymethylamphetamine (MDMA) is toxic to neurons in the rat brain. *J Pharmocol Exp Ther* **241** 338-345.

Dafters RI (1994) Effect of ambient temperature on hyperthermia and hyperkinesis induced by 3,4-methylenedioxymethamphetamine (MDMA or "ecstasy") in rats. *Psychopharmacology (Berl)* **114** 505-508.

Dafters RI & Lynch E (1998) Persistent loss of thermoregulation in the rat induced by 3,4-methylenedioxymethamphetamine (MDMA or "Ecstasy") but not by fenfluramine. *Psychopharmacology (Berl)* (138) 207-212.

REFERENCE LIST

Esteban B, O'Shea E, Camarero J, Sanchez V, Green AR, Colado MI (2001) 3,4-Methylenedioxyamphetamine induces monoamine release, but not toxicity, when administered centrally at a concentration occurring following a peripherally injected neurotoxic dose. *Psychopharmacology (Berl)* (154) 251-260.

REFERENCES

Leonardi ET & Azmitia EC (1994) MDMA (ecstasy) inhibition of MAO type A and type B: comparisons with fenfluramine and fluoxetine (Prozac). Neuropsychopharmacology (10) 231-238.

REFERENCE LIST

McCreary AC, Bankson MG, Cunningham KA (1999) Pharmacological studies of the acute and chronic effects of (+)-3, 4-methylenedioxymethamphetamine on locomotor activity: role of 5-hydroxytryptamine(1A) and 5-hydroxytryptamine(1B/1D) receptors. *J Pharmacol Exp Ther* (290) 965-973.

REFERENCE LIST

MDMA on the serotonergic system and hippocampal cell proliferation in 5-HTT knock-out vs. wild-type mice. *Int J Neuropsychopharmacol* 1-14.

Rusyniak DE, Ootsuka Y, Blessing WW (2008) When administered to rats in a cold environment, 3,4-methylenedioxyamphetamine reduces brown adipose tissue thermogenesis and increases tail blood flow: Effects of
pretreatment with 5-HT(1A) and dopamine D(2) antagonists. *Neuroscience* (154) 1619-1626.

Shankaran M, Yamamoto BK, Gudelsky GA (1999a) Involvement of the serotonin transporter in the formation of hydroxyl radicals induced by 3,4-methylenedioxymethamphetamine. Eur J Pharmacol (385) 103-110.

Shankaran M, Yamamoto BK, Gudelsky GA (1999b) Mazindol attenuates the 3,4-methylenedioxymethamphetamine-induced formation of hydroxyl radicals and long-term depletion of serotonin in the striatum. J Neurochem (72) 2516-2522.

Shankaran M, Yamamoto BK, Gudelsky GA (2001) Ascorbic acid prevents 3,4-methylenedioxymethamphetamine (MDMA)-induced hydroxyl radical formation and the behavioral and neurochemical consequences of the depletion of brain 5-HT. Synapse (40) 55-64.

REFERENCE LIST

REFERENCE LIST

REFERENCE LIST

