mTHPC mediated PDT of Head and Neck Cancer
Modifying pharmacokinetics using liposomal drug carriers

Sebastiaan A.H.J. de Visscher
mTHPC mediated PDT of Head and Neck Cancer
Modifying pharmacokinetics using liposomal drug carriers

thesis

Sebastiaan A.H.J. de Visscher
The research presented in this thesis was performed at the Department of Oral and Maxillofacial Surgery, University Medical Center Groningen and at the Centre of Optical Diagnostics and Therapy, Erasmus University Medical Center Rotterdam, The Netherlands.

Disclosure
SAHJ de Visscher states that no commercial funding was received to perform the research presented in this thesis.

Bookdesign: Sgaar Groningen
Printed by: Drukkerij van der Eems Heerenveen
© Sebastiaan de Visscher, 2013
Promotores:
Prof. dr. J.L.N. Roodenburg
Prof. dr. ir. H.J.C.M. Sterenborg

Copromotores:
Dr. M.J.H. Witjes
Dr. D.J. Robinson
Dr. A. Amelink

Paranimfen:
J.R.G.M. de Visscher
drs. L.R. Bouwer

Beoordelingscommissie:
Prof. dr. J.A. Langendijk
Prof. dr. V. Vander Poorten
Prof. dr. L.E. Smeele
Chapter 1
Introduction

Chapter 2
Evaluation of mTHPC mediated photodynamic therapy in clinical treatment of head and neck squamous cell carcinoma

Chapter 2.1
mTHPC mediated photodynamic therapy of squamous cell carcinoma in the head and neck: a systematic review

Chapter 2.2
mTHPC mediated photodynamic therapy of early stage oral squamous cell carcinoma: a comparison to surgical treatment

Chapter 3
Comparison of mTHPC fluorescence pharmacokinetics between liposomal mTHPC drug-carrier systems and free mTHPC

Chapter 3.1
Fluorescence localization and kinetics of mTHPC and liposomal formulations of mTHPC in the window-chamber tumor model

Chapter 3.2
In vivo quantification of photosensitizer fluorescence in the window-chamber tumor model using dual wavelength excitation and near infrared imaging

Chapter 3.3
Localization of liposomal mTHPC formulations within normal epithelium, dysplastic tissue, and carcinoma of oral epithelium in the 4NQO-carcinogenesis rat model

Chapter 4
Non-invasive mTHPC tissue concentration measurements

Chapter 5
Summary, general discussion and future perspectives

Chapter 6
Samenvatting

List of abbreviations

Dankwoord

Curriculum Vitae
Chapter 1

Introduction
Cancer of the head and neck

Head and neck cancer has a world wide estimated incidence of more than half a million in 2002, with approximately 350,000 patients dying of this disease each year. In the Netherlands, head and neck cancer is the 7th most common cancer for men (3.8%) and the 9th most common cancer for women (2.0%) with a total incidence of almost 3000 in 2011 (source: IKKNL 2013). Of these malignancies, 90% are squamous cell carcinomas (SCCs) of the mucosal lining of the upper aerodigestive tract. These tumors usually develop in elderly patients after a life long period of smoking and or consuming large amounts of alcohol. Tobacco and alcohol are the most important risk-factors for developing head and neck squamous cell carcinoma (HNSCC); a combination of both has a synergistic effect. In the last decade it became apparent that the human papillomavirus (HPV) can also induce HNSCC, increasingly affecting young non-smokers. Treatment strategies are based on tumor factors, patient factors and physician factors. Tumor factors affecting treatment choice are the size of the primary tumor, the presence of metastases, previous treatments and the presence and depth of disruptive growth into surrounding tissues. Classification of HNSCC is performed using the American Joint Committee on Cancer (AJCC) and the Union for International Cancer Control (UICC) staging systems. The standard treatment regime for patients with early stage (stage I/II) HNSCC is surgery and/or radiotherapy, both with similar cure rates. Most often surgery is preferred because radiotherapy side effects can be avoided and histopathological staging can be obtained. For more advanced head and neck neoplasms (stage III/IV), treatment options consists of combinations of surgery, radiotherapy and chemotherapy.

Unfortunately, these standard treatments often induce toxicities, anatomical defects and loss of normal organ function, affecting quality of life. A major challenge in the treatment of cancers within the anatomical constraints of the head and neck region, is obtaining a high cure rate while preserving its vital structures and functions. This is further complicated as continuous exposure of the mucosa to smoking and alcohol induces multiple (pre)malignant lesions in this condemned mucosa. It has been suggested that photodynamic therapy (PDT) could be an alternative, local treatment option for both patients with early and advanced stages of HNSCC.

Photodynamic therapy

As a treatment modality, light has been used in ancient societies to treat various skin diseases. In more recent history, Finsen was awarded the Nobel prize in 1903 for “phototherapy” in which he used ultraviolet sun light to treat cutaneous tuberculosis and red light to decrease formation of small-pox pustules. In that same year, Tappeiner and Je-
quality of life after mTHPC mediated PDT in HNSCC patients treated with palliative intent. Besides palliative treatment, mTHPC mediated PDT is also used as an alternative curative treatment for patients with early stage superficial HNSCC, supposedly with similar efficacy and decrease of treatment related morbidity. Although mTHPC mediated PDT seems promising, it is associated with long drug-light intervals and prolonged skin photosensitivity at the injection site. Despite possible advantages of using PDT in HNSCC, the role of mTHPC mediated PDT in treatment of HNSCC is currently not clear. Most of the literature regarding PDT of HNSCC provides insight in mechanisms of PDT and treatment results. However, the efficacy of PDT in relation to the standard treatment regimes or morbidity is seldom reported.

Mechanism of action

When photosensitizers absorb light of a PS-specific wavelength, the absorbed photons transform the PS from its ground state S_0 via a short-lived excited singlet state S_1 to the excited singlet state S_n. The PS can return to its singlet state by either 1) emitting the absorbed energy as light of a lower energy and red-shifted (Stokes-Lommel’s law) compared to the excitation light (fluorescence) or 2) transform into an excited triplet state T_1. The excited triplet state can undergo a type I reaction whereby it reacts with a nearby substrate (molecules) and transfer electrons to form radicals which interact with oxygen to form oxygenated products (Figure 1). Alternatively a for PDT favored type II reaction can occur, in which direct transfer of energy (electrons) to oxygen O_2 forms a highly reactive singlet oxygen species (ROS) O_2^*.

The oxygen-dependent type I and II reactions occur simultaneously, the ratio depends on the type of photosensitizer, its concentration, drug-light interval, tissue oxygenation and the light fluence (rate). For mTHPC a high quantum yield for singlet oxygen production is known. Due to the short-half life and high reactivity of singlet oxygen, the tumor is destroyed by a combination of direct cell death, a response mediated by the innate immune system is described following PDT induced local inflammation.

Figure 1. Modified Jablonski diagram; excitation by light of a photosensitizer in its ground state (S_0) takes it to a short lived excited state (S_1) from which internal conversion (IC) takes it to its excited singlet state (S_n). This excited molecule may undergo intersystem crossing (ICS) to an excited triplet state (T_1) subsequently, either a type I or a type II reaction can occur. The induced tissue damage is predominantly achieved by the type II reaction in which energy is transferred to molecular oxygen (O_2) to form cytotoxic singlet oxygen (O_2^*).

Liposomes as photosensitizer carriers

Although mTHPC is described as a potent PS, it is hydrophobicity leads to poor water solubility and aggregation of mTHPC molecules. Therefore, mTHPC molecules have a tendency to aggregate under physiological conditions (vasculature) in which it is less photoactive. In general, aggregation of PS’s result in lower fluorescence and triplet-state quantum yields (T_1). Consequently a decreased quantum yield of singlet oxygen and a decreased photosensitizing efficiency follows. Furthermore, the aggregated form of mTHPC is described with a rapid uptake by the mononuclear phagocyte system (MPS), decreasing the amount of mTHPC available for uptake in tumor tissue. For these reasons, improved delivery and solubilisation of mTHPC by using drug-carrier systems is the subject of numerous studies.
for encapsulation and delivery of drugs. Over the last two decades, studies on water-soluble liposomes as drug carrier systems reported increased uptake in tumor and enhancement of therapeutic efficacy at a decreased drug dose, thus lowering toxicity of the encapsulated drug \(^6\). Therefore, encapsulation of mTHPC in liposomes has been performed to improve water solubility, prevent aggregation effects, prolong circulation time and increase mTHPC uptake in tumor. Macromolecules such as liposomes allow selective, passive accumulation in tumor tissue by the enhanced permeability and retention (EPR) effect (figure 2) \(^6\). Tumor tissue is characterized by enhanced vascular permeability due to its fast angiogenesis. Moreover, tumor tissue lacks a functional lymphatic system and macromolecules are thus retained after extravasation from its vasculature. Two liposomal mTHPC formulations that have been developed by Biolitec AG are Foslip® and Fospeg® \(^23\). In contrast to Foslip, the surface of the liposomes used in Fospeg is coated by a hydrophilic polymer to decrease recognition by the MPS and thus increase circulation time favoring the EPR effect \(^69\). Previous studies suggest that liposomal formulations will yield an earlier, higher availability of mTHPC in tumor tissue. However, there is a substantial lack of data to compare the kinetics of these liposomal mTHPC formulations to Foscan in (pre-clinical) animal tumor models over several days.

Measuring photosensitizer pharmacokinetics using fluorescence

Despite fixed light fluence and administered drug dose, differences in clinical PDT response may occur due to biological inter- and intra-subject variations \(^59\). The dose delivered during PDT (deposited PDT dose) is depended on the influence of tissue optical properties on delivered fluence (rate), uptake of photosensitizer and tissue oxygenation \(^71\). For instance, oxygen depletion during treatment of oxygen deprived tumor tissue, oxygen depletion due to high fluence rates or failed intravenous administration of the PS can result in suboptimal results. Therefore, insight at the complex and interdependent dynamic interactions of oxygen, light fluence (rate) and photosensitizer concentration during therapy (dosimetry) could be beneficial to optimize PDT \(^72\). The concentration and differences in distribution of a PS between tumor and surrounding normal tissue is clearly an important parameter for PDT efficacy. In principle, photosensitizer fluorescence, although unproductive from a treatment point of view since it does not cause tissue damage, gives information on the spatial distribution and is related to both the biological activity and the concentration of the PS \(^23,72\). Therefore, non-invasive and in vivo fluorescence measurements allow for monitoring PS concentrations in tissue \(^74\).

A major challenge in biomedical optics is quantitative measurement of emitted fluorescence intensity as it is influenced by tissue optical properties, background fluorescence, tissue thickness variations and geometric factors of the excitation and detection source. Tissue influences the optical photon pathlength (light propagation) by way of tissue optical properties; scattering and absorption \(^71\). The scattering coefficient (\(\mu_s\)) of tissue is dependent on different refractive indexes between various cell and tissue components within
tissue. The absorption coefficient (μa) of tissue is related to the concentration of chromophores (e.g., melanin, bilirubin, beta-carotene, haemoglobin, water, fat) in tissue. In the visible part of the spectrum (400-700 nanometers) oxy- and deoxy-haemoglobin are the dominant absorbing molecules in tissue. Appropriate correction for these factors is important to obtain accurate information on fluorescence intensity and PS concentration in tissue. Interpretation of corrected fluorescence measurement should be done with care as fluorescence emission from a PS is influenced by its environment; aggregating and binding of the PS, changes in microenvironment and photobleaching. Photobleaching occurs when a fluorophore such as a PS loses the ability to fluoresce due to photon-induced photodestruction. Photobleaching is commonly termed “fading” of a fluorophore.

Our group developed fluorescence differential path-length spectroscopy (fDPS) as a non-invasive tool to quantify microvascular oxygen saturation and photosensitizer concentration in tissue during excitation of mTHPC. fDPS is based on differential pathlength spectroscopy (DPS) which features photons pathlength contributing to a differential reflectance signal that is relatively insensitive to expected variations in tissue optical properties over a small sampling volume. In previous research, we were able to show that fDPS can be used to measure the Foscan concentration in vivo in rat liver. In contrast to the relative homogenous liver tissue, clinically more relevant tissue of the oral cavity is optically more heterogeneous and even keratinized at some locations. Reliable in vivo, non-invasive mTHPC concentration measurements of tissue, could give some insight at the complex interdependent processes that is PDT. Furthermore, mTHPC concentration measurements combined with measurements of tissue physiology could guide clinical decision making on the choice of PDT parameters; fluence (rate) and drug-light interval needed.

Outline of this thesis

This thesis contains the results of our various studies describing the available literature on mTHPC mediated PDT for clinical treatment of HNSCC (chapter 2), the influence of two liposomal drug carrier systems on mTHPC biodistribution and (chapter 3) the performance of non-invasive fluorescence differential spectroscopy to measure mTHPC concentration in lip and tongue tissue (chapter 4).

The level of evidence on mTHPC mediated PDT was investigated and described in chapter 2.1 by performing an extensive systematic review of the literature up to 2012. This review was done to provide insight in the efficacy of PDT, used protocols, associated morbidity and the possible role of mTHPC mediated PDT in treatment of HNSCC. In chapter 2.2 a comparison between mTHPC mediated PDT and transoral surgery for early stage oral SCC is described. PDT patients were included from several multi-center studies while the surgically treated patients were included from our hospital database. The aim of this study was to obtain some comparative data on PDT versus surgery, as efficacy of PDT in relation to the standard treatment regimes is seldom reported.

In chapter 3.1 the influence of liposomal encapsulation of mTHPC on bioavailability was studied in the window-chamber rat model. This model allows for careful examination of photosensitizer fluorescence in vasculature, normal and (implanted) tumor tissue up to 96 hours after injection. To improve the quality of our data, we tried to correct for small changes in the thickness of tissue and to partially correct for changes in tissue optical properties by developing a ratiometric correction method, as described in chapter 3.2.

Chapter 3.3 describes the uptake of the different mTHPC formulations in both dysplastic and tumor tissue, compared to the uptake in normal oral mucosa. For this purpose, the 4-nitroquinoline-1-oxide (4NQO) oral carcinogenesis rat model was used. This model induces pre-malignant and malignant oral mucosa and is known to mimic the development of oral epithelial dysplasia in humans. By correlating mTHPC fluorescence to the dysplasia grade of the oral mucosa, a possible relation was investigated. This enabled us to grade oral tissue as normal, cancerous or precancerous in tissue exposed to the carcinogen. Moreover, a possible enhanced uptake of mTHPC in precancerous tissue could be studied. Furthermore, more in-depth analysis of mTHPC formulation specific biodistribution is possible in this induced tumor model.

In chapter 4 the mTHPC concentration of the different mTHPC formulations in tissue measured by in vivo fDPS was compared to the “gold standard” chemical extraction. Therefore, fDPS was tested in the clinically more relevant but optically heterogeneous oral mucosa as previous research showed encouraging performance in relatively homogeneous liver tissue. To determine the influence of liposomal encapsulation on fDPS performance, liver measurements were performed as well. The aim was to test if fDPS could be a non-invasive, in vivo real time instrument to measure local mTHPC concentration in optically challenging tissue.

Chapter 5 contains the summary and the general discussion while chapter 6 contains the Dutch summary.
References

Evaluation of mTHPC mediated photodynamic therapy in clinical treatment of head and neck squamous cell carcinoma
Chapter 2.1

mTHPC mediated photodynamic therapy of squamous cell carcinoma in the head and neck: a systematic review

This chapter is an edited version of:
Sebastiaan A.H.J. de Visscher, Pieter U. Dijkstra, I. Bing Tan, Jan L.N. Roosenburg, Max J. H. Witjes. mTHPC mediated Photodynamic therapy (PDT) of Squamous Cell Carcinoma in the head and neck: a systematic review.
Oral Oncology 2013; 49(3): 192-210
Introduction

Head and neck cancer has a world wide estimated incidence of 484,000 in 2002, with 262,000 patients dying of this disease. Of these malignancies, 90% are squamous cell carcinomas (SCCs) arising from the lining of the oral cavity/pharynx. The standard treatment regime for patients with early stage (stage I/II) head and neck squamous cell carcinomas (HNSCC) is surgery or radiotherapy.

For more advanced head and neck neoplasms (stage III/IV), treatment options consists of combinations of surgery, radiotherapy and chemotherapy. For recurrent or metastatic locoregional disease the only likely curative option is salvage surgery with or without re-irradiation. When the tumor is not resectable, re-irradiation alone or in combination with chemotherapy could be a possibility. For palliative care, several chemotherapeutic agents are available without one being the standard of care.

A major challenge in treatment of cancers in the head and neck region, is obtaining a high cure rate while preserving its vital structures and functions. Unfortunately, surgery and radiotherapy often induce anatomical defects, loss of normal function and toxicities affecting quality of life. These side effects are often more pronounced in certain anatomical locations and in the treatment of recurrent or second primary tumors located in previously operated/irradiated fields. Treatment regimes using platinum-based compounds are associated with severe acute and late toxicities.

It has been suggested that photodynamic therapy (PDT) could be an alternative, local treatment option for both patients with early stage HNSCC and for patients with advanced HNSCC who exhausted all treatment options. PDT is described with limited scarring and limited loss of function after treatment without complicating other (future) treatments.

Abstract

Background and objective. Photodynamic Therapy (PDT) is used in curative and palliative treatment of head and neck squamous cell carcinoma. To evaluate available evidence on the use of mTHPC (Foscan®) mediated PDT, we conducted a review of the literature.

Materials and Methods. A systematic review was performed by searching 7 bibliographic databases on database specific mesh terms and free text words in the categories; “head and neck neoplasms”, “Photodynamic Therapy” and “Foscan”. Papers identified were assessed on several criteria by two independent reviewers.

Results. The search identified 566 unique papers. Twelve studies were included for our review. Six studies reported PDT with curative intent and 6 studies reported PDT with palliative intent, of which 3 studies used interstitial PDT. The studies did not compare PDT to other treatments and none exceeded level 3 using the Oxford levels of evidence. Pooling of data (n=301) was possible for 4 of the 6 studies with curative intent. T1 tumors showed higher complete response rates compared to T2 (86% vs 63%). PDT with palliative intent was predominantly used in patients unsuitable for further conventional treatment. After PDT, substantial tumor response and increase in quality of life was observed. Complications of PDT were mostly related to non-compliance to light restriction guidelines.

Conclusion. The studies on mTHPC mediated PDT for head and neck squamous cell carcinoma are not sufficient for adequate assessment of the efficacy for curative intent. To assess efficacy of PDT with curative intent, high quality comparative studies are needed. Palliative treatment with PDT seems to increase the quality of life in otherwise untreatable patients.

Chapter 2.1
Current literature regarding PDT of HNSCC provides insight in mechanisms of PDT and treatment results. However, efficacy of the therapy in relation to the standard treatment regimes or level of evidence is seldom reported. Therefore, the purpose of this study was to systematically review literature on effects of mTHPC mediated PDT of HNSCC for curative and palliative treatment.

Materials and methods

Literature search
A literature search was performed in seven bibliographical databases using a combination of “head and neck neoplasms”, “photodynamic therapy” and “Foscan” in free text words, synonyms and database specific controlled vocabulary terms (Mesh and EMTREE) (table 1). No language or study type restrictions or other limits were implemented in our search. To check for unknown papers, the reference lists of the obtained papers were searched and “experts” were consulted for studies not identified in the search. To capture new publications (appearing after September 2011), the initial search was supplemented by monthly updates from PubMed throughout the project ending in June 2012.

Selection and assessment of relevant studies
The electronic and manual search results were imported into a RefWorks® database and duplicate citations were removed. Two reviewers (SV and MW) independently assessed titles and available abstracts of the papers retrieved from the searches on predefined inclusion and exclusion criteria (table 2). If inclusion criteria could not be assessed from the title or abstract, a full text analysis was performed against the criteria. After assessment, inter-observer agreement was calculated and a meeting was held to discuss discrepancies and to reach consensus. Following the first selection, the full text of the included papers was assessed independently by two observers (SV and MW) according to nineteen criteria specifically designed for this study (table 3). The authors involved in the development of the assessment criteria were 2 oral and maxillofacial surgeons specialized in oncology (JR and MW) and a clinical epidemiologist (PD). The criteria were scored on a dichotomous scale (yes or no) and inter-observer agreement was calculated. Of the assessment criteria, 9 were regarded as essential for further inclusion (table 3). Two papers were translated out of French by a native French speaker and one was read in German in order to assess quality. A consensus meeting was held between the observers to discuss discrepancies in assessment. Furthermore, the level of evidence provided by each study was assessed according to the Levels of Evidence of the Oxford Centre for Evidence-based Medicine, enabling comparisons across different study designs.

Data extraction
Systematic data extraction of the included papers was performed (SV) and was checked for

Table 1. Search Strategy.

#1 head and neck neoplasms or head cancer or neck cancer or head neoplasms or neck neoplasms Or head cancers or neck cancers
#2 photochemotherapy or photobiology or phototherapy or (Light induced) or light-induced or photochemotherapies or photodynamic therapy or photodynamic therapies or PDT
#3 mesoporphyrin or mesoporphyrins or foscan or mthpc or m-thpc or (meta tetrahydroxyphenyl chlorin) or meso-tetra-hydroxyphenyl-chlorin or (meso-tetra (hydroxyphenyl) chlorin) or temoporfin
#4 #1 and #2 and #3 (In PUBMED AND WEB OF SCIENCE)
#5 photodynamic therapy or photodynamic therapies or pdt or photochemotherapy or photochemotherapies or photobiology or phototherapy or (light and induced) or light induced
#6 head and neck neoplasms or mouth tumor or head tumor or neck tumor or mouth cancer or head Cancer or neck cancer
#7 temoporfin or porphyrin or porphyrins or foscan or mthpc or m-thpc or metatetrahydroxyphenyl chlorin or meso-tetra-hydroxyphenyl-chlorin or meso-tetra (hydroxyphenyl)chlorin
#8 #5 and #6 and #7 (In EMBASE)
#9 head and neck cancer AND (photodynamic therapy or photochemotherapy) (In INSPEC)
#10 meta tetrahydroxyphenyl chlorin or meso-tetra-hydroxyphenyl-chlorin or meso-tetra (hydroxyphenyl)chlorin or mesoporphyrines or mesoporphyrin or porphyrins or m-thpc or temoporfin or mthpc or foscan or photosensitizing agents
#11 head and neck neoplasms or head and neck cancer or head cancer or neck cancer or Neoplasms or neck neoplasms or mouth cancer or oropharynx cancer
#12 photodynamic therapies or photodynamic therapy or pdt or photochemotherapy or photochemotherapies
#13 #10 AND #11 AND #12 (In ACADEMIC SEARCH PREMIER AND CINAHL)
#14 photochemotherapy or photodynamic therapy or PDT
#15 #10 AND #11 AND #14 (in COCHRANE CENTRAL)
accuracy (MW). The datasheet used to collect information is based upon the 19 assessment criteria and incorporated information on the purpose and methods of a study (table 4).

Qualitative

Possible outcome measures were tumor response of the target lesion, local disease free survival (LDFS), survival, quality of life and adverse events. Tumor response was defined as “complete” when evidence of local eradication of the treated tumor was presented or was categorized as complete response (CR) according to RECIST (Response Evaluation Criteria In Solid Tumors) criteria or WHO (World Health Organization) criteria. LDFS was defined as time in months from the day of treatment resulting in CR to the date of first local relapse (recurrence, 2nd cancer) or end of follow-up. Overall survival (OS) was defined as percentage of patients who did not die, irrespective of cause of death. Survival was calculated in months from the day of treatment to the date of death or date of last known status. Definition of change in quality of life was possible by means of the University of Washington Quality of Life Questionnaire (UW-QOL), by the Quality of Life Questionnaire (QLQ) on head and neck cancer of the European Organisation for Research and Treatment of Cancer (EORTC) or by study specific instruments. Adverse events were defined as complications arising as a direct result of the treatment used, further specified into transient events or events requiring treatment.

Table 2. Criteria for including studies. Criteria were scored on a dichotomous scale.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Inclusion criteria</th>
<th>Exclusion criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study design</td>
<td>case series (n=10)</td>
<td>single case reports (n=1)</td>
</tr>
<tr>
<td></td>
<td>review</td>
<td>(review</td>
</tr>
<tr>
<td>Participants</td>
<td>humans</td>
<td>animal studies</td>
</tr>
<tr>
<td></td>
<td>in vitro studies</td>
<td></td>
</tr>
<tr>
<td>Tumor histology</td>
<td>squamous cell carcinoma</td>
<td></td>
</tr>
<tr>
<td>Tumor location</td>
<td>lip or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oral cavity or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>oropharynx or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>hypopharynx or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>nasopharynx</td>
<td></td>
</tr>
<tr>
<td>Intervention</td>
<td>Photodynamic therapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mTHPC (Foscan)</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Assessment of papers on essential criteria (red) and quality criteria (black). X = did not adhere to criteria. 1 = did adhere to criteria. For inclusion in our review studies had to fulfill all essential criteria.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of tumor location according to ICD-10</td>
<td>X</td>
</tr>
<tr>
<td>Description of tumor histology</td>
<td>X</td>
</tr>
<tr>
<td>Description of prior treatment</td>
<td>X</td>
</tr>
<tr>
<td>Measurement of (maximum) tumor-depth or volume by</td>
<td>X</td>
</tr>
<tr>
<td>MRI, CT, US</td>
<td>X</td>
</tr>
<tr>
<td>Measurement of follow-up</td>
<td>X</td>
</tr>
<tr>
<td>Description of tumor-response in % or according</td>
<td>X</td>
</tr>
<tr>
<td>to RECIST</td>
<td>X</td>
</tr>
<tr>
<td>Description of tumor size by T-stadium or</td>
<td>X</td>
</tr>
<tr>
<td>measurements</td>
<td>X</td>
</tr>
<tr>
<td>Description of NM-status or stage</td>
<td>X</td>
</tr>
<tr>
<td>Description of gender in numbers or percentages</td>
<td>X</td>
</tr>
<tr>
<td>of patients</td>
<td>X</td>
</tr>
<tr>
<td>Description of number of patients</td>
<td>X</td>
</tr>
<tr>
<td>Description of mean/median (range) age of patients</td>
<td>X</td>
</tr>
<tr>
<td>Description of number of PDT treatments</td>
<td>X</td>
</tr>
<tr>
<td>Description of treatment-related complications</td>
<td>X</td>
</tr>
</tbody>
</table>
Quantitative
Careful assessment of included studies on treatment characteristics and patient inclusion was performed to assess possible pooling of data. Of studies that could be meaningfully combined, original study databases were obtained. To exclude any double patient entries into the pooled database, similarities in patient/tumor characteristics like hospital number, date of treatment, gender and date of birth were carefully checked for between databases. To provide data on outcomes of interest information on tumor size, tumor location (oral cavity/oropharynx, nasopharynx, lip), follow-up time, treatment outcome, LDFS and OS were included in the pooled database.

Statistical analysis
Inter-observer agreement regarding inclusion and assessment of studies was calculated using Cohen’s kappa (κ). Descriptive statistics and 95% confidence interval (CI) were calculated according to standard procedures [52]. Differences in outcomes were analyzed using χ² tests. Survival curves were constructed using the Kaplan-Meier method. Differences in curves were analyzed using the log-rank test (Mantel-Cox). All tests were conducted at a 2-sided significance level of 5% in PASW statistics 18 software package (SPSS inc.) or Graphpad Prism® (software version 5.0).

Results
Results of the search and selection process
The literature search yielded a total of 566 unique citations (appendix I), of which 22 papers were considered eligible for critical appraisal (figure 1). After appraisal using the assessment criteria (table 3), 7 papers were excluded from analysis (appendix II). During the selection process, the inter-observer agreement (Cohen’s κ) for inclusion criteria and assessment criteria were respectively 0.79 and 0.76. For both the use of inclusion and assessment criteria, no third party adjudication was required for reaching consensus. Following full-text analysis of the 15 remaining studies, a further three studies were excluded. Two studies were excluded as a majority of included patients had no HNSCC [53,54]. The third study to be excluded revealed extensive overlap of data with a more recent paper [46,53]. Eventually, the search and selection process culminated in 12 papers included for our review.

Table 4. Datasheet used to extract information from selected studies.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Description of information collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cancer</td>
<td>Histology, stage of disease, tumor depth, location</td>
</tr>
<tr>
<td>Patients</td>
<td>Number of patients, age, gender, prior treatment, indication for treatment</td>
</tr>
<tr>
<td>PDT</td>
<td>Foscan dose, administration, drug-light interval, illumination dosage, number of PDT treatments</td>
</tr>
<tr>
<td>Study</td>
<td>Follow-up, study type (case series, cohort studies, clinical trials), centers involved, retrospective or prospective</td>
</tr>
<tr>
<td>Outcomes</td>
<td>Complete/ partial/ no response, recurrence, overall survival</td>
</tr>
<tr>
<td>Adverse events</td>
<td>Transient / requiring further treatment</td>
</tr>
</tbody>
</table>

Total search results = 662 papers
Search results
- MEDLINE n = 78
- EMBASE n = 504
- CINAHL n = 8
- WEB OF SCIENCE n = 52
- INSPEC n = 10
- CENTRAL n = 1
- ACADEMIC SEARCH PREMIER n = 5

Search updates = 4 papers
Duplicates = 96 papers
Titles and abstracts reviewed
Excluded = 526 citations
- Did not fulfill inclusion criteria
Full text analysis = 40 studies
Excluded = 18 studies
- Did not fulfill inclusion criteria
Assessment = 22 studies
Excluded = 7 studies
- Did not fulfill 9 essential criteria
Assessment = 15 studies
Excluded = 3 studies
- Overlap of data
- No differentiation according to tumor type/location
Included studies = 12

Figure 1. Algorithm of study selection.
Transient events:
- Pain injection site: 11 patients (11%)
- Phototoxicity reactions: 24 patients (19%)

Tumor response
- ≤ 8.1 months (median)

Survival
- Overall survival:
 - CR: 11.1 months (median)
 - Non-CR: 7.1 months (median)

1-year survival rate:
- CR: 73%
- Non-CR: 32%

QOL improvement week 1 – 16 (UW-QOL):
- Overall: 64/122 (53%) Sufficient spot &

Cohort study
- Prospective
- Consecutive
- 1998 - 2000
- 29 centers

Follow-up:
- Week 1, 2, 4, 6, 8, 12/16
- > Week 16–1 year: every 3 months

Phototoxicity reactions: 3 patients (9%)

Length:
- Events requiring further treatment:
 - Not reported

Quality of life assessment:
- WHO-criteria

Tumor response assessment:
- ≥ UW-QOL at baseline

Protocol:
- ≥ 0.5 cm normal tissue
- 4 cm: multiple spots
- Surface illumination 0.15 mg/kg mTHPC i.v.
- 96 hours drug-light interval
- 652 nm laser-light
- Dose: 20 J./cm²
- Intensity: 100 mW/cm²
- 200 seconds

Tumors
- 1 session (100%)

CR: 21 (60%)
PR: 10 (29%)
No response: 4 (11%)

CR T1: 12/12 (100%)
CR T2: 10/20 (50%)
CR T3/4: 0/3 (0%)

Recurrence free Survival:
- Male: 93
- Female: 35

Overall survival:
- 11.3 months (median)

Follow-up:
- Mean age: 58 years (range: 27 – 96)
- 17.3 months (median)

CR: 62.4%
PR: 30%
NR: 25%

Quality of life assessment:
- WHO-criteria
- EORTC at baseline
- > week 8: every 4 weeks
- ≥ 3 illumination spots

Level of evidence
- 3

Inclusion criteria
- Single tumor: 11 patients (99%)
- Multiple tumors: 6 patients (5%)
- Prior treatment:
 - Not all tumors were evaluable for different outcomes. Specified in paper.
- Karnofsky score: 60–100% (median)
- No diseases exacerbated by light
- Tumor size:
 - ≤ 6 cm
 - Tumor depth:
 - ≤ 10 mm
 - ≥ 10 mm
 - Tumor site:
 - Oral cavity: 4 (11%)
 - Oropharynx: 21 (60%)
 - Hypopharynx: 5 (14%)
 - Larynx: 1 (3%)
 - Nasofarynx: 1 (3%)
 - Skin: 3 (9%)

Surgery: 88 (69%)
Radiotherapy: 113 (88%)
Chemotherapy: 50 (39%)

Quality of life improvement (EORTC):
- Week 16: 33 – 70%

Note:
- Not all tumors were evaluable for different outcomes. Specified in paper.
Table 5b. Summary of studies describing interstitial PDT with palliative intent.

<table>
<thead>
<tr>
<th>Study authors</th>
<th>Cancer type</th>
<th>Patients</th>
<th>PDT treatment</th>
<th>Study design</th>
<th>Outcomes</th>
<th>Treatment related adverse events</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lou R, Jager H (2004)</td>
<td>Squamous cell carcinoma: 33 (73%) Adenoid cystic carcinoma: 3 (7%) Other: 20 (40%)</td>
<td>Male: 28 Female: 17 Median age: 58 years (range: 8 – 84)</td>
<td>Intestinal illumination: 0.15 mg/kg mTHPC i.v. 96 hours drug-light interval. Dose: 20 J per site. Intensity: 100 mW/cm² 200 seconds.</td>
<td>Cohort-study Prospective consecutive July 1997 – December 2002 7 center</td>
<td>Overall survival: 24 (45%) 17 months: 6 (13%) Median: 6 (13%)</td>
<td>Not reported</td>
<td>3</td>
</tr>
</tbody>
</table>

| Jerjes W, Uplete I (2011) | Squamous cell carcinoma: 20 (95%) Adenoid cystic carcinoma: 1 (5%) Neoplasms: 21 | Male: 15 Female: 6 Median age: 65 years (range: 48 – 88) | Intestinal illumination: 0.15 mg/kg mTHPC i.v. 96 hours drug-light interval. Dose: 100 J per site. Intensity: 100 mW/cm² 300 seconds. | Case series Retrospective 2003 – 2010 3 centers | Tumor response: Reduced size ≥ 50%: 5 (25%) Reduced size ≤ 25%: 2 (10%) No change: 3 (16%) Progressive disease: 3 (16%) | Not reported | 3 |

| Karakalloukou E, Nyström L (2012) | Squamous cell carcinoma (100%) | Male: 13 Female: 7 Median age: 64 years (range: 55 – 90) | Intestinal illumination: 0.15 mg/kg mTHPC i.v. 96 hours drug-light interval. Dose: 30 J/cm² /site. Intensity: 100 mW/cm² 300 seconds. | Case series Retrospective 2003 – 2010 3 centers | Tumor response: Reduced size ≥ 50%: 5 (25%) Reduced size ≤ 25%: 2 (10%) No change: 3 (16%) Progressive disease: 3 (16%) | Not reported | 4 |

“Note: Only 73% of included patients have SCC. Only 66% of included patients have a tumor located in oropharynx or oral cavity. 16% of patients were treated with curative intent for their recurrent/persistent tumor. Phototoxic reaction reactions: 1 patient (2%). Adverse events requiring further treatment: Major bleeding: 1 patient (2%).
Table 5c: Summary of studies describing PDT with curative intent.

<table>
<thead>
<tr>
<th>Study authors</th>
<th>Cancer type</th>
<th>Patients</th>
<th>PDT treatment</th>
<th>Study design</th>
<th>Outcomes</th>
<th>Treatment related adverse events</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kubler A, de Carpentier (2001)</td>
<td>Squamous cell carcinoma</td>
<td>Neoplasms: 23</td>
<td>Protocol: Surface illumination 0.10 mg/kg mTHPC u. 96 hours drug-light interval. 652 nm laser-light. Dose: 20 J/cm². Intensity: 100 mW/cm². 200 seconds.</td>
<td>Cohort study</td>
<td>Tumor response</td>
<td>Overall: CR 23 (96%)</td>
<td>3</td>
</tr>
<tr>
<td>- 180/241</td>
<td></td>
<td>Depth: 5 mm</td>
<td>Tumor response overall:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mean: 36 mm (0.2 – 0.5)</td>
<td>Follow-up: 12 weeks: biopsy of neck interval (not further specified)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Size:</td>
<td>CR confirmed if > 3 months sustained</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Location of target: Lip: 23</td>
<td>Change in QOL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NW-status: N0M0: 100%</td>
<td>Mouth opening: 0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Normal lip closing possible: 100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Length: Mean: 13.95 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of treatments: 1 session: 24 patients (96%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Number of sessions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Case series</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Retrospective</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Follow-up: First year: every month >2 years: every 3 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Change in QOL: Karnofsky status data: Baseline: 16 week.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5c. Continued

<table>
<thead>
<tr>
<th>Study authors</th>
<th>Cancer type</th>
<th>Patients</th>
<th>PDT treatment</th>
<th>Study design</th>
<th>Outcomes</th>
<th>Treatment related adverse events</th>
<th>Level of evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karakallukcu B, van Oudenaarde K (2010)</td>
<td>Neoplasms: 260; primary: 95 (42%); non-primary: 131 (68%)</td>
<td>Male: 90</td>
<td>Female: 80; mean age: 60.5 years</td>
<td>Transient events:</td>
<td>Phototoxicity reactions: 3 patients (2%)</td>
<td>3rd degree burn: 1 patient (3%)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Tumor: 135 patients; multiple tumors: 35 patients</td>
<td></td>
<td></td>
<td>Phototoxicity reactions: 3 patients (2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>previous treatment within subgroup of non-primary tumors (131 tumors)</td>
<td></td>
<td></td>
<td>Phototoxicity reactions: 3 patients (2%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surgery: 75.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radiation: 28.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemoradiation: 22.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface PDT: 30.6%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inclusion criteria: SOCS of oral cavity/onkopathy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Early stage disease (0.1 L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tumor depth = 5 mm Kaneko et al. 2007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Protocols:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface illumination 0.15 mg/kg mTHPC i.v. 96 hours drug-light interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>652 nm laser light: 20,0 cm^3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Intensity: 100 mW/cm²</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of illumination spots dependent on tumor size: 0.5 cm normal tissue</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of treatments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 session</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cohort study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retrospective:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR: 160 (71%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PR: 45 (20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-responding: 21 (9%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Week: 1, 2, 4, 8, 12, 24, 36, 52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Length:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tumor response assessment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WHO-criteria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR: 9 patients (24%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No CR: 29 patients (76%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biopsy after mean of 1.95 PDT sessions:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal: 17 (45%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hyperkeratinization: 5 (13%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysplasia: 1 (2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCC: 6 (16%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Male: 90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Female: 80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean age: 60.5 years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cohort study Prospective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1998 - 2005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 center</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Follow-up:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Week: 4, 6, 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non further specified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tumor response assessment:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biopsy of target site (post-PDT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Change in QOL:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not assessed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tumor response after 1 PDT session:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CR: 30 patients (50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No CR: 29 patients (49%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Biopsy after mean of 1.95 PDT treatments:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Normal: 17 (45%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hypoestrogenization: 5 (13%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dysplasia: 1 (2%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCC: 6 (16%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Survival</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overall (mean):</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tis: 92.2 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T1: 98.4 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T2: 78.7 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary: 120.4 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-primary: 82.1 months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Mean PDT treatment: 1.95 sessions.

Description of included studies

In 2011, all the included studies were conducted or analyzed with similar treatment modalities. The included studies were considered as a single study, as the patient populations were not further specified. The studies described PDT with palliative intent or advanced or recurrent incurable disease, with a total of 362 patients. The remaining studies described palliative studies, described superficial PDT and involved 36 patients with a total of 362 patients. The included studies combined described 770 patients. The studies described palliative studies, described superficial PDT and involved 36 patients. The studies described palliative studies, described superficial PDT and involved 36 patients. The studies described palliative studies, described superficial PDT and involved 36 patients.
Curative treatment using PDT with surface illumination

Six studies described a total of 404 patients (cNOMO) with 479 SCCs of which almost all (n= 478) were classified as Tis, T1 or T2 (table 5c) 34,49-52,68. Three studies included patients with multiple primary tumors 34,50,52. Mean age for the six studies ranged from 58 – 69 years. All studies used similar treatment characteristics and assessed the tumor depth (CT, MRI, US) before treatment. Five studies limited PDT to a single treatment of tumors with a depth of ≤ 5–7 mm 34,49-52, two of these studies further limited PDT to tumors with a diameter of ≤ 2.5 cm due to the use of a single illumination spot 49,51. A marked difference in treatment protocol was that in one study no limits on tumor depth or size were used and 76% of patients received at least 2 PDT sessions 56. A marked difference in patient inclusion between studies was that one study only included patients with SCC of the lip 51. For the four studies that showed similar treatment protocols and inclusion criteria, pooling of data was deemed suitable and original study-databases were obtained 34,49,50,52.

Quality of included studies

Of the 12 included studies, 9 (75%) fulfilled all criteria (table 3). The 2 criteria that were not met by the other 3 studies were: “description of tumor size” and “description of NM-status or stage”. The level of evidence in the 12 studies did not exceed 3 with 5 being the lowest score 56. Seven studies were classified as level 3 studies and 4 as level 4 studies (table 5). One study was classified as level 3 “minus” due to study design being a historical cohort study 12. In 7 of 12 studies, tumor response was assessed according to WHO-criteria or RECIST-criteria 34,49,50,52,67,53,66. The other 5 studies described tumor response according to change in size compared to baseline without the use of established guidelines 34,50,51,67,53. Additionally, some studies stratified treatment responses according to tumor size, depth and location. Five studies, all on PDT with palliative intent, reported quality of life in various ways; reported by patients 49,50,51. A marked difference in patient inclusion between studies was that one study only included patients with SCC of the lip 51. For the four studies that showed similar treatment protocols and inclusion criteria, pooling of data was deemed suitable and original study-databases were obtained 34,49,50,52.

Palliative treatment using PDT with surface illumination

CR rates varied between 16 – 60% and overall response rates between 38 – 89% 31,40,65. The study that reported the highest response rates included predominantly T1 and T2 tumors 46. The other two studies did not report on size of the target lesion or on stage of the disease 31,65. The only study assessing the effect of tumor depth > 10 mm on response rate, showed significantly better response rates for more superficial tumors with depth ≤ 10 mm (CR: 24%) compared to tumors with depth of > 10 mm (CR: 9%) 31.

Palliative treatment using interstitial PDT

CR rate varied between 0 – 45% and tumor response was achieved in 72 – 90% 37,65,67. The study responsible for the highest response rates was the only study using a single treatment session, light diffusers and an increased light dosage 66. However, tumor size was not specified while in both other studies a majority of tumors was defined as T4 (86%). None of the studies stratified treatment results according to tumor size.

Curative treatment of lip tumors using PDT

The only study on PDT of lip SCC described 23 patients (NOMO) with a single Tis, T1, or T2 tumor 51. CR was achieved in 96% of patients, one remaining patient with T1 disease showed

Chapter 2.1
A partial response. After a mean follow-up of 14.5 months the CR rate was 87%. Two patients (8%) with T1 disease developed a local tumor recurrence and another patient was diagnosed with lymph node metastasis.

Curative treatment of early stage disease by multiple treatment sessions

One study reports the use of multiple rounds of PDT after failure of the initial PDT 68. In their study, 29 of 38 (76%) patients treated had residual disease after the first round of PDT. A majority of these patients had T2 stage disease with others having T1 stage. In total, 26 of 38 treated patients had a clinical normal appearance at last follow-up of the target tissue after on average 2 treatment sessions. Further biopsy revealed recurrent SCC in 6 patients (16%); 5 patients with T4 disease and 1 patient with T2 disease.

Curative treatment of early stage disease by single treatment session

One study described significant (p<0.05) differences in response rates for different subsites in the oral cavity 52. Oral tongue was reported with a significant better response rate and alveolar process with a significant lower response rate compared to the other subsites. For a more comprehensive analysis of PDT treatment with curative intent, a pooled database containing 301 tumors of the oral cavity/oropharynx was analyzed. The overall CR rate was 76% (95% CI: 71.1; 81.2) while the mean LDFS was 103.4 months (95% CI: 91.7; 115.0). 1-, 2- and 5-year survival rates were 85%, 78% and 63% respectively.

Stratification according to primary or multiple primary/recurrent neoplasms of the 301 tumors resulted in a significant better CR rate of 83% for 1st primary tumors compared to 66-68% for non-1st primaries (table 6). The mean LDFS for the CR lesions was 114.1 months (95% CI: 99.8; 128.3) for the 1st primary tumors and 85.4 months (95% CI: 67.2; 103.6) for the non-1st primary tumors. Comparison of both Kaplan-Meier curves, showed a significant higher LDFS (p=0.0074) for the 1st primary tumors (figure 2A).

Stratification according to size of the 301 tumors showed a significant higher CR of 78% for T1 compared to 64% for T2 tumors, while CR rate for Tis was 79% (table 6). The mean local disease free survival for the CR lesions was 65.3 months (95% CI: 48.4; 82.1) for Tis, 106.6 months (95% CI: 91; 122.2) for T1 and 116.1 months (95% CI: 91.8; 140.4) for T2 (figure 2B). Comparison of the different Kaplan-Meier curves, showed a significant lower LDFS (p=0.0238) for Tis compared to T1 tumors (figure 2B).

Within the subgroup of 177 1st primary tumors, a significant higher CR rate of 86% for T1 tumors compared to 63% for T2 tumors was found, while CR rate for Tis was 95% (table 6). The mean local disease free survival for the CR lesions was 74.7 months (95% CI: 49.2; 100.2) for Tis, 102.6 months (95% CI: 86.9; 118.4) for T1 tumors and 113.8 months (95% CI: 82.3; 145.2) for T2. No significant differences between the different Kaplan-Meier curves were found (figure 2C).
Multiple curative treatment sessions of early stage disease

The one study describing multiple PDT sessions of the same tumor, reported 3 tumor related deaths and 3 non-tumor related deaths. This resulted in a 3- and 5-year OS of 92.1% and 84.2% respectively.

Single curative treatment session of early stage disease

For survival analysis after PDT with curative intent, Kaplan-Meier curves were calculated for 248 patients included in the pooled database. The mean OS was 105 months (95% CI: 94.4; 115.7). The 1- and 5-year survival rates were 90% and 70% respectively (Figure 3). The mean OS for the 172 patients with a 1st primary tumor was 116.5 months (95% CI: 103.8; 129.2) and 82.3 months (95% CI: 64.6; 100) for the 76 patients with a non-1st primary tumor. Comparison of the Kaplan-Meier curves, showed a significant difference (p=0.001) between patients with a 1st primary tumor and with a non-1st primary tumor. The mean OS for patients with Tis, T1 tumors and T2 tumors were 113.8 months (95% CI: 101.6; 124.4), 101.5 months (95% CI: 89.3; 113.8) and 116.9 months (95% CI: 87.7; 146.1) respectively.

Comparison of the Kaplan-Meier curves, showed a significant better OS for patients with Tis compared to patients with T1 (p=0.0255) or T2 (p=0.063) tumors.

Multiple curative treatment sessions of early stage disease

The one study describing multiple PDT sessions of the same tumor, reported 3 tumor related deaths and 3 non-tumor related deaths. This resulted in a 3- and 5-year OS of 92.1% and 84.2% respectively.

Single curative treatment session of early stage disease

For survival analysis after PDT with curative intent, Kaplan-Meier curves were calculated for 248 patients included in the pooled database. The mean OS was 105 months (95% CI: 94.4; 115.7). The 1- and 5-year survival rates were 90% and 70% respectively (Figure 3). The mean OS for the 172 patients with a 1st primary tumor was 116.5 months (95% CI: 103.8; 129.2) and 82.3 months (95% CI: 64.6; 100) for the 76 patients with a non-1st primary tumor. Comparison of the Kaplan-Meier curves, showed a significant difference (p=0.001) between patients with a 1st primary tumor and with a non-1st primary tumor. The mean OS for patients with Tis, T1 tumors and T2 tumors were 113.8 months (95% CI: 101.6; 124.4), 101.5 months (95% CI: 89.3; 113.8) and 116.9 months (95% CI: 87.7; 146.1) respectively.

Comparison of the Kaplan-Meier curves, showed a significant better OS for patients with Tis compared to patients with T1 (p=0.0255) or T2 (p=0.063) tumors.

Curative treatment of lip tumors using PDT

The only study on PDT treatments of lip SCC reported no fatalities during a mean follow-up of 14.5 months.

Adverse events

PDT using surface illumination for both curative and palliative intent resulted in adverse...
events that needed treatment in 7 patients (1% in a total of 606 patients); 4 developed severe burns and 3 developed necrosis of the skin. With interstitial PDT 12 patients required treatment for adverse events (14% in a total of 86 patients); one developed skin necrosis, 2 developed a major bleeding, 7 developed an oro-cutaneous fistula and 2 needed an emergency airway. Furthermore, 2 patients developed cutaneous metastases after iPDT at the site of catheter insertion. The majority of transient events occurring in both superficial and iPD were phototoxicity reactions; of the 692 patients described in the included papers, 58 (8%) reported blisters, erythema, hyperpigmentation or 1st/2nd degree skin burn. Other transient events reported were; pain at the injection site (3%), discoloration at the injection site (1%) and scarring/mild trismus (2%).

Quality of life

Five of 6 studies on palliative PDT analyzed quality of life. Three studies on surface PDT, all reported improvement in quality of life 35,36,39; 2 studies used the UW-QOL scale and described an improvement of at least 30% at 3 – 4 months while the other study used the EORTC (QLQ-C30/H&N-35) scale and reported an improvement of 33% at 4 months and 50% at 10 months. Two studies on iPDT, described improvements in quality of life as symptomatic relief reported by patients 37,38. At least 50% of tumor associated symptoms improved subjectively after iPDT.

Discussion

To the best of our knowledge, this paper is the only comprehensive systematic review of Foscan mediated PDT for the treatment of HNSCC. Of the 12 papers included in our systematic review, none compared PDT with other treatment modalities. In each of these studies a comparison of the PDT results with other treatment modalities relied on previously published data, historical control or own experience. All included studies were of either level 3 or 4 evidence. Despite the absence of evidence of the highest quality, PDT with palliative intent (both surface illumination and interstitial) appears to be effective for treatment of patients with local end-stage disease with no further treatment options. Reviewed studies showed that a considerable number of patients had tumor response and improvement in quality of life or symptomatic relief after PDT with palliative intent. The application of PDT using surface illumination is limited to superficial tumors as tissue penetration of excitation light decreases with increased depth. There is evidence to limit superficial PDT with palliative intent to tumors with a depth ≤ 10 mm, as significantly lower response rates are described for tumors with a depth >10 mm. For tumors with a larger volume interstitial PDT is used, whereby multiple laser fibers are guided into the tumor volume through strategically positioned needles. While differences in treatment characteristics between iPDT studies were found, its influence on outcome could not be assessed. An interesting development is the use of digital pre-treatment planning instead of intra-operative imaging for the positioning of the interstitial fibers. Comparing palliative PDT to standard treatment for non-resectable local advanced disease is difficult. Standard treatment for patients unsuitable for conventional treatment is single-agent or combination chemotherapy. Chemotherapy regimes have response rates around 20 – 40%, and higher if combined with Cetuximab. However, the majority of patients are treated by combination chemotherapy for its systemic use while PDT with palliative intent is purely used as a local treatment modality. Based on currently available evidence identified by our systematic review, the value of PDT for the curative treatment of early HNSCC (stage I/II) is difficult to assess due to the absence of randomized, comparative studies. As a result, no high quality evidence could be identified in our search to substantiate the suggested better functional and aesthetic results after PDT compared to surgery. There is some evidence that tumor response after PDT differs according to anatomical subsite. In a small study, PDT of SCC of the lip showed relative high cure rates compared to response rates described for the oral cavity. Within the oral cavity, the tongue was described with the most favorable outcomes. While most studies on PDT with curative intent used 1 treatment session, it was suggested that PDT treatments could be repeated without cumulative toxicity in reaching CR. Rigorous analysis was performed on our pooled database of early stage SCC of the oropharynx/oral cavity. PDT treatment of 1st primary tumors showed a higher CR rate than of both recurrent and 2nd, 3rd primary tumors. An interesting outcome described previously by others, was the response after PDT of non-1st primary tumors. While these early stage tumors were located in tissue previously treated by radiotherapy, chemoradiation or surgery, still a CR rate of 66 – 68% was found. Stratification of tumor response according to size showed highest CR rates for Tis, followed by T1 and T2. Surprisingly, local disease free survival of all treated tumors reaching CR showed a trend for lowest local disease free survival for Tis and thus a higher chance of recurrence. This high recurrence rate could be explained by difficulties assessing the exact border of the lesion. Furthermore, the recurrence of Tis could be attributable to the known high rate of leukoplakia development after treatment. This phenomenon was also described by Karakullukcu et al. as could be expected due to the inclusion of a majority of their patients in our pooled database. Overall survival was higher for Tis compared to T1 and T2 tumors and higher for 1st primary tumors compared to non-1st primary tumors. In comparison with surgical treatment results described in the literature, PDT showed a lower local control rate. Local control rate for surgical treatment of early stage I/II tumors is around 90% However, in most of these studies only tumors resected with clear margins were included in the local control rate. This further emphasizes the need for a comparative, randomized study to rigorously evaluate PDT against conventional treatment. Very recently and therefore not assessed by our review, a non-randomized study appeared comparing PDT of early stage HNSCC to surgery in a single institution. In that historically matched cohort-study, PDT showed comparable disease control and OS to surgery. However, results
were not stratified according to tumor size or were morbidity or aesthetic outcome compared between PDT and surgery. The most common complication of Foscan mediated PDT described is phototoxicity. Both minor phototoxicity (burns, blisters) and severe phototoxicity (3rd degree burns, necrosis) seem preventable by adhering to the stringent light protocol. Pain or discoloration at the injection site is also common and suggests a problematic injection of the photosensitizer in the circulation. Interstitial PDT shows the most severe complications as could be expected because all patients presented with larger tumor volumes. Most notable is the incidence of oro-cutaneous fistula after PDT. One surprising finding was the need in 1 study to provide an emergency airway after interstitial PDT, while in other studies an alternative airway was provided per protocol pre-treatment.

Conclusion

Findings from this review support the use of PDT and interstitial PDT for palliative intent in patients with no further treatment options. Evaluation of PDT for early stage disease is difficult, as no comparative studies with other modalities are available. Treatment response with PDT for T1 tumors is significantly better compared to T2 tumors. Furthermore, tumor response with PDT is significantly better for 1st primary tumors versus non-1st primary tumors. No evidence for any functional or esthetic advantage of PDT over other modalities could be identified. To properly evaluate PDT for early stage disease, comparative and randomized studies are needed.

Acknowledgements

We would like to thank M.P. Copper, C. Hopper, B. Karakulukcu, A.C. Kubler and K. Lorenz for providing us with information on their study databases.

References

42. Mitra S, Foster TH. Photophysical parameters, sensitization mechanism and tissue optical properties completely account for the higher photodynamic efficacy of meso-tetra-hydroxy-phenyl-chlorin vs photofrin. Photochem Photobiol. 2005 07;81(0031-8655; 0031-8655):489-504.

(1) 13th IPA World Congress - International Photodynamic Association in Association with EPPM and HNODS. Photodiagn Photodyn Ther 2011/;8(2).

(8) Ali SM, Chee SK, Yuen GY, Olivo M. Photodynamic therapy of early squamous cell carcinoma with tetra(m-hydroxyphenyl)chlorin: 2.0 mg/kg or not 2.0 mg/kg that is the question. Photodiagn Photodyn Ther 2008/12;1(4):263-277.

(17) Allison RR, Sibata CH. Photofrin (registered trademark) photodynamic therapy: 2.0 mg/kg or not 2.0 mg/kg that is the question. Photodiagn Photodyn Ther 2008/02(5):112-119.

(43) Biel M. Advances in photodynamic therapy for the...

Appendix Chapter 2.1

cells Induction of apoptosis via photoactivation of mito-
(95) Chung W, Lee J, Lee W, Sury Y, Park K. Protective effects of hemin and tetraakis(4-berzonic acid)porphyrin on bacterial mutagenesis and mouse skin carcinogen-
ess induced by 7,12-dimethylbenz(a)anthracene. Mutat Res Genet Toxicol Environ Mutagen 2005/12;472(1-2):139-145.
(96) Cilliers H, Harper CA. Photodynamic therapy with
Veraplatin for vascular leakage from a combined haem-
(97) Chen EM, Ding H, Kossinger CW, Khemtong C, Gao J, Sumber BD. Polymetric micelle nanoparticles for photo-
dynamic treatment of head and neck cancer cells. Oto-
(99) Copper MP, Tan IB, Opperlaar H, Ruevekamp MC, Stewert FA. Meta-tetrahydroxyphenylchlorin photody-
(102) Crean DH, Liebou C, Penetranne RB, Mang TS. Eval-
uation of porfimer sodium fluorescence for measuring tissue transformation. Cancer 1993/12;70(10):3088-3077.
(103) Cosnard M, Kiss JG, Ivan L, Jori J, Cizgner J, ALA (5-aminolevulinic acid)-induced protoporphyrin IX fluo-
rescence in the endoscopic diagnostic and control of pharyn-
gal laryngeal cancer. Eur Arch Oto-Rhino-Laryn-
(105) Date M, Sakata I, Fuchisti K, Ohura K, Azuma Y, Shinohara M, et al. Photodynamic therapy for human oral squamous cell carcinoma and xenografts us-
(108) D’Cruz AK, Robinson MH, Bili MA. mTHPC medi-
(109) de Rosa A, Naviglio D, Di Luccia A. Advances in photody-
(110) de Visscher SAUJ, Kascakova S, de Bruijn HS, van der Ploeg-van den Heuvel, Angelique, Amelink A, Steren-
(111) Dequanter D, Lothe R, Meert A-, Andry G. Pho-
(116) Egorov EA, Prokof’eva MI, Egorov AE, Novoderezh-
(117) Donalm DEJG, Fukumura D, Jain RK. Pho-
(120) Donaldson MG, Ly, Harper CA, MacKenzie J, Campbell W. Primary treatment of chordoidal amela-
(121) Donnelly RF, McConenna PA, Woolson P. Drug deliver-
(127) Egorov EA, Prokof’eva MI, Egorov AE, Novoderezh-
(129) Eskelin S, Tommila P, Palosaari T, Kivela T. Photo-
(130) Etienne J, Dorme N, Bourg-Heccky G, Raimbert P, Fekete F. Local curative treatment of superficial adeno-
carcinoma in Barrett’s esophagus. First results of pho-
(131) Etienne J, Dorme N, Bourg-Heccky G, Raimbert P, Fekete F. Local curative treatment of superficial adeno-
carcinoma in Barrett’s esophagus. First results of pho-

(221) Kapoor S. The therapeutic benefits of heme oxyge- nase (HO-1) inhibition in the management of systemic

Appendix II. 7 excluded papers after assessment.

<table>
<thead>
<tr>
<th>Authors, Journal, (year published)</th>
<th>Main reason for exclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inadequate</td>
<td></td>
</tr>
<tr>
<td>Dilkes MG, Benjamin E., J Laryngol Otol (2003)</td>
<td>measurement of tumor depth or volume</td>
</tr>
</tbody>
</table>
Chapter 2.2

mTHPC mediated photodynamic therapy of early stage oral squamous cell carcinoma: a comparison to surgical treatment

This chapter is an edited version of:
Chapter 2.2

Introduction

The treatment of early stage (stage I/II) head and neck squamous cell carcinomas (HNSCC) is local resection or radiotherapy. In retrospective studies, radiotherapy and surgery in patients with stage I/II disease have similar cure rates. Usually, surgery is preferred because radiotherapy side-effects can be avoided and histopathological staging can be obtained.

However, surgery has disadvantages such as impairment of speech, impairment of swallowing and poor aesthetic outcome. It has been suggested that photodynamic therapy (PDT) could be a primary treatment option with similar efficacy and without some of the disadvantages associated with standard treatment.

The photosensitizer *meta*-tetra(hydroxyphenyl)chlorin (mTHPC, INN: Temoporfin, Foscan®) is licensed for palliation of advanced HNSCC but can also be used for curative treatment of early HNSCC. Activation of mTHPC is achieved by illuminating tissue with non-thermal light at a wavelength of 652 nm. Intracellular cytotoxic reactive oxygen species are induced which cause cell death.

Effective light penetration for PDT is approximately 10 mm at 652 nm. Therefore, curative treatment with surface illumination is limited to tumors with ≤5 mm invasion depth.

A suggested advantage of PDT is the limited scarring and limited loss of function after treatment. It is assumed that long-term morbidity is less than surgery or radiotherapy in similar cases as a result of less deformation and the insensitivity of nearby nerves. Another benefit could be the possibility for repeated treatments of the same anatomical area without complications for any other (future) treatments.

Despite these possible advantages, the role of mTHPC mediated PDT in curative treatment of early stage HNSCC is not clear. A systematic review failed to identify any comparative studies of PDT with other modalities. Therefore, any claim of similar efficacy to surgery could not be confirmed or refuted. However, the review did identify four studies that described treatment results after PDT of early stage oral squamous cell carcinoma (OSCC).

In an effort to assess the efficacy of PDT for early stage primary OSCC, we compared PDT with surgery on tumor response and survival. Outcomes after transoral surgical resection were retrieved from our hospital database.

Materials and methods

In this retrospective study on the treatment of early stage OSCC, a comparison was made between databases on PDT treatments (a pooled, multicenter database) and surgical treatment (single institutions database of University Medical Center Groningen). The emphasis of our study was on the results after the initial treatment by either PDT or surgery, not on evaluating retreatment rates or any possible treatment of recurrence.
Table 1. Patient and tumor characteristics.

<table>
<thead>
<tr>
<th></th>
<th>PDT</th>
<th>Surgery</th>
<th>PDT vs Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>152</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>67 (55%)</td>
<td>52 (57%)</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>54 (45%)</td>
<td>39 (43%)</td>
<td></td>
</tr>
<tr>
<td>Age (mean in years)a</td>
<td>61.1 (SD: 12.6)</td>
<td>61.2 (SD:12.5)</td>
<td></td>
</tr>
<tr>
<td>Years of treatment</td>
<td>1996 - 2008</td>
<td>1997 - 2008</td>
<td></td>
</tr>
<tr>
<td>Follow-up (median in months)</td>
<td>33.0 (IQR: 37.3)</td>
<td>67.0 (IQR:65.0)</td>
<td></td>
</tr>
<tr>
<td>Tumors</td>
<td>156</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>T1 tumors</td>
<td>126 (81%)</td>
<td>58 (64%)</td>
<td></td>
</tr>
<tr>
<td>T2 tumors</td>
<td>30 (19%)</td>
<td>33 (36%)</td>
<td></td>
</tr>
<tr>
<td>Complete response (CR) (95% CI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 tumors (95% CI)</td>
<td>86% (78.5; 90.8)</td>
<td>76% (63.5; 85.0)</td>
<td>p=0.101 b</td>
</tr>
<tr>
<td>T2 tumors (95% CI)</td>
<td>63% (45.5; 78.1)</td>
<td>79% (62.2; 89.3)</td>
<td>p=0.175 b</td>
</tr>
<tr>
<td>LDFS after CR (mean in months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 tumors (95% CI)</td>
<td>102.6 (86.9; 118.4)</td>
<td>152.7 (140.5; 164.9)</td>
<td>p=0.0084 c</td>
</tr>
<tr>
<td>T2 tumors (95% CI)</td>
<td>113.8 (82.3; 145.2)</td>
<td>152.8 (140.9; 164.7)</td>
<td>p=0.0260 c</td>
</tr>
<tr>
<td>Need for further treatment (no CR or recurrence)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T1 tumors (95% CI)</td>
<td>28.6% (21.4; 37.0)</td>
<td>29.3% (19.2; 42.0)</td>
<td>p=0.918 b</td>
</tr>
<tr>
<td>T2 tumors (95% CI)</td>
<td>53.3% (36.1; 69.8)</td>
<td>24.2% (12.8;41.0)</td>
<td>p=0.018 b</td>
</tr>
<tr>
<td>Overall survival (mean in months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients T1 tumors (95% CI)</td>
<td>101.5 (89.3; 113.8)</td>
<td>122.6 (106.9; 138.2)</td>
<td>p=0.237 c</td>
</tr>
<tr>
<td>Patients T2 tumors (95% CI)</td>
<td>116.9 (87.7; 146.1)</td>
<td>109.5 (87.1; 132.0)</td>
<td>p=0.713 c</td>
</tr>
<tr>
<td>Alive after salvage treatment(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patients T1 tumors (95% CI)</td>
<td>48.3% (36.6; 59.6)</td>
<td>100% (64.9; 86.7)</td>
<td>p=0.724 b</td>
</tr>
<tr>
<td>Patients T2 tumors (95% CI)</td>
<td>75.0% (50.5; 89.8)</td>
<td>62.5% (30.6; 86.3)</td>
<td>p=0.525 b</td>
</tr>
</tbody>
</table>

PDT mTHPC mediated photodynamic therapy, SD standard deviation, IQR Inter quartile range, CI confidence interval, CR complete response, LDFS local disease free survival.
a gender and age of 31 patients was unknown.
b χ² tests

c Mantel-Cox analysis

Table 2. Definition of complete response after initial therapy for both surgery and PDT.

<table>
<thead>
<tr>
<th></th>
<th>PDT</th>
<th>Surgery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete response</td>
<td>Clinical examination:</td>
<td>Histological examination-</td>
</tr>
<tr>
<td></td>
<td>- Treatment site is macroscopically normal with no evidence of tumor.</td>
<td>Negative surgical margin:</td>
</tr>
<tr>
<td></td>
<td>(Observed on 2 occasions at least 4 wk apart)</td>
<td>- Surgical margin free of tumor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Surgical margin with low dysplasia</td>
</tr>
<tr>
<td>No complete response</td>
<td>Clinical examination:</td>
<td>Histological examination-</td>
</tr>
<tr>
<td></td>
<td>- Presence of tumor after treatment</td>
<td>positive surgical margin:</td>
</tr>
<tr>
<td></td>
<td>- Partial response</td>
<td>- Involved surgical margin (< 1mm)</td>
</tr>
<tr>
<td></td>
<td>- No response</td>
<td>- Close surgical margin (1- 4 mm)</td>
</tr>
<tr>
<td></td>
<td>- Progressive disease</td>
<td>- Surgical margin with severe dysplasia</td>
</tr>
</tbody>
</table>

subsequent salvage treatments. The study design required that all cases with a first primary cT1-2N0 OSCC could be identified and extracted from both the pooled PDT database and the surgical database. All tumors in the pooled database had a clinical tumor depth of ≤ 5 mm as assessed by imaging. Imaging in the PDT group consisted of computed tomography, magnetic resonance imaging or ultrasound.

To ensure adequate comparison, tumors with a pathologically assessed infiltration depth of ≤ 5 mm were selected from the surgical treatment database. A total of 91 surgically treated tumors met the study criteria (table 1). The initial local treatment was transoral resection. Tumor response after surgery was determined by histopathology and classified as a complete response (CR) or as no CR (table 2). Sixty-two patients (68%), including all 33 patients with stage II disease, underwent elective neck dissection (level I – III). Where CR was not achieved (positive margin, table 2) or when patients developed a local recurrence, retreatment by surgery or radiotherapy was performed. For assessment of the initial PDT treatment result (CR or not), information was extracted from a pooled database of four original study databases, originating from studies using the standard and thus comparable treatment protocols and inclusion criteria. After rigorous investigation of the database, a total of 126 T1 and 30 T2 first primary oral cavity/oropharyngeal tumors in 152 patients remained (table 1). All 17 oropharyngeal tumors were located on the soft palate. Of 31 patients originating from one study database, age and gender was missing.
PDT was identical for all patients and included intravenous injection of 0.15 mg/kg mTHPC followed by surface illumination after 96 hours. Light was delivered by a 652 nm diode laser to a visible and accessible tumor. The calculated dose delivered was 20 J/cm² with a fluence rate of 100 mW/cm². The tumor and a margin of at least 5 mm of normal appearing surrounding mucosa were illuminated. The database included data on tumor response (CR or non-CR) recorded by the authors of the included pooled studies after clinical examination (table 2). To be classified as a CR, no evidence of tumor had to be observed on 2 separate examinations (>4 weeks apart). In contrast to the surgically treated group, no elective neck treatment was performed; all patients were subject to watchful waiting policy. As in the surgical cases, when CR was not reached or patients developed a local recurrence they received retreatment by surgery, radiotherapy or repeated PDT.

Statistical analysis

Local CR rate, need for local retreatment, incidence of regional metastases and death of the patient marked the end points of our study. Local disease free survival (LDFS) was defined as absence of tumor recurrence after observation of a CR. The need for local retreatment was defined as absence of CR or recurrence of tumor after an initial CR. For survival analysis, overall survival on a patient specific level was determined. Additionally, survival after local salvage treatment was calculated.

Descriptive statistics and 95% confidence interval (CI) were calculated. Differences in local CR rate, incidence of regional metastases and need for further local treatment were analyzed using \(\chi^2 \) tests. Survival curves for LDFS, need for re-treatment and overall survival were constructed using the Kaplan-Meier method. Differences in survival curves were analyzed using the log-rank test (Mantel-Cox). All tests were conducted at a two-sided significance level of 5% in PASW statistics 18 software package (SPSS Inc.) or Graphpad Prism® (software version 5.0).

Results

Tumor response

Of the 156 tumors treated by PDT, the CR rate was 86% for T1, and 63% for T2 tumors (table 1, \(p=0.005, \chi^2 \) test). For the 91 surgically treated tumors no significant difference in CR between T1 (76%) and T2 (79%) was found. Of the 17 surgically treated tumors without CR, 7 had involved surgical margins (margin less than 1 mm), 4 margins with severe dysplasia and 10 with close margins (1-4 mm margin). A comparison in CR rate between PDT and surgery for different T-stage showed no significant difference.

Local disease free survival

For the 127 tumors in which PDT resulted in a CR, the mean LDFS was 102.6 months for T1 and 113.8 months for T2 tumors (table 1). Comparison of the survival curves using Mantel-Cox analysis, showed no significant differences (figure 1, \(p=0.593 \)). For the 70 tumors in which surgery resulted in a CR, the mean LDFS is 152.7 months for T1 and 152.8 months for T2 tumors. Comparison of the survival curves, showed no significant differences (\(p=0.695 \)). When comparing curves of surgery with PDT, surgery showed a significant better outcome for both T1 (\(p=0.0084 \)) and T2 tumors (\(p=0.0260 \)) (table 1, figure 1).

Need for local retreatment

For the 156 tumors treated by PDT, T2 tumors needed significantly (\(p=0.010, \chi^2 \) test) more additional treatment than T1 tumors (table 1). For the 91 surgically treated tumors, no significant difference in need for further treatment was found between T1 and T2 tumors (\(p=0.603 \)). A comparison in need for further treatment between surgery and PDT showed a significant (\(p=0.018 \)) better outcome for surgically treated T2 tumors and no difference for T1 tumors (\(p=0.918 \), table 1). A comparison of Kaplan-Meier curves using Mantel-Cox analysis again showed significant better results for T2 tumors using surgery and no difference for T1 tumors (figure 2, \(p=0.018 \) and \(p=0.55 \) respectively).

Regional status

After PDT, 22 of 152 (14%) patients were diagnosed with regional metastases and received salvage treatment. While 68 of the 91 surgically treated patients received elective neck dissection, a total of 7 patients (8%) developed regional metastases. Of those 7 regional metastases, 5 developed in patients treated initially with an elective neck dissection. Overall, no significant difference in occurrence of regional metastases between surgery and PDT was found (\(p=0.115, \chi^2 \) test).
Overall survival
For the 152 patients treated by PDT, the overall mean survival time was 101.5 months for patients with T1 tumors and 116.9 months for patients with T2 tumors (table 1). Comparison of the survival curves using Mantel-Cox analysis, showed no significant difference in survival between patients with T1 or T2 tumors (figure 3, p=0.842).
For the 91 patients that were surgically treated the overall mean survival time was 122.6 months for T1 and 109.5 months for T2 tumors. Comparison of the survival curves, showed no significant difference between T1 and T2 tumors (p=0.450).
A comparison of overall survival between patients treated by PDT or surgery for their primary tumor, showed no significant differences (table 1, figure 3). Comparing overall survival between the PDT and surgically treated patients after additional local salvage treatment(s) showed no significant differences stratified for T1 and T2 tumors (table 1).

Discussion
In an analysis of the efficacy of PDT versus surgery, the definition of what the primary endpoint should be is strongly influenced by the difference in posttreatment strategies. The assessment of CR after PDT is performed by visual inspection while for surgery this is performed by histopathological analysis. In the surgery group, it is therefore possible that a need for retreatment is established and executed when surgical margins are shown to be compromised. Consequently, interpretation of LDFS is different for PDT and surgery. A major portion (76%) of the retreatment in the surgery group has taken place at the start of the assessment of the LDFS, whereas the retreatment in the PDT group takes place at the end of the LDFS period. Therefore, one needs to carefully draw conclusions from these data. In this study, there was no significant difference in CR when PDT was compared to surgery for the treatment of T1 and T2 tumors, respectively. When comparing LDFS, PDT was significantly less effective than surgery for both T1 and T2 tumors. This is an immediate consequence of a difference in posttreatment strategies between PDT and surgery. Because of the visual determination of CR for PDT, the chance of false-negatives is higher than in the surgery group resulting eventually in lower LDFS for PDT. We therefore think that the essential endpoint in our study should be the need for retreatment and disease-free survival. For T1 tumors, PDT and surgery showed a similar need for further treatment after initial PDT or surgery. However, for T2 tumors, the PDT-treated cases needed a significantly higher number of retreatments. Also, within the group of PDT-treated tumors, a lower CR and LDFS for T2 versus T1 tumors proved statistically significant. This was not found in surgically treated patients. The lower efficacy of PDT for T2 compared to T1 tumors was described previously by others. We therefore conclude that in the treatment of T1 tumors the efficacy of PDT is similar to surgery. In the treatment of T2 tumors surgery is more effective.
As a result of the possibility of salvage treatment, overall survival was not different for PDT and surgery. As described in literature, patients who did not experience a CR still had the option of successful salvage treatment. In a subanalysis we studied whether the location of the primary OSCC was relevant, since especially PDT outcomes could be influenced by the location of the OSCC. Our data show that exclusion of tongue or soft palate tumors did not significantly change CR, LDFS, or overall survival. Comparison of our results with literature is difficult; as often only local control rates of tumors excised with clear surgical margins are described. Exclusion of patients with involved or close margins will influence prognosis, as status of surgical margins is widely known to influence local (regional) recurrences and survival. In a study that did describe the surgical margins after excision, 60% of stage I/II tumors were resected with clear margins and could be considered a CR according to our definition. This is a lower CR compared to our results. An explanation could be our inclusion of patients with tumors with an infiltration depth of ≤5mm, which is associated with a better clinical outcome.

Even though the majority of surgically treated patients received an elective neck dissection, this did not result in differences in survival as described in literature. This might be due to the inclusion of only tumors with an infiltration depth ≤5mm, where the additional value of an elective neck dissection is low. Although our results show that the treatment results of PDT for T1 tumors are comparable to surgical treatment, the added benefit of PDT is not adequately studied in literature. Several studies describe possible advantages of PDT compared to standard treatment such as decreased morbidity and possibility of repeated treatments.

Our study has some limitations; all PDT data are retrospectively derived from different centers, whereas all surgically treated patients are derived from our own institution. Although our inclusion criteria were chosen so that the cases from this surgical database optimally reflect the cases from the PDT database, differences in both groups are to be expected. For instance, for surgery infiltration depth ≤5mm was histologically assessed and can differ from tumor depth assessed by imaging as used for PDT. The pathologically assessed infiltration depth could be influenced by tissue shrinkage associated with fixation and pathological processing. A further difficulty is what constitutes a positive resection margin. Many studies regard close or involved margins as a positive margin. In our current study we adhered to our institution’s protocol whereby severe dysplasia at the margins is considered a “positive” margin and thus as a failure of initial excision. As a consequence, our CR rate described for surgery is underestimated. No disease specific survival could be calculated as a result of insufficient data on cause of death for the PDT group. A recent non-randomized matched control study described similar local disease control and survival for PDT and surgery in treatment of early stage squamous cell carcinoma of the oral cavity. However, that study did not stratify according to T1 or T2 tumors. It is clear that a future prospective, comparative study should assess the efficacy of PDT compared to standard treatment on a group of well-defined tumors. More importantly, the differences in long-term morbidity of PDT should be further explored.

Conclusion

In summary, treatment of primary T1 tumors of the oral cavity by either mTHPC mediated PDT or trans-oral surgery seems to result in similar need for retreatment. Local disease-free survival for surgery is better than for PDT. This may be influenced by the benefit surgery has of having histology available. For T2 tumors, PDT seemed less effective; PDT and surgery showed similar overall survival rates for both T1 and T2 tumors. Besides the need for prospective and comparative studies to assess the efficacy of PDT compared to standard treatment, further emphasis should be placed on the comparison of morbidity between modalities.
References

Chapter 3

Comparison of mTHPC fluorescence pharmacokinetics between liposomal mTHPC drug-carrier systems and free mTHPC
Chapter 3.1

Fluorescence localization and kinetics of mTHPC and liposomal formulations of mTHPC in the window-chamber tumor model

This chapter is an edited version of:
Abstract

Background and objective. Foslip® and Fospeg® are liposomal formulations of the photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC), intended for use in Photodynamic Therapy (PDT) of malignancies. Foslip consists of mTHPC encapsulated in conventional liposomes, Fospeg consists of mTHPC encapsulated in pegylated liposomes. Possible differences in tumor-fluorescence and vasculature kinetics between Foslip, Fospeg and Foscan® were studied using the rat window-chamber model.

Materials and methods. In 18 rats a dorsal skinfold window-chamber was installed and a mammary carcinoma was transplanted in the subcutaneous tissue. The dose used for intravenous injection was 0.15 mg/kg mTHPC for each formulation. At 7 time points after injection (6 minutes – 96 hours) fluorescence images were made with a Charge-coupled device (CCD). The achieved mTHPC fluorescence images were corrected for tissue optical properties and autofluorescence by the ratio fluorescence imaging technique of Kascakova et al. Fluorescence intensities of 3 different regions of interest were assessed; tumor tissue, vasculature and surrounding connective tissue.

Results. The three mTHPC formulations showed marked differences in their fluorescence kinetic profile. After injection, vascular mTHPC fluorescence increased for Foslip and Fospeg but decreased for Foscan. Maximum tumor fluorescence is reached at 8 hours for Fospeg and at 24 hours for Foscan and Foslip with overall higher fluorescence for both liposomal formulations. Foscan showed no significant difference in fluorescence intensity between surrounding tissue and tumor tissue (selectivity). However, Fospeg showed a trend towards tumor selectivity at early time points, while Foslip reached significantly (p<0.05) better tumor selectivity at these time points.

Conclusion. Our results showed marked differences in fluorescence intensities of Fospeg, Foslip and Foscan, which suggests overall higher bioavailability for the liposomal formulations. Pegylated liposomes seemed most promising for future application; as Fospeg showed highest tumor fluorescence at the earlier time points.

Introduction

Photodynamic therapy (PDT) has been established as a local treatment modality for several kinds of malignancies in various organs. PDT is based on the use of a light sensitive drug, a photosensitizer, which is locally applied or systemically administered. Excitation of a photosensitizer with non-thermal light of an appropriate wavelength leads to a process in which energy is transferred to molecular oxygen. This leads to the formation of intracellular cytotoxic reactive oxygen species and subsequent cell death. As a consequence, the tumor is destroyed by a combination of direct tumor cell kill and by vascular damage. Next to parameters such as the presence of oxygen and the use of a sufficient amount of light, the amount of a photosensitizer in the target tissue is an important parameter.

One of the most potent clinically used photosensitizers to date is the compound meta-tetra(hydroxyphenyl)chlorin (mTHPC, INN: Temoporfin). In the European Union, a formulation of ethanol and propylene glycol with mTHPC (Foscan®) is approved and used for palliative treatment of advanced squamous cell carcinoma (SCC) of the head and neck. Several authors described a reduction in tumor size, prolonged survival and an improved quality of life after mTHPC mediated PDT in patients treated with palliative intent. Besides palliative treatment, mTHPC mediated PDT is also used as an effective curative treatment for patients with superficial oral SCCs. The efficacy of mTHPC mediated PDT in these patients is similar to surgery and radiotherapy, while the long-term morbidity is limited. Potentially important features of PDT are the possibility of repeated treatment of the target tissue, the restriction of the induced damage to the illuminated area and the potential for a good functional and aesthetic result.

The current PDT protocol for head and neck SCCs dictates an intravenous (i.v.) injection of 0.15 mg/kg mTHPC followed 96 hours later by illumination. This protocol is effective, but is also demanding for the patients as it involves long drug-light intervals, skin photosensitivity and in some patients, pain and discoloration at the site of drug injection. A protocol with comparable high efficacy but with a shorter drug-light interval, lower skin accumulation and less adverse side effects at the injection site would be beneficial for patients.

Furthermore, the basic form of mTHPC is highly hydrophobic and lipophilic, which complicates its formulation and administration. Due to its hydrophobic nature, mTHPC aggregates will form in the vasculature, which decreases its biodistribution. Due to its lipophilic nature, mTHPC adheres to endothelium of the injected vein and to the surrounding subcutaneous tissue. That could explain the discoloration at the injection site as reported in some patients.

Previously, PEG-mTHPC conjugates were developed to improve the characteristics of mTHPC with some success. However, the therapeutic effect of these conjugates was at best similar to the basic form of mTHPC. The encapsulation of mTHPC into liposomes may offer further improvements in clinical PDT.
other liposomal photosensitizer formulations showed higher tumor uptake, superior water solubility and higher photosensitizing efficacy compared to the original formulations 31-33,36-39. Water-soluble liposomes are thought to allow selective accumulation in tumor tissue by the enhanced permeability and retention (EPR) effect and by the increased binding to low-density lipoprotein (LDL) receptors 31,37,38. The higher PDT efficacy attributed to the use of this approach is due to the non-aggregated form of photosensitizer encapsulated in liposomes. If proven for mTHPC, these characteristics could result in optimization of clinical PDT with a shorter drug-light interval and less skin photosensitivity.

Two formulations of mTHPC encapsulated into liposomes are available. One mTHPC formulation (Foslip®) consists of plain or conventional liposomes based on dipalmitoylphosphatidylcholine (DPPC). The other mTHPC formulation (Fospeg®) consists of liposomes with a pegylated (poly-ethylene glycol) layer on the surface. This hydrophilic pegylated layer is thought to prevent uptake by the mononuclear phagocyte system (MPS) thereby increasing the circulation time 31,37. It is suggested that this longer circulation time should increase the EPR effect 29,31,40.

The fluorescence pharmacokinetics of Foslip and Fospeg have been investigated before in a small number of studies using various models. Encapsulation of mTHPC in plain liposomes (Foslip) and in pegylated liposomes (Fospeg) resulted, in vitro, in similar cellular uptake compared to Foscan. Pegaz et al. compared Fospeg and Foslip in an in vivo, non-tumor, chick chorioallantoic membrane model 41. During the experimental time of 20 minutes, they found no differences in kinetics between the two liposomal formulations. In a study in mice, Foslip was found to have a slightly higher tumor-to-muscle ratio compared to Foscan, with high tumor concentrations 4 hours post injection and at their last measurement, 8 hours post injection 26,29.

An interesting study of Buchholz et al. compared the pharmacokinetics of Fospeg with Foscan in 10 cats with spontaneous SCCs of the nose 41. They found that mTHPC encapsulated in pegylated liposomes (Fospeg) showed higher bioavailability in tumor, earlier maximal tumor accumulation and higher tumor-to-skin fluorescence ratio compared to Foscan. However, tumor fluorescence intensity was measured by point fiber optic measurements without correcting for autofluorescence.

The previously described in vivo studies suggest that liposomal formulations will yield an earlier, higher availability of mTHPC. However, there is a substantial lack of data to compare the kinetics of these liposomal mTHPC formulations to Foscan at long time-intervals with appropriate correction for tissue optical properties.

In this study the in vivo fluorescence kinetics of two liposomal mTHPC formulations and Foscan are investigated in a mammary adenocarcinoma xenograft tumor model (rat skin fold window chamber model). Fluorescence imaging is used to determine mTHPC levels at various time points and tissue types. A ratiometric correction method 40 was used to correct for changes of tissue optical properties and changes in the thickness of tissue. Our aim is to study whether the use of liposome encapsulated mTHPC will enhance the fluorescence uptake of mTHPC in tumor tissue and if the time to reach maximal tumor fluorescence is altered.

Materials and methods

Animal and tumor model

Seven weeks old Female Fisher-344 rats, weighing approximately 100 – 140 g, were purchased from Harlan Netherlands B.V. (Horst, The Netherlands). The window chamber model has been described elsewhere 42,43. In brief, over a series of 4 operations a thin layer of subcutaneous tissue from a dorsal skin flap was prepared and fixed in a plastic frame, to form a skin fold chamber. After a short healing time the final step in the procedure was the implantation of an isogeneic mammary adenocarcinoma (R3230AC) into the subcutaneous tissue. All operations were carried out under general isoflurane/O₂/N₂O anesthesia. The animals were kept in a temperature controlled cabinet at 27 °C with a 12/12 hour light/dark interval. Tumor growth, the general condition of the chamber and the blood circulation were followed using a microscope at low magnification. This was done to determine the best day to start the experiment. Most experiments started approximately 5-7 days after tumor implantation. After injection with a photosensitizer the animals were kept under reduced light conditions (< 100 lux). Through all procedures and measurements isoflurane was used as a general inhalation anesthetic. In between measurements, the animals were conscious and kept in the same reduced light conditions. At the end of the experiments the animals were terminated by cervical dislocation.

Materials

Foscan (4 mg mTHPC/ml), Fospeg (1.5 mg mTHPC/ml) and Foslip (1.38 mg mTHPC/ml) were kindly provided by Biolitec AG (Jena, Germany) in the described stock concentrations. Pegylated liposomal mTHPC (Fospeg) consists of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and PEGylated distearoylphosphatidylethanolamine. Conventional liposomal mTHPC (Foslip) consists of DPPC, DPPG, mTHPC and Glucose (Foslip). Determined by others, the particle size of Fospeg ≈140 nm and of Foslip ≈ 120 nm 41,43. All solutions were prepared before the start of the experiments. Foscan was made by dissolving the stock-solution (4 mg/ml mTHPC) in water-free PEG-EtOH in a solution of PEG400:EtOH: water = 3:2:5 (v/v). Foslip and Fospeg were dissolved as recommended by the manufacturer for intravenous injection in 5% aqueous glucose solution and in sterile water respectively. Polyethylene glycol 400 (PEG400) was obtained from Sigma-Aldrich (Zwijndrecht, the Netherlands) and 96% ethanol (EtOH) from Merck (Amsterdam, The Netherlands). All photosensitizers were diluted to reduce errors when injecting a small volume. Depending on the weight of the rat, the average amount of injected solution was 0.25 ml. All solutions were prepared with minimal light and kept at 4 °C in the dark prior to the experiments.
Germany, model 171 argon laser, pumping a model 375 dye laser with DCM as lasing medium) and 652 nm diode laser (Biolitec pharma, Edinburgh, The United Kingdom). Light was coupled from a bifurcated optical fiber into the base of a heated stage. Using a system of condensing lenses, a uniform and equal excitation field has been obtained. The fluence rate of both excitation wavelengths was 0.6 mW cm\(^{-2}\). The light transmitted through the chamber was collected using a f2.8/105 mm macro lens coupled to a CCD camera (ORCA-ER, Hamamatsu, Japan). The macro lens can be used to zoom in on a specific area within the sample resulting in a square field of view of 4.5 mm. For fluorescence and transmission imaging, the filter wheel (L.O.T.-Oriel, Stratford, USA) has been placed between the macro lens and CCD camera. Details on specification of filters, which were placed into the filter wheel, are provided by Kascakova et al.\(^{46}\). Note, three detection channels have been used in order to obtain fluorescence and transmission: 1) the band pass filter 720 ± 10 nm; 2) the long pass filter 763 nm; and 3) the neutral density filter with 10% transmission for both excitation wavelength lights. The integration time of the camera was 30 s for each excitation and filter combination used to visualize tissue fluorescence. The fluence delivered during these measurements was approximately 0.072 J cm\(^{-2}\) per measured time point and the total fluence for each chamber was approximately 0.504 J cm\(^{-2}\).

Principle of ratio fluorescence imaging technique
To accurately quantify the fluorescence intensity for mTHPC, a correction for the autofluorescence, tissue optical properties and thickness variation between chambers and between different tissues in chamber, is important. This correction was done according to the ratio fluorescence imaging technique developed by Kascakova et al.\(^{46}\). This method is based on dual-wavelength excitation and dual-wavelength detection in near infrared (NIR): One excitation wavelength is chosen to be at an absorption maximum of mTHPC (\(\lambda = 652\ nm\)) and the other at its absorption minimum (\(\lambda = 629\ nm\)). The two emission wavelengths are chosen to be at the secondary fluorescence maximum of mTHPC (at \(\lambda = 720\ nm\), e.g. band pass filter 720 ± 10 nm) and in the region of no photosensitizer fluorescence (long pass filter 763 nm). The correction is then provided according to the equation:

\[
R = \frac{F(\lambda_{exc652nm},\lambda_{emBP720nm}) - F(\lambda_{exc629nm},\lambda_{emBP720nm})}{F(\lambda_{exc629nm},\lambda_{emLP763nm})}
\]

\(F(\lambda_{exc},\lambda_{em})\) is the fluorescence image detected by excitation light source of 652 nm in the wavelength region 720 ± 10 nm, i.e. it is the fluorescence image detected by excitation at an absorption maximum of mTHPC and detected at the secondary fluorescence maximum of mTHPC. Since the fluorescence emission detected in the band pass filter 720 ± 10 nm by 652 nm excitation will lead to both: high mTHPC fluorescence emission as well as background autofluorescence excited by this wavelength, a correction for background auto-

Experimental procedures
Experiments were performed after the tumors in the skin fold chamber had visibly grown and adequate blood circulation in the window chamber was observed. The animals were sedated and placed on a temperature controlled positioning stage, allowing reproducible positioning of the animal under the camera using a customized imaging program. A schematic diagram of experimental setup is presented in figure 1. An autofluorescence image was made and subsequently one of the photosensitizers was injected via a tail vein of the animal. The mTHPC fluorescence pharmacokinetics in the chamber model was investigated in time after intravenous mTHPC administration. The dose used for intravenous injection was 0.15 mg/kg of mTHPC for each formulation. Eight rats were injected with Foscan, 5 with Fospeg and 5 with Foslip. At T=0 (before mTHPC injection), 5 minutes, 2, 4, 8, 24, 48 and 96 hours p.i. (post injection) fluorescence images of the chamber were recorded. Before imaging, the position of the chamber relative to the charge-coupled device (CCD) was checked to be the same compared to previous measurements. After 96 hours all animals were terminated by cervical dislocation. Animal experiments were performed under protocols approved by the experimental welfare committee of the Erasmus MC and conformed to Dutch and European regulations for animal experimentation.

Experimental setup
To obtain quantification of fluorescence images, the experimental setup (figure 1) and correction method of Kascakova et al.\(^{46}\) was used. Briefly, the localization of mTHPC within the chamber was visualized by acquiring fluorescence and transmission images with a combination of two excitation light sources: dye laser 629 nm (Spectra physics, Darmstadt,
fluorescence in the band pass filter 720 ± 10 nm is necessary. For this purpose, the subtraction of fluorescence signal detected in the band pass filter 720 ± 10 nm by excitation at 629 nm was included, e.g. \(F(\lambda_{\text{exc}629\text{nm}}, \lambda_{\text{emis}BP720\text{nm}}) \). Thus the \(F(\lambda_{\text{exc}629\text{nm}}, \lambda_{\text{emis}BP720\text{nm}}) \) is the fluorescence image detected by excitation at an absorption minimum of mTHPC and detected at a fluorescence maximum of mTHPC. It will lead to low mTHPC fluorescence emission and background autofluorescence excited by this wavelength. Assuming that excitation at 629 nm and 652 nm leads to the same autofluorescence, subtraction of the fluorescence signals detected in the 720 nm band pass filter will be corrected for autofluorescence. Subsequently, this difference is divided by the \(F(\lambda_{\text{exc}629\text{nm}}, \lambda_{\text{emis}LP763\text{nm}}) \). \(F(\lambda_{\text{exc}629\text{nm}}, \lambda_{\text{emis}LP763\text{nm}}) \) is the fluorescence image detected by excitation at an absorption minimum of mTHPC and detected at a fluorescence minimum of mTHPC. This will lead only to autofluorescence detection. Assuming that the autofluorescence is influenced by tissue absorbers, scatters and chamber thickness the same way as mTHPC fluorescence is, the division for autofluorescence will correct for tissue optical properties and chamber thickness.

Results

Figures 4-8 show the "fluorescence ratio of mTHPC corrected for tissue optical properties" (from here on termed; “fluorescence intensity”) in tumor tissue, normal tissue and vasculature. Figure 4 shows the fluorescence intensity after the administration of Foscan. In vasculature, fluorescence intensity has a peak at 5 minutes and decreases significantly after the procedure, the signal-to-noise ratio was increased by binning of the pixels (4x4). After the binning, the images were resized on the same size of 16-bit image at a resolution of 1344 x 1024 pixels. According to determined square field of view of macro lens, one picture element (pixel) corresponds to approximately 3 micrometer. In the corresponding transmission image the regions of interest were chosen for each tissue type. Tumor and normal tissue regions of interest were chosen so that no large vessels were in, or near the region. Each animal had on average three regions of interest for normal tissue, three regions of interest selected inside the tumor, and three up to five regions of interest for vasculature. Finally, the subtraction and division of the fluorescence images was done according to the ratio fluorescence imaging technique. Image analysis was done using Labview 7.1 (National Instruments Corporation, Austin, USA).

Statistical analysis

After the corrections, average grey scale values of selected regions of interest (ROIs) were measured. Normal tissue, vessels and tumor could be selected by the transmission image of the window chamber (figure 2). Fluorescence intensities of these ROIs were arranged by tissue type and photosensitizer formulation. Average fluorescence ratios of Foscan were determined from 3 animals, for Foslip and for Fospeg from 4 animals. Statistical analysis was done to compare means of measured fluorescence by performing the two-tailed t-test (\(\alpha = 0.05 \)) using Microcal Origin®, version 6.0 (Microcal Software, Inc., Northampton, MA).
Figure 4. mTHPC fluorescence kinetic profile (corrected fluorescence signal) of Foscan within the different tissue types. Error-bars indicate standard deviation of uncertainty.

Figure 5. mTHPC fluorescence kinetic profile (corrected fluorescence signal) of Foslip within the different tissue types. Error-bars indicate standard deviation of uncertainty.

Figure 6. mTHPC fluorescence kinetic profile (corrected fluorescence signal) of Fospeg within the different tissue types. Error-bars indicate standard deviation of uncertainty.

Figure 7. Comparison of mTHPC fluorescence kinetic profile (corrected fluorescence signal) of the three different formulations within the vasculature. Difference in fluorescence-kinetic profile between the different formulations of mTHPC is clear. Error-bars indicate standard deviation of uncertainty.

Fluorescence intensity increased significantly (p<0.001) from 5 minutes to 8 hours p.i. After this decrease, intensities increased significantly (p=0.022) until 24 hours, with a positive trend towards a second peak at 48 hours for vasculature. In tumor tissue, the fluorescence intensity increased significantly (p=0.019) between 2 and 24 hours p.i., reached a maximum between 24 – 48 hours and decreased significantly (p<0.001) after 48-hours. During the experiment we found significant (p<0.05) higher fluorescence intensity for vasculature compared to tumor tissue, except for the 24-hour time point (p=0.075). However, no time points showed a significant (p<0.05) difference in fluorescence intensity between normal tissue and tumor tissue (tumor selectivity).

Figure 5 shows the fluorescence intensity after the administration of Foslip. In vasculature, fluorescence intensity increased significantly (p=0.025) in the first 2 hours with a trend (p=0.085) towards a further increase at 4 hours. Between 4 and 96 hours, the intensities remained stable except for a small dip at 8 hours. In tumor tissue, fluorescence intensity increased significantly (p<0.05) in the first 4 hours and again (p=0.041) between 8 and 24 hours p.i. After 24 hours, intensities in tumor tissue remained at a maximum for at least the 96-hour time point. For the first 8 hours, intensities in the vasculature were significantly higher than in normal tissue. Interestingly, tumor selectivity (p<0.05) was shown for the 2- and 4-hour time points.

Figure 6 shows the fluorescence intensity after administration of Fospeg. In vasculature,
the fluorescence intensity remains stable throughout the experiment, with a positive trend (p=0.411) towards a 4-hour maximum. In tumor tissue, the intensity increased (p<0.05) significantly for the 2- and 8-hour time points. From then until the 48-hour time point, a plateau of maximum fluorescence intensity is reached. After 48 hours, the intensity in tumor decreases significantly. For the duration of the experiment, excluding the 8- and 24-hour time points, a significant (p<0.05) difference in fluorescence intensities was observed between the vasculature and (tumor) tissue. Unfortunately, no significant (p>0.05) difference between normal and tumor tissue (tumor selectivity) was found. However, the p-value of the 5-minute, 2- and 4-hour time points nearly reached significance (p=0.075, 0.137 and 0.089 respectively).

Figure 7 shows a comparison of the fluorescence intensities of Foscan, Foslip and Fospeg in vasculature. Overall, the fluorescence intensity of Fospeg is higher than both other formulations, in particular (p<0.05) at the 4, 8, 24 and 48 time points. A marked difference between formulations is that in the first 4 hours the intensity of Foscan decreases, while the intensity of both liposomal formulations increases to their maximum intensity. After 24 hours, all 3 formulations reach a stable intensity in vasculature.

Figure 8 shows a comparison of the fluorescence intensities of the three formulations in tumor tissue. Fospeg shows a tendency for highest intensities from 2 – 48 hrs with Foslip showing highest intensity at 96 hrs p.i. Error bars indicate standard deviation of uncertainty.

Discussion

In this study, we investigated the fluorescence kinetic profile of mTHPC after systemic administration of liposomal formulations (Foslip and Fospeg) and the ethanol based formulation (Foscan) in the window chamber model. With the ratio fluorescence imaging technique we used a combination of dual-wavelength excitation and dual-wavelength detection in the NIR region to correct for changes of tissue optical properties and thickness in time.

Fospeg showed overall high fluorescence intensities in tumor and normal tissue for all time points compared to the other formulations. Foslip reached fluorescence intensities in between Foscan and Fospeg. Our findings suggest that liposomal bound mTHPC enhances the bioavailability of mTHPC in vasculature and tumor tissue, in particular that of mTHPC encapsulated in pegylated liposomes (Fospeg). Furthermore, when comparing the times at which maximum fluorescence intensities were reached in tumor tissue, Fospeg showed an earlier maximum peak at 8 hours p.i., with both Foscan and Foslip reaching their maximum peak at 24 hours p.i. This suggests that Fospeg not only has increased fluorescence uptake in tumor tissue but also reaches this earlier compared to Foscan and Foslip. In our model, both Foslip and Fospeg showed high tumor-to-normal tissue ratios (tumor selectivity) at 2 and 4 hours p.i. However, only with Foslip the differences in fluorescence intensity between tumor and normal tissue proved to be significant at these time points.

In agreement with others, Foscan showed a first fluorescence peak in vasculature direct post injection with a second peak 24 hours post injection as described extensively by others. Interestingly, Fospeg showed overall higher vascular fluorescence intensities compared to Foscan as was seen by others. The higher intensity can be explained by a low recognition and thus low uptake of pegylated liposomes by the MPS, which enhances circulation time.

Another effect that increases the fluorescence intensity is the relatively higher amount of non-aggregated mTHPC molecules in liposomal formulations. However, despite the monomeric form of mTHPC within liposomes, Foslip showed fluorescence intensities in vasculature comparable to Foscan. This was also observed in an in vitro model by Kiesslich et al. as they found no difference in the relative amount of plasma protein bound Foscan or Foslip. A possible explanation is the rapid opsonization by plasma proteins or phagocytosis of conventional liposomes (like Foslip). Subsequent transportation to the MPS, thus decreasing the plasma half-life in vasculature. These effects could explain the observed low fluorescence in vasculature and the stable fluorescence pharmacokinetics in tissue with Foslip, according to Svensson et al.

Interestingly, Pegaz et al. found similar vascular kinetic
profile for Fospeg and Foslip during their experimental time of 30 minutes p.i. 12. This suggests that the conventional liposomes are intact for at least 30 minutes, after which Foslip is rapidly transferred from the vasculature. However, in our model the fluorescence intensity in the vasculature is also low, but does not decrease as rapidly as reported by Svensson et al. 26. The most interesting findings of our experiments were the higher and the earlier tumor fluorescence peaks with Fospeg and to a lesser extent with Foslip compared to Foscan. Our results were in agreement with other in vivo studies which also showed higher uptake of the liposomal mTHPC formulations in tumor tissue 25,41. The observed higher tumor fluorescence of the liposomal formulations compared to Foscan has several explanations. Aggregation of mTHPC molecules in Foscan has been observed and is more likely to occur than with liposomal bound mTHPC 34. This aggregation is associated with diminished fluorescence, increased uptake by the MPS and delayed uptake into tissue. As only when the aggregates are disassociated, mTHPC can bind to plasma proteins 34,51. Next to aggregation of the standard Foscan formulation, the increased circulation half-life of Foslip may explain its higher uptake into (tumor) tissue and subsequently leads to higher fluorescence intensities. This way, the shorter circulation half-life of Foslip and especially Foscan is likely to be responsible for the lower tumor fluorescence.

The 24 hour time point at which Foscan reached its maximum tumor fluorescence in our study was in agreement with the study of Jones et al. 12. For Fospeg Buchholz et al. found its maximum slightly earlier at 4 hours 45. For Foslip a comparison with Svensson et al. was difficult due to the short experimental times they investigated 25. As we mentioned previously, other studies have reported on higher tumor-to-normal tissue ratios (tumor selectivity) for other photosensitizers encapsulated in liposomes compared to the original formulation 25,32,33,39. We observed significant tumor selectivity for Foslip at early time points, as did Svensson et al. 25. For Fospeg we found a non-significant, trend towards tumor selectivity at early time points. In contrast, Buchholz et al. did find significant tumor selectivity for Fospeg, but they did not correct their optical measurements for variations in thickness or for tissue optical properties 45. The absence of tumor selectivity for Foscan we found, is in agreement with other studies 11,12. Our results thus suggest some tumor selectivity for liposomal formulations compared to ethanol based formulation, but limited to early time points.

Passive accumulation of mTHPC can have several explanations. One explanation is the tendency of proliferating cells (tumor) to show an increased number of LDL receptors, while liposomes serve as donors of photosensitizers to these lipoproteins 31,37. Thus, tumor cells would attract LDLs with entrapped photosensitizers. A second explanation for passive accumulation is the EPR effect 31,37,38. This effect is present when the vasculature becomes more permeable for larger molecules due to local biochemical changes in tumor tissue or due to the often poor quality of tumor vessels originated from tumor-angiogenesis. The increased retention of the larger molecules is present when lymphatic drainage is diminished, which is characteristic of tumor tissue. This EPR effect can lead to accumulation of high molecular drugs, like liposomes, in tumor tissue 29,31,40.

A surprising finding was the significant (p<0.05) higher mTHPC fluorescence of Foslip at 96 hours compared to both other formulations. Detailed analysis of this time point shows that while the fluorescence of both Foscan and Fospeg decrease, the fluorescence of Foslip remains stable. A possible explanation for this finding could be the described association of conventional liposomes with the MPS 26. This potentially causes association of conventional liposomes to inflammatory cells close to tumor tissue. With Fospeg this is much less, as pegylated liposomes are harder to recognize by the MPS. The exact effects of mTHPC aggregates on the optical fluorescence measurements are not fully known. While mTHPC molecules are in monomeric form when incorporated into liposomes, aggregates can form when distributed within cells at high concentrations 34. These aggregates can not be accurately measured by optical fluorescence measurements, and could result in underestimation of the amount of mTHPC molecules. However, one might assume that only mTHPC molecules that are capable to fluoresce are potentially important for PDT.

In future experiments, it is important to consider that higher fluorescence intensities may not necessarily lead to higher PDT efficacy response. Although it is known that other hydrophobic drugs encapsulated into liposomes display a higher photosensitizing efficacy compared to the original formulation 31,32,33, only two in vivo studies briefly describe at least similar efficacy for liposomal mTHPC compared to Foscan 41,42. Very little conclusions can be drawn from these studies since they did not systematically investigate the PDT response of the different formulations. Therefore studies should be undertaken to demonstrate the (pre) clinical relevance of the different fluorescence kinetics.

Beyond the scope of this study but interesting nonetheless, is the superior biocompatibility of liposomal formulations. Besides the water-soluble formulation of liposomal mTHPC, a lower dark toxicity in vitro compared to Foscan is described, i.e. a low cytotoxic effect without irradiation 44,45.

Conclusion

In summary, our study showed that both liposomal mTHPC formulations reached higher tumor fluorescence intensities at earlier time points compared to the ethanol based mTHPC. This was more pronounced with the pegylated liposomes. At early time points, both liposomal formulations showed higher fluorescence in tumor compared to normal tissue, even reaching significant levels for Foslip. These characteristics of the liposomal mTHPC formulations are interesting as it suggests a possibility for a lower drug dose and a shorter drug-light interval in the future. Our findings suggest that for photodynamic therapy, Foslip and especially Fospeg have interesting advantages over Foscan. Therefore, further experiments designed for evaluating the PDT effect with liposomal mTHPC are needed.
References

Chapter 3.2

In vivo quantification of photosensitizer fluorescence in the window-chamber tumor model using dual wavelength excitation and near infrared imaging

This chapter is an edited version of:
Lasers in Medical Science 2011; 26(6): 789-801
Abstract

Background and objective. A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method is developed and applied to monitor photosensitizer meta-tetra(hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber.

Materials and Methods. The quantification method employs a combination of dual-wavelength excitation and dual-wavelength detection. Excitation and detection wavelengths were selected in the near-infrared region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties.

Discussion. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed.

Introduction

The primary response to photodynamic therapy (PDT) is determined by the tissue oxygenation, light fluence (rate) and local concentration of photosensitizer. The biological activity of the photosensitizer within the illuminated volume is related to the concentration of fluorescent active form of photosensitizer. Thus optical imaging of photosensitizer fluorescence (using light doses much lower than are necessary for PDT damage) aids the understanding of PDT by monitoring the photosensitizer spatial distribution and its fluorescence activity. For many years, observation chambers implanted in various animal species and in humans have been used for intravitral microscopy of living tissue. Through the possibility to transplant neoplastic tissue within the chamber, the skin-fold observation chamber, also known as the window chamber model, was especially developed to monitor the early vascular events, anti-tumor effects and pharmacokinetics of photosensitizers.

However, the ability to accurately quantify the in vivo measured fluorescence is critical. The fluorescence signal originates not only from the photosensitizer, but also from various other fluorescent molecules naturally present in the tissue, that can cause an unknown and variable amount of background autofluorescence. Moreover, the measured fluorescence signal is also influenced by geometric factors (the distance and the angle of the excitation and detection source relative to tissue surface) and the tissue optics (scattering and absorption of the excitation and fluorescence emission light in the tissue). For example, tissues with higher background absorption coefficients, e.g. due to high melanin or blood content, can decrease the propagation of both the excitation and fluorescence emission light. This is further complicated by the fact that the absorption spectrum of blood depends on its oxygenation. In addition, tumor tissue is less scattering than normal tissue and the thickness for the different types of tissue within the chamber varies as well. In general, the tumor within the chamber is thicker than the normal tissue. Furthermore, normal tissue can also show variability in thickness at the different sites within the chamber. Since the collected fluorescence image is influenced by all of the factors discussed above (optical properties of the tissue, tissue autofluorescence, chamber thickness variations and geometric illumination and collection factors), an imaging methodology that corrects for these factors is necessary to obtain quantitative photosensitizer fluorescence images.

Several techniques have been developed to correct the measured fluorescence for tissue autofluorescence, absorption and scattering properties of the tissue and variations in irradiance, excitation geometry and detection efficiency. Profo calculated the ratio of fluorescence marker signal over the reference autofluorescence. Baumgartner et al. and Witjes et al. described a subtraction method, where the autofluorescence background signal is subtracted using dual-wavelength excitation. In our group, Sinaasappel and Sterenborg developed the double ratio technique based on dual-wavelength excitation and dual-wavelength detection and more recently Saarnak et al. published a ratiometric method based...
on measuring the autofluorescence signal prior to marker administration. Bogaards et al. 14 reviewed the performance of these correction methods for various input parameters over ranges that can be expected during in vivo imaging around a standard set of optical properties representing those for human skin. The study revealed that the subtraction method of Baumgartner et al. 20 corrected the detected fluorescence signal of marker for variations in autofluorescence, but applied subtraction is not sufficient to correct for variations in irradiance, excitation geometry and tissue optical properties. The ratiometric methods of Profio 19, Sinaasappel and Sterenborg 15 and Saarnak et al. 22 completely corrected for variations in irradiance, excitation geometry and detection efficiency. The correction for tissue optical properties was to a great extent also achieved using ratiometric methods. However, the method of Profio 19 remained dependent on changes in autofluorescence. The method of Saarnak et al. 22 demonstrated the best quantification performance, as it depends only on the concentration of the fluorophore. This method is based on image acquisition before and after fluorophore administration, and it requires that these subsequent images are taken from the same tissue site under an identical geometry. Here the assumption was made, that the optical properties and autofluorescence may change spatially within the image, but remain constant over the time interval between image acquisitions. However, these conditions are typically not met during window chamber pharmacokinetics experiments. Especially the assumption that autofluorescence, tissue optical properties and tissue thickness remain constant over the time period for which marker pharmacokinetics is studied (typically over periods of up to 7 days) may not be valid. In this case, the method of Sinaasappel and Sterenborg 15, which does not have such restrictive conditions with respect to window chamber changes over time, was revealed to be a better option for fluorophore quantification. However, the double ratio method of Sinaasappel and Sterenborg 15 suffers from a significant drawback: the relation between marker fluorescence and marker concentration is non-linear and saturates for high marker concentrations. This severely limits the applicability of the double ratio correction technique for determining absolute fluorophore concentrations for the study of photosensitizer pharmacokinetics, where large variations (several orders of magnitude) in fluorophore concentrations need to be quantified. 14,22, In summary, two important factors limit the quantification performance of state-of-the-art ratiometric methods: 1) the remaining dependence of the methods on time-dependent variations in autofluorescence, tissue optical properties and tissue thickness 15 and 2) the relation between marker fluorescence and marker concentration is non-linear and saturates for high marker concentrations. In the present study we address both issues using a novel ratiometric method that corrects for time-dependent variations in tissue thickness and tissue optical properties and features a linear response even for high photosensitizer concentrations. In addition, in our method we minimize the dependence of the fluorescence signal on tissue optical properties by selecting the excitation and emission wavelengths in the red and in the near infrared (NIR), where the tissue absorption and scattering coefficients are relatively small and do not vary much with wavelength 14. We have applied our method to measure the pharmacokinetics of the second–generation photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC, INN: Temoporfin, Foscan®) in the rat skin-fold observation chamber (window chamber model).

Materials and methods

Materials

mTHPC (Foscan) (c = 4 mg mTHPC/ml dissolved in PEG, EtOH, water free solution) was obtained from Biolitec pharma (Edinburgh, The United Kingdom). Alexa Fluor 720 was obtained from Invitrogen (Breda, The Netherlands). Polyethylene glycol 400 (PEG400), Evans Blue and Titanium dioxide (TiO2) were obtained from Sigma-Aldrich (Zwijndrecht, The Netherlands) and 96% ethanol (EtOH) was purchased from Merck (Amsterdam, The Netherlands). Stock solution of mTHPC was dissolved in a solution of PEG400:EtOH:water = 3:2:5 (v/v) to a concentration c = 0.126 mg/ml. The solution was stored in the dark for at least 30 minutes prior to injection, after which the sample was determined to be stable, i.e., no changes in fluorescence peak intensity were detected. To investigate the state of photosensitizer after 30 minutes from mixing with PEG:EtOH: H2O mixture, the absorption spectra of mTHPC were recorded in the concentration range c = 0.11 – 200 μM. Over the concentration range the spectrum of mTHPC did not change and the solution accurately followed Beer’s law with no evidence of spectral peak broadening or shifts in absorption maxima. The same species of mTHPC, i.e., the monomer, is present at the concentration administrated to the animal. The prepared mTHPC solution was administered intravenously at a dose of 0.15 mg kg−1 body weight under Isoflurane/O2/N2O anesthesia.

Animal model

The animal experiment committee of the Erasmus Medical Center approved the experimental design for this study. Skin-fold observation chambers were prepared using a slightly modified technique to the one that has been described previously. 10,23 Briefly, the chamber was prepared on the back of female Fisher-344 rats (weight m = 144 ± 3 g) in four operations (carried out under general Isoflurane/O2/N2O anesthesia) during the period of two weeks. As a result of these operations a thin layer of subcutaneous tissue was clamped between mice and cover slide. In the first operation sterile air (12 ml) was subcutaneously injected on the back of the rat to gently separate the skin from underlying tissue. In the second operation plastic ring and cover slide was positioned under the skin above the subcutaneous tissue matching the vessels. The third operation was proceeding on the second week. During this operation, the skin was folded, prepared and fixed in the splint. Finally, during the last operation, the mammary adenocarcinoma (R3230AC) tumor was transplanted in the layer of normal tissue, reached by unscrewing the cover slide on top of the chamber. Within five to seven days the chamber was ready for treatment, i.e. the tumor was supported by blood ves-
sels and had visibly grown. Ideally the chamber contained fat cells and capillaries over an area of approximately 1 cm in diameter with some supporting arterioles and venules.

Experimental setup
A schematic diagram of the experimental setup is presented in figure 1. The mTHPC fluorescence pharmacokinetics in the chamber model was investigated in time after intravenous mTHPC administration. The experimental time points were: 0 min (before mTHPC administration) and 5 min, 2 hours, 4 hours, 8 hours, 24 hours, 48 hours and 96 hours after mTHPC i.v. injection. The localization of photosensitizer within the chamber was visualized by acquiring fluorescence and transmission images with two excitation laser light sources: dye laser 629 nm pumped by argon ion laser (Spectra Physics, Darmstadt, Germany) and 652 nm diode laser (Biolitec pharma, Edinburgh, The United Kingdom). Light was coupled from a bifurcated optical fiber using a system of condensing lenses into the base of a heated X-Y stage to produce a uniform distribution of both excitation wavelength lights through the sample. The fluence rate of each excitation illumination was 0.6 mW/cm² and the excitation fields were uniform and equal. For fluorescence and transmission imaging light transmitted through the chamber was collected using an f2,8/105 mm macro lens and imaged onto a charge-coupled device (CCD) camera (ORCA-ER, Hamamatsu, Japan). The macro lens can be used to zoom in on a specific area within the sample resulting in a square field of view of 4.5 mm. Detection filters were placed in a filter wheel (L.O.T.-Oriel, Stratford, USA) between the macro lens and the CCD camera in order to obtain the fluorescence (band pass filter 720 ± 10 nm (Omega Optical, Blattleboro, USA), long pass filter 763 nm (transmission: 763 nm – 1050 nm, Omega Optical, Blattleboro, USA) and transmission (neutral density filter with 10% transmission for excitation wavelength light sources 652 nm and 629 nm, Omega Optical, Blattleboro, USA). To eliminate the presence of excitation light in the fluorescence detection channels, the identical long pass filters 690 nm (transmission: 690 nm – 1050 nm, Omega Optical, Blattleboro, USA), were placed together with band pass filter 720 ± 10 nm and long pass filter 763 nm. In addition, to shield the CCD camera from very long wavelength light, a short pass filter 850 nm (transmission: 845 nm – 585 nm, blocking: 880 nm – 1100 nm, L.O.T.-Oriel, Stratford, USA) was placed between the exit of the filter wheel and the CCD camera. The integration time of the camera was 30 s for each excitation and filter combination used to visualize tissue fluorescence. The fluence delivered during these measurements was approximately 0.072 J cm⁻² per measurement time point. The total fluence delivered to each chamber was approximately 0.504 J cm⁻² during the course of the experiment. Between measured time points, animals were conscious and placed in a dark and warm environment.

Principle of correction method
The ratiometric method used in this study is illustrated in figure 2, where the in vivo absorption and emission spectra of mTHPC are presented with the combined transmission characteristics of the filters used for fluorescence detection.
The method presented here is based on dual-wavelength excitation and dual-wavelength detection: One excitation wavelength is chosen to be at an absorption maximum of mTHPC and the other at its absorption minimum. The two emission wavelengths are chosen to be at the secondary fluorescence maximum of mTHPC (at $\lambda = 720$ nm) and in the region of no photosensitizer fluorescence. The reason for such a wavelength selection was to detect the changes in amount of mTHPC fluorescence and monitor the autofluorescence changes in real time. The excitation of mTHPC with 652 nm wavelength (Q band absorption maximum of mTHPC (figure 2)) will produce the highest fluorescence compared to excitation by any other wavelength in the red region of the mTHPC spectra. The second excitation wavelength was 629 nm. This excitation wavelength corresponds to an absorption minimum of mTHPC (figure 2). Therefore, excitation of mTHPC with 629 nm wavelength leads to only small amounts of mTHPC fluorescence emission at 720 nm. Furthermore, the fluorescence of mTHPC decreases rapidly beyond 730 nm (with a minimal fluorescence for wavelengths above 750). Therefore, excitation at 629 nm and detection of fluorescence for wavelengths longer than 763 nm will give us information on how background autofluorescence changes with time. It is important to note, that fluorescence emission detected in the band pass filter 720 ± 10 nm ($\lambda_{em} = 652$ nm) is a spectral convolution of mTHPC fluorescence and background autofluorescence. Therefore, correction for background autofluorescence in the band pass filter 720 ± 10 nm is necessary. For this purpose, the subtraction of fluorescence signal detected in the band pass filter 720 ± 10 nm by excitation at 629 nm was included. Subsequently, to ensure correction for tissue optical properties, this difference is divided by the autofluorescence signal excited by 629 nm wavelength and detected in the region of wavelengths longer than 763 nm.

Two assumptions are made: 1) the excitation at 629 nm and 652 nm wavelengths lead to the same autofluorescence, i.e. difference in yield of fluorescence for wavelengths above 750). Therefore, excitation of mTHPC with 652 nm wavelength does not lead to mTHPC fluorescence detection at wavelengths longer than 763 nm.

Subtraction and division of the images was performed according to the equation:

$$ R = \frac{F(\lambda_{exc 652 nm}, \lambda_{emis BP 720 nm}) - F(\lambda_{exc 629 nm}, \lambda_{emis BP 720 nm})}{F(\lambda_{exc 629 nm}, \lambda_{emis LP 763 nm})} \quad (1) $$

where $F(\lambda_{exc 652 nm}, \lambda_{emis BP 720 nm})$ is the fluorescence image detected by excitation light source of 652 nm in the wavelength region 720 ± 10 nm; $F(\lambda_{exc 629 nm}, \lambda_{emis BP 720 nm})$ is fluorescence image registered by excitation light of 629 nm wavelength and fluorescence detected in the wavelength region 720 ± 10 nm and $F(\lambda_{exc 629 nm}, \lambda_{emis LP 763 nm})$ is the image excited by wavelength 629 nm, fluorescence detection for the wavelength region > 763 nm.

Image analysis

Image analysis was performed using the Labview 7.1 (National Instruments Corporation, Austin, USA). Images were first corrected for background and minor variations in fluence rate of the corresponding excitation light sources. In the second step, the sequence of fluorescence images from each animal was registered by translation and rotation using anatomical landmarks identified in the corresponding transmission images. In the next step, binning of the pixels was performed (4x4) to increase the signal to noise ratio. After the pixel binning the images were resized on the same size of 16-bit image at a resolution of 1344x1024 pixels. The registration of images from the second step of analysis enabled us to determine the fluorescence intensity of each tissue type from the same area as follows: in the corresponding transmission image the regions of interest were chosen for each tissue type. Tumor and normal tissue regions of interest were chosen so that no large vessels were in, or close to the region. Thus in every animal, three regions of interest were chosen for normal tissue, three regions of interest selected inside the tumor and depending on vessels content, three up to five regions of interest were selected within the vessels. The same selected regions of interest were also applied for images corrected by ratio imaging technique, where the subtraction and division of the images was done according to the equation (1).

To investigate the validity of our ratiometric imaging correction technique, we analyzed vessels of various diameters. Blood vessel diameter was estimated from the transmission images. According to determined square field of view of macro lens, one picture element (pixel) corresponds to approximately 3 μm.

Statistical analysis

In the present study, 3 female Fisher-344 rats were used to determine autofluorescence and transmission intensity profiles. However, the mTHPC pharmacokinetics profile was evaluated just in one animal. The aim of our current study is to present the correction method and not to validate the mTHPC pharmacokinetics profile. Presentation of the results from one animal avoids the increase in standard deviations due to intra-animal (biological) variations. A two-tailed t-test was used to determine significance for the difference in autofluorescence signal measured by two different excitation light sources. Results with a p value below 0.05 were considered significant. Statistical analysis was done using Microcal Origin®, version 6.0 (Microcal Software, Inc., Northampton, MA).

Results

Window chamber tissue optical properties and autofluorescence

Figure 3 shows the white light images of the chamber model immediately before mTHPC injection and 96 hours later. Tumor tissue is easily recognized as a circular area of higher light transmission compared to the surrounding normal tissue. Vessels can be recognized as...
visually darker tissue, i.e., more light-absorbing areas. In comparison with the first day of the experiment (Figure 3A), after 96 hours (Figure 3B), the natural changes in the chamber model are clearly visible. The tumor size increased and the position of the vessels surrounding the tumor changed.

Figure 4 demonstrates the transmission intensity time profile of 652 nm excitation light collected from different tissue types: vasculature, normal tissue, and tumor tissue. The standard deviation for time point within the tissue type was calculated from region of interest of three control animals (in every animal, three up to five regions of interest were selected for each tissue type).

Figure 5. Fluorescence intensity collected from different tissue types in control animals (without mTHPC, corresponding to the time 0 hours from the chamber preparation) using (A) band pass filter 720 ± 10 nm, (B) long pass filter 763 nm. Black and gray columns represent 629 nm and 652 nm excitation respectively. The standard deviation was calculated from region of interests of three control animals (in every animal, three up to five regions of interest were selected for each tissue type).

Figure 6. Fluorescence pharmacokinetics of autofluorescence (629 nm excitation, > 763 nm detection) for different tissue types: vasculature, normal tissue, and tumor tissue. The standard deviations represent variations between a minimum of three regions of interest for each tissue type within the chamber model of one animal.
Within the time no significant changes in the transmission profile of 652 nm excitation light are detected in any of the tissue types, i.e., the intensity of the transmission light does not change in time.

In figure 5, the difference between fluorescence intensities of the background autofluorescence (measured before mTHPC administration) excited by wavelengths 629 nm and 652 nm, detected in the emission channels (band pass 720 ± 10 nm and long pass 763 nm) is presented. For both detection channels, for the same tissue type, the fluorescence intensity using 652 nm excitation was not significantly different (p > 0.05) from 629 nm excitation.

Figure 6 shows the autofluorescence kinetics (excitation at 629 nm, long pass filter 763 nm). The fluorescence kinetics for all tissues changed in the same manner, i.e., from the measurement time points beyond 24 hours an increase in fluorescence intensity is detected. The autofluorescence signal from the vasculature is 1.2 times lower than for normal tissue and 1.5 times lower in comparison with fluorescence intensity detected in the tumor area.

Fluorescence pharmacokinetics of mTHPC

In figure 7, the time profile of the chamber model after mTHPC administration is demonstrated. Figure 7A shows the time profile of chamber transmission images. The time-dependent evolution of the uncorrected fluorescence images (excitation 652 nm, detection BP 720) of mTHPC pharmacokinetics within the chamber model is shown in figure 7B. In all uncorrected fluorescence images the borders of the chamber are clearly visible due to the
fluorescence properties of the plastic ring surrounding the chamber. Figure 7D shows the mTHPC uncorrected fluorescence pharmacokinetic profile within the different tissue types. Five minutes after mTHPC administration, the fluorescence intensity is highest in the vessels and decreases for longer time points. Four hours after mTHPC administration the difference of fluorescence observed in vessels and other tissue types reduces and from time points beyond 8 hours after mTHPC administration the fluorescence distribution in tumor and normal tissue is similar. Normal and tumor tissue showed no significant difference in fluorescence intensity over the investigated period and follow the same type of kinetic profile (figure 7D): between 5 min and 8 hours, the fluorescence intensity does not change significantly, while above the 8 hour time point, an increase in fluorescence is observed. The intensity increased up to 48 hours after mTHPC administration and decreased for the 96 hours time point. For all incubation time points, the standard deviations are higher for normal tissue than for tumor tissue or vessel area.

The time-dependent evolution of the corrected fluorescence images of mTHPC (images corrected by ratio imaging technique, Equation (1)) within the chamber is shown in figure 7C. According to transmission images (figure 7A), at time point 5 min from mTHPC administration, only vessels show fluorescence. The intensity of fluorescence within the vessels decreased for longer incubation time points. At t < 4 hours the contours of the vessels are not as clear anymore due to mTHPC penetration through vessel walls into the tissue. For t > 8 hours after mTHPC administration the fluorescence is now within all structures of the chamber. Note that the fluorescence of the plastic ring (figure 7B) is not visible in any of corrected images (figure 7C). The time dependence of the corrected fluorescence intensity for the different tissue types is plotted in figure 7E. The signal detected from the vessels shows high variations (large error bars) for times below 24 hours. The variation was highest for 5 min followed by decreasing variations for longer incubation time points. Beyond 24 hours these variations minimized. In contrast, variations of the corrected fluorescence signal for normal tissue and tumor tissue are small throughout the time-course of the experiment.

Vessel diameter
Figure 8 shows the corrected fluorescence signal as a function of time from mTHPC administration detected in vessels of different diameters. The pharmacokinetic profile of mTHPC fluorescence is similar for all vessels: 5 min after mTHPC administration, the fluorescence intensity appears to be the highest, followed by a decrease for longer time points. Between 24 and 96 hours no significant changes of fluorescence intensity are detected. However, the corrected fluorescence signal in figure 8 demonstrates large differences in fluorescence intensity for the different vessel diameters. With decreasing vessel diameter, the fluorescence intensity decreases. The difference of fluorescence intensity is highest for early time points after mTHPC i.v. administration (t < 24 hours); the highest difference is detected for the 5 minute time point followed by a decrease in difference up to 8 hours. Between 24 and 96 hours time points the fluorescence intensity does not show any dependence on vessel diameter.

Discussion
We have investigated the use of a ratiometric imaging technique for monitoring the kinetics of mTHPC fluorescence in the rat skin-fold observation chamber. The chamber model was specifically designed for monitoring the pharmacokinetics of photosensitizers used in PDT. However, a problem associated with fluorescence measurements is the difficulty of obtaining quantitative fluorophore fluorescence, due to varying optical properties of tissues and differences in tissue thickness. This has important consequences for the general interpretation of fluorescence measurements in the window chamber. For example, in a previous study, our group determined the spatial distribution of the kinetics of protoporphyrin IX (PpIX) fluorescence during ALA-PDT. PpIX fluorescence kinetics were measured in different tissue types and conclusions were based on data that was not corrected for differences in tissue optical properties and differences in the thickness within and between window chambers. Although the conclusions were based on determining the rate of fluorescence increase in each tissue type separately, temporal variations in tissue optical properties and differences in the thickness of different tissues were not considered. This may be of particular importance, especially when the relationship between the increase of PpIX fluorescence with distance from an arteriole and venule was investigated. Thus in the present study our intention was to investigate the difference in optical properties of different types of tissue and its time changes in the chamber model. The methodology proposed here accounts for the wavelength dependence of tissue optical properties and overcomes the non-linearity of previously published ratiometric methods.
Tissue optical properties of chamber

Figures 4 - 6 clearly show the differences between the fluorescence and transmission intensity acquired from different types of tissue during the course of the experiment. The fluorescence intensity detected from vessels was lower than that from normal or tumor tissue. Considering the blood content within these vessels and the absorption spectra of oxy- and deoxy hemoglobin, the result observed in figure 5A or 5B is not surprising. The same effect is also evident in the transmission intensity profile from different tissue types (figure 4), and in the transmission images of the chamber (figure 7A). The chamber vasculature represents the tissue with the highest absorption coefficient, which significantly attenuates the propagation of light. In contrast, tumor tissue exhibits higher autofluorescence intensity than the normal tissue area (figure 5, figure 6). This might be caused by 1) a lower absorption coefficient of tumor tissue, 2) a different scattering coefficient of tumor tissue (it is not evident whether a higher or lower scattering coefficient would result in a higher fluorescence yield), 3) a larger thickness of tumor tissue, 4) a higher native fluorophore concentration in tumor tissue. Most likely a combination of these factors results in the observed difference.

Validation of assumptions

In the study of Bogaards et al. 24 it was shown, that the performance of imaging techniques can be improved by selecting the excitation and emission wavelengths towards the NIR. Thus in this study, the excitation wavelengths were carefully selected between 620 and 840 nm, where the tissue absorption and scattering are relatively small. In addition, the combination of exciting tissue fluorescence at a wavelength where the photosensitizer absorbs minimally and detection at the wavelength of no photosensitizer fluorescence, allowed us to monitor kinetics of tissue auto fluorescence during the course of the experiment. According to the principle of the method we have presented (Equation 1), the assumption was made, that both excitation wavelengths used in this study lead to the same autofluorescence. This assumption is confirmed in figure 5 where the fluorescence intensity detected from different tissue types of control animals is plotted. Within the same tissue type, the fluorescence intensity was not significantly different using 629 and 652 nm excitation.

The second assumption underlying our correction algorithm is that only signal from tissue autofluorescence can be detected in the wavelength region > 763 nm, using 629 nm wavelength excitation. This choice of wavelengths was based on the minimal absorption of mTHPC at the excitation wavelength and on the lack of mTHPC emission in the wavelength region > 763 nm (figure 2). In figure 6, we did not detect any changes of autofluorescence within the first measured time points in any of the tissue types. In contrast, mTHPC fluorescence pharmacokinetics profile (excitation 652 nm, fluorescence detection at 720 ± 10 nm (figure 7D), revealed large differences in fluorescence intensity within the vessels 5 minutes after the mTHPC administration. It is very unlikely, that there are changes of tissue autofluorescence over the timescale of these first few measurements compared to the first measurement of autofluorescence (at t = 0). Therefore, we conclude that the increase of fluorescence intensity observed in chamber vessels in the band pass filter 720 ± 10 nm (figure 7B, 7D) is due to fluorescence emission of mTHPC. The fact that this effect was not seen in figure 6, confirmed that the signal detected in the wavelength region > 763 nm (using 629 nm wavelength excitation) is solely due to tissue autofluorescence.

Temporal changes of tissue optical properties within the chamber

The detection of autofluorescence within the timeframe of the experiment (figure 6) revealed that the autofluorescence kinetics for all tissues changed in the same manner, i.e. for measurement time points above 24 hours there is a (steady) increase in autofluorescence intensity. The cause of the observed effect might be chamber thickness changes and/or the changes in tissue optical properties at later time points. Unfortunately our data does not present conclusive evidence as to which of these effects is dominant. The fact that these changes occur within the time-course of the experiment demonstrates the necessity for a correction method, since the marker fluorescence will be affected by these chamber changes similar to the auto fluorescence.

Fluorescence pharmacokinetics of mTHPC

Figures 4, 5 and 6 clearly illustrate the necessity of an appropriate correction technique for quantitative measurement of photosensitizer fluorescence in the window chamber. If we were to base conclusions on the pharmacokinetics profile of mTHPC from figure 7D (uncorrected fluorescence profile), then the tumor/normal tissue ratio is significantly higher at early time points after mTHPC administration. Taking into account figures 4, 5 and 6, this is actually due to a larger thickness and/or smaller absorption/scattering content of tumor tissue, rather than due to a higher mTHPC concentration within the tumor. The larger standard deviation associated with data detected from normal tissue can be explained by thickness inhomogeneities and due to the presence or absence of micro-capillaries. These variations are only visible at high magnification and are difficult to avoid in a model, where normal tissue has a significant component of microvasculature.

The correction of raw fluorescence data using the ratiometric correction method that we presented, results in a significant decrease in the spatial variation associated with a single measurement time point (evidenced by smaller error bars) and does not report a significant difference between the profile of mTHPC pharmacokinetics between tumor and normal tissue up to 24 hours after the administration of mTHPC (figure 7E). In addition, we observe that in all uncorrected images, a fluorescent boarder to the chamber is clearly visible (figure 7B). This is due to the presence of a fluorescent plastic ring on which the chamber is mounted. Corrected fluorescence images do not show this artifact (figure 7C).
Chapter 3.2

pendence of mTHPC fluorescence on vessel diameter for later time points (between 24 and 96 hours). Here the progressive re-distribution of mTHPC from the plasma into and through the vasculature into normal tissue results in a correction that is not influenced by the different spatial distribution of autofluorescence and marker fluorophore. This re-distribution of mTHPC is in accordance with the previously published pharmacokinetic profile of mTHPC in blood and other tissues 28-31. Plasma mTHPC levels are high immediately after mTHPC injection (5 min after i.v. administration) and decrease exponentially thereafter. In mice and rats, mTHPC shows a bi-exponential decline with half-life values of 0.5 -1.3 h for the initial decline and 6.9-20.9 hours for the elimination phase 28-31.

Optical phantoms and Double ratio imaging

We tested the performance of our correction algorithm in optical phantoms. To maintain the geometry of our transmission measurements and to avoid the precipitation of scattering centers we prepared solid silicone phantoms containing mTHPC. We chose to use the absorber Evans Blue and TiO2 to simulate tissue absorption and scattering. Preparing solid phantoms with spectral properties that match those of mTHPC and tissue autofluorescence in vivo proved to be very challenging. Unfavorable spectral shifts and changes in extinction coefficients and fluorescence quantum yield were observed in dyes we selected to match the optical properties of tissue. For example the choice of phantom autofluorophore was particular difficult. We found that in silicone Alexa-Fluor 720 had a negligible fluorescence quantum yield whereas Evans Blue showed significant fluorescence at both excitation wavelengths. Given these problems we chose to compare our correction algorithm with a

Figure 10. mTHPC pharmacokinetic profile (corrected fluorescence signal by double ratio fluorescence imaging technique of Sinaasappel and Sterenborg (15)) within the different tissue types: vasculature, normal tissue and tumor tissue.

Limitations of the correction method

As expected, the uncorrected signals (figure 7D) showed larger intra-chamber variations (visible as error bars) than the signal corrected using the ratiometric technique (figure 7E). The exception to this trend was observed in vessels, where the error bars were still high at early time points. These large error bars for mTHPC in vessels at early time points are caused by averaging contributions from small and large vessels, combined with vessel-diameter dependent mTHPC fluorescence yields for early time points. The dependence of corrected mTHPC fluorescence pharmacokinetics profile as a function of vessel diameter (figure 8) shows that for larger diameter vessels we obtained a higher fluorescence intensity of mTHPC, than for small vessels. We believe that the origin of this effect is due to a limitation of our correction method, which is illustrated by considering the spatial distribution of absorbers and fluorophores within the vasculature at early time points (figure 9). While it is well known that there are a number of circulating endogenous fluorophores within the vessels, such as water-soluble porphyrins and erythrocytes themselves 29-37, the autofluorescence from the window chamber vasculature is likely to be dominated by the contribution from connective tissue of vessel walls (in particular the tunica media) and the surrounding tissue. For early time points mTHPC is primarily localized in the blood plasma 28-31. Thus localization of mTHPC is inhomogeneous with respect to the tissue background autofluorescence (figure 9B). Since our ratiometric method corrects for tissue optical properties and chamber thickness using the background autofluorescence, our method is most suitable for situations where the marker fluorescence and autofluorescence are co-localized; a condition that is not met in case of mTHPC at early time points. A confirmation of our hypothesis is the absence of a dependence of mTHPC fluorescence on vessel diameter for later time points (between 24 and 96 hours). Here the progressive re-distribution of mTHPC from the plasma into and through the vasculature into normal tissue results in a correction that is not influenced by the different spatial distribution of autofluorescence and marker fluorophore. This re-distribution of mTHPC is in accordance with the previously published pharmacokinetic profile of mTHPC in blood and other tissues 28-31. Plasma mTHPC levels are high immediately after mTHPC injection (5 min after i.v. administration) and decrease exponentially thereafter. In mice and rats, mTHPC shows a bi-exponential decline with half-life values of 0.5 -1.3 h for the initial decline and 6.9-20.9 hours for the elimination phase 28-31.

Optical phantoms and Double ratio imaging

We tested the performance of our correction algorithm in optical phantoms. To maintain the geometry of our transmission measurements and to avoid the precipitation of scattering centers we prepared solid silicone phantoms containing mTHPC. We chose to use the absorber Evans Blue and TiO2 to simulate tissue absorption and scattering. Preparing solid phantoms with spectral properties that match those of mTHPC and tissue autofluorescence in vivo proved to be very challenging. Unfavorable spectral shifts and changes in extinction coefficients and fluorescence quantum yield were observed in dyes we selected to match the optical properties of tissue. For example the choice of phantom autofluorophore was particular difficult. We found that in silicone Alexa-Fluor 720 had a negligible fluorescence quantum yield whereas Evans Blue showed significant fluorescence at both excitation wavelengths. Given these problems we chose to compare our correction algorithm with a
previously validated ratiometric technique, in which a double ratio (DR) is formed using two excitation and two detection wavelengths \(^ {15} \). The result of this analysis can be seen in figure 10, where the mTHPC pharmacokinetic profile within the different tissue types is presented. A comparison of the present correction method (figure 7E) shows a similar pharmacokinetics profile for all tissue types. However, there is an important difference between DR profiles in areas of very high fluorescence intensity, in particular for short administration times in vessels. The non-linear relationship between double ratio and fluorophore concentration is a well-understood effect of double ratio imaging \(^ {14} \). This saturation effect is a significant limitation of the DR correction technique for determining absolute fluorophore concentrations that are necessary for the study of pharmacokinetics, as discussed previously. It is clear, that the method we present as well as the DR correction technique have important limitations \(^ {14} \) and it is important to stress, that the choice of fluorescence detection technique and correction method should be based on a specific application. This is particularly true for the most appropriate selection of excitation wavelengths and detection wavelength bands. It is important to note, that we have applied our correction method in a study investigating mTHPC detection. The application of this technique to different photosensitizers (or other fluorescent species) should involve the careful consideration of the spectroscopic properties of the photosensitizer, so that autofluorescence can be measured during the course of the study in real time and the method remains linearly dependent on photosensitizer concentration.

Conclusion

In summary, we have shown that the raw fluorescence intensity collected from tissues in the skin-fold observation chamber varied significantly between different tissue types and during the period of the investigation. Therefore any method, which does not correct for tissue optical properties and changes in autofluorescence, leads to fluorescence quantification errors. We have shown, that a ratiometric imaging method utilizing NIR autofluorescence detection can be applied and corrects for differences and changes in tissue optical properties and thickness. A limitation of our method is that for very early time points after the photosensitizer administration, a dependence on vessel size was found due to a mismatch in localization of marker fluorophore and background autofluorescence. Other than this limitation, the method we present shows a high sensitivity even for high photosensitizer concentrations.

References

Chapter 3.3

Localization of liposomal mTHPC formulations within normal epithelium, dysplastic tissue, and carcinoma of oral epithelium in the 4NQO-carcinogenesis rat model

This chapter is an edited version of:
Photodynamic therapy (PDT) has been established as a local anticancer treatment that is based on the excitation of a light sensitive drug, a photosensitizer (PS). Upon illumination with light of an appropriate wavelength the excitation of the sensitizer yields reactive oxygen species (ROS) which induces tissue necrosis. The PS meta-tetra(hydroxyphenyl)chlorin (mTHPC INN: temoporfin) in a formulation with propylene glycol, ethanol and water (Foscan®) is one of the most potent clinically used PSs and is approved for treatment of head and neck squamous cell carcinoma (HNSCC) 1-4.

For a high PDT effect sufficient uptake of sensitizer in tumor is necessary. Uptake of mTHPC in tumor tissue is considered relatively inefficient because of the lipophillic nature of this sensitizer. As a consequence of the low water solubility, mTHPC can aggregate in biological media, resulting in a decreased photodynamic efficacy. These solubility issues of mTHPC (Foscan) are also related to serious PDT induced side-effects such as prolonged photosensitivity at the site of injection due to aggregates precipitating 5. In recent years, water soluble liposomal mTHPC formulations have been introduced as drug-carrier systems (nanocarriers) 2,6-10. Two liposomal mTHPC formulations that have been developed are Foslip® and Fospeg® 9,11,12. Foslip consists of plain or conventional liposomes based on dipalmitoylphosphatidylcholine (DPPC), while Fospeg consists of liposomes with a poly-ethylene glycol layer on the surface. This hydrophilic pegylated layer is thought to prevent uptake by the mononuclear phagocyte system (MPS) thereby increasing the circulation time 2,10,13. It is suggested that this longer circulation time should increase the enhanced permeability and retention (EPR) effect 10,14,15. The EPR effect is described as the increased uptake of large (liposomal) formulations in tumor tissue due to altered structure of the endothelial cells in tumor tissue 10,16,17. Furthermore, the EPR effect supposedly decreases lymphatic drainage due to its structural alterations resulting in retention of mTHPC. Several in vitro studies on liposomal formulations of mTHPC showed that both Foslip and Fospeg have the potential for higher efficacy and bioavailability compared to Foscan 1,12,18,19.

In a previous study we investigated the influence of (liposomal) formulations on mTHPC pharmacokinetic profile using an in vivo, xenograft tumor model 20. At several time points over 96 hours after injection, corrected mTHPC fluorescence intensity measurements were performed of the implanted tumor tissue, normal tissue and vasculature. In accordance with other studies, our findings suggested an enhanced uptake in tumor tissue at earlier time points for both liposomal mTHPC formulations compared to Foscan 6,8,20,21. However, most of these studies were limited by either the experimental model used or by the method of measuring mTHPC in tissue. In literature, xenograft tumor models are widely used to investigate the biodistribution of liposomal mTHPC formulations 6,10-22. The pharmacokinetics in these xenograft models are influenced by the properties of the well vascularised,
fast growing, implanted tumors. Therefore, xenograft models do not mimic the clinical situation as the process of normal carcinogenesis leading to precancerous and eventual cancerous tissue is absent. Moreover, the influence of precancerous tissue on both the mTHPC distribution and the uptake of the different mTHPC formulations is unknown. In a study on fluorescence kinetics and localization of disulphonate aluminum phthalocyanines in an induced tumor model (4NQO) consisting of precancerous stages, a relationship between increasing severity of dysplasia and the increased sensitizer fluorescence was found. We therefore were interested if this would be observed for mTHPC. Only one study described mTHPC kinetics in an acquired squamous cell carcinoma model in cats, albeit with a small sample size and fluorescence measurements not corrected for autofluorescence (AF). Non-invasive fluorescence measurements or extraction techniques are typically used to describe mTHPC tissue distribution. Complicating these measurements is the known non-uniformity and spatial variability of mTHPC distribution and uptake within (tumor) tissue. In a previous study we even observed large spatial differences in mTHPC uptake in healthy (non-cancerous) oral tissue. While that study was aimed at validating in vivo fluorescence using differential pathlength spectroscopy (fDPS) as a non-invasive instrument to measure mTHPC tissue concentration in optically heterogeneous tissue using a small interrogation volume, it raised questions about the validity of “bulk” tissue measurements. These measurements interrogate much bigger tissue volumes thereby averaging mTHPC fluorescence over that volume. As both the extraction technique and fluorescence measurements interrogate a “bulk” tissue volume, no specific information can be reported on the mTHPC distribution and uptake in tissue compartments such as epithelial and sub-epithelial tissue (stroma). Furthermore, slight local differences in mTHPC distribution possibly related to the distribution and uptake of the different mTHPC formulations is unknown. In a study on fluorescence pharmacokinetic profile.

To assess the stage of 4NQO induced carcinogenesis in the rat, microscopic analysis using the Epithelial Atypia Index (EAI) is appropriate to allow for a consistent ex-vivo grading of epithelial tissue. This microscopic analysis facilitates the identification of tissue compartments (epithelium, stroma), besides staging of the induced oral carcinogenesis. To obtain information on spatial mTHPC distribution within healthy, pre-cancerous or cancerous mucosa and stroma of the 4NQO rat-model, confocal fluorescence spectral imaging was used. Fluorescence microscopy enables exact localization of emitted mTHPC fluorescence. The use of a confocal microscope permits more reliable measurements within the center of a thicker slide, minimizing artifacts and bleaching. To further enhance the reliability of our measurements, the influence of changes in experimental setup, background and autofluorescence have to be taken into consideration. By relating the microscopic tissue analysis (EAI & tissue compartment) with the fluorescence attributed to mTHPC, information on stage or tissue dependant selectivity of mTHPC formulations is gathered. To thoroughly investigate the differences in mTHPC distribution between the formulations, multiple time point were used for assessment of the fluorescence pharmacokinetic profile. The aim of the present study was to investigate distribution and accumulation of Foslip, Fospeg and Foscan within time in a tumor model that mimics human carcinogenesis. Influence of dysplasia or tumor on mTHPC distribution is assessed by relating the mTHPC fluorescence to the severity of dysplasia (none, EAI grade or tumor) or tissue compartment (epithelial or subepithelial stroma).

Materials and methods

Materials

Three different formulations of mTHPC were kindly provided by Biolitec AG (Jena, Germany): Foscan (4 mg mTHPC/ml), Fospeg (1.5 mg mTHPC/ml) and Foslip (1.38 mg mTHPC/ml) in the described stock concentrations. Prior to the experiment, all formulations were dissolved under minimal light and kept at 4°C in the dark as recommended by the manufacturer. Foscan was made by dissolving the stock-solution in 5% aqueous glucose solution and in sterile water respectively. All photosensitizers were diluted to reduce errors when injecting a small volume (concentration = 0.126 mg/ml). Polyethylene glycol 400 (PEG400) was obtained from Sigma-Aldrich (Zwijndrecht, the Netherlands) and 96% ethanol (EtOH) from Merck (Amsterdam, The Netherlands).

Animal and tumor model

The experimental design for this study was approved by the experimental welfare committee of the University of Groningen and conformed to Dutch and European regulations for...
animal experimentation. Fifty-four male Wistar rats (HsdCpb:W), 7 weeks old, weighing approximately 200 grams were purchased from Harlan Netherlands B.V. (Horst, The Netherlands). The animals were kept in stainless steel and plastic cages, at constant humidity and at a temperature of 20 C. They were fed with standard rat pellets and water ad libitum. 4NQO (Sigma Aldrich, Zwijndrecht, The Netherlands) was dissolved in drinking water to a final concentration of 0.001%. Drinking water with the 4NQO solution was shielded from light by the use of coated bottles; these were replaced at least twice a week or whenever needed with freshly prepared solution. Animals were inspected daily and weighed weekly. After 12 weeks, animals were anaesthetized once a week for a thorough inspection of the oral cavity. During our animal experimentation general anesthesia was performed using Isoflurane®/O₂/N₂O as an inhalation anesthetic. When either tumor growth was visually identified or the animal had lost too much weight (>10% of body mass; one of the humane endpoints according to the animal welfare committee), the experimental procedure would start.

Experimental procedures
Prior to the experimental procedures the rats were anaesthetized. One of 3 mTHPC formulations was chosen by randomization and injected intravenously. The dosage used for all formulations was 0.15 mg mTHPC/kg. After intravenous injection the animals were kept under reduced light conditions (< 60 lux) to avoid phototoxicity. At either 2, 4, 8, 24, 48 or 96 hours after injection (n= 3 animals per formulation per time point) the animals were sacrificed by cervical dislocation. Tongue and palate were immediately excised and snap frozen in liquid nitrogen. The frozen tissue samples were handled under subdued light conditions. Excised tongue and palate were subsequently cut in the sagittal plane into 3 and respectively 2 gross tissue samples. These tissue samples were cut in a sagittal plane with a microtome under subdued light conditions for both histological sections (5 μm) and sections used for fluorescence microscopy (20 μm). The cutting of the 20 μm section was directly followed by a corresponding 5 μm section, thereby enabling both histological and fluorescence assessment of nearly identical, adjacent tissue. All sections were cut and mounted on Starfrost® adhesive glass slides (Menzel, Braunschwig, Germany). Altogether, a total of 184 confocal and HE microscopy slides were used for further analysis. Sections used for fluorescence microscopy were analyzed by confocal microscopy directly after sectioning. Histological slides were stained with hematoxylin and eosin (HE). After staining the HE slides were digitally scanned (460 nm resolutions scans) and available for assessment at various magnifications (1.25x, 25x, 5x, 10x) using a Hamamatsu Nanozoomer in combination with NDPserve, NDPview and NDPscan software.

Confocal Fluorescence Microscopy
Immediately after sectioning (<3 hours), fluorescence images were acquired at 10 x magnification of the slide using a confocal fluorescence microscope (LSM510, Zeiss, Jena, Germany). Fluorescence images were acquired of parts of the 20 μm slides as selected by the first author using white light transmission images. Criteria for selection were the presence of epithelium, absence of cutting artifacts and recognizable tissue structures. Recognizable tissue structures aided correlation of the confocal fluorescence image to its corresponding section on the HE slide. Each image consisted of 921.4 microns square (512 x 512 pixels). Fluorescence tiles (multiple images) acquired from the section consisted of at least 3 images and at most 9 images to provide information on larger regions of tissue. After collecting fluorescence images (tile), corresponding white light transmission images (tile) of the same region on the 20 μm section was made.

Excitation and light collection was performed using a 405 nm laser equipped with a 505 nm long-pass detection filter combined with spectral detection between 545-706 nm (at 10nm intervals). Care was taken to acquire optical slices of 5 μm at the center of each 20 μm sec-
A single spatially uniform fluorescent glass reference slide was used throughout the experiment (2273-G, Van Loenen Instruments, Zaandam, The Netherlands). At the beginning of each imaging session a confocal fluorescence image was acquired at a predetermined depth (20 μm) within the fluorescent slide in order to determine day to day variations in the overall sensitivity of the microscopic setup. These variations are mostly related to changes in the collection efficiency system and the sensitivity of the spectral detection. Furthermore, a flat-field correction of the fluorescence images was performed by dividing each individual sample image tile by a fluorescence reference image per emission wavelength.

Spectral images were analyzed as a linear combination of basis spectra and fitted using a singular value decomposition algorithm using software written in LabVIEW (version 7.1, National Instruments Corporation) \(^ {41,42} \). These procedures resulted in calibrated fluorescence intensities. Basis spectra of mTHPC, protoporphyrin IX (PpIX) and tissue background autofluorescence were measured using the same microscopic system as described above. For these spectra, measurements were performed on healthy oral rat mucosa used for a previous experiment.

Immediately after the acquisition of each fluorescence image a white light transmission images of each frozen sample was also acquired to aid the identification of corresponding regions of interest in HE slides. For the purposes of visualization RGB images of the fluorescent components: Red (mTHPC), Blue (PpIX) and Green (AF) were processed and transformed so that the maximum image contrast was selected for each channel. While the main focus of our current study is the analysis of mTHPC distribution related to tissue type and (dysplasia) grade, a short description is given on the distribution of mTHPC, AF, and PpIX in the confocal fluorescence images.

Histological grading by EAI

First, we determined the part of each HE section of which a corresponding sample image (a tile, consisting of multiple images) was available. This was done by matching the white light transmission images of the confocal sections to a corresponding part of the HE section. Using NDPserve software, corresponding sections of the HE were annotated. Secondly, within all of the corresponding and annotated HE sections, a total of 387 Regions of interest (ROI) were selected by the first author while blinded from the sample fluorescence images. Of these ROIs, 280 were located within epithelium and 107 within non-dysplastic stromal tissue. The EAI was used to score oral epithelial dysplasia of each selected ROI within epithelium \(^ {40} \). This index involves the assessment of 13 histological features (table 1). These histological features are graded into further subcategories like “none”, “slight” or “marked” with respective increase in scores. The final score of the EAI is made up of the sum of these 13 scores, up to a maximum of 75. The final score was further arranged using 5 ordered categories; EAI 0 (normal), EAI 1-20 (slight dysplasia), EAI 20-40 (moderate dysplasia), EAI > 40 (severe dysplasia) and carcinoma (tumor). Carcinoma (tumor) was defined by pathologically assessment of the HE sections as presence of tumor cells beyond the basal membrane.

Table 1. Score sheet of histological grading by the use of Epithelial Atypia Index (EAI).

<table>
<thead>
<tr>
<th>Histological features</th>
<th>scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>DROP SHAPED RETE RIDGES</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 2</td>
</tr>
<tr>
<td></td>
<td>MARKED 4</td>
</tr>
<tr>
<td>IRREGULAR STRATIFICATION</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 2</td>
</tr>
<tr>
<td></td>
<td>MARKED 5</td>
</tr>
<tr>
<td>KERATINISATION OF CELLS BELOW THE KERATINISED LAYER</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>FEW/SHALLOW 1</td>
</tr>
<tr>
<td></td>
<td>MANY/DEEP 3</td>
</tr>
<tr>
<td>BASAL CELL HYPERPLASIA</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 1</td>
</tr>
<tr>
<td></td>
<td>MARKED 4</td>
</tr>
<tr>
<td>LOSS OF INTERCELLULAR ADHERANCE</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 1</td>
</tr>
<tr>
<td></td>
<td>MARKED 5</td>
</tr>
<tr>
<td>LOSS OF POLARITY</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 2</td>
</tr>
<tr>
<td></td>
<td>MARKED 6</td>
</tr>
<tr>
<td>HYPERCHROMATIC NUCLEI</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 2</td>
</tr>
<tr>
<td></td>
<td>MARKED 5</td>
</tr>
<tr>
<td>INCREASED NUCLEO-CYTO- PLASMATIC RATIO (INCREASED DENSITY)</td>
<td>NO INCREASE 0</td>
</tr>
<tr>
<td>IN BASAL AND PRICKLE CELL LAYER</td>
<td>SLIGHT INCREASE 2</td>
</tr>
<tr>
<td></td>
<td>MARKED INCREASE 6</td>
</tr>
<tr>
<td>ANISOCYTOSIS AND ANISONUCLEOSIS</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 2</td>
</tr>
<tr>
<td></td>
<td>MARKED 6</td>
</tr>
<tr>
<td>PLEOMORPHIC CELLS AND NUCLEI</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT 2</td>
</tr>
<tr>
<td></td>
<td>MARKED 6</td>
</tr>
<tr>
<td>MITOTIC ACTIVITY</td>
<td>NORMAL 0</td>
</tr>
<tr>
<td></td>
<td>SLIGHT INCREASE 1</td>
</tr>
<tr>
<td></td>
<td>MARKED INCREASE 5</td>
</tr>
<tr>
<td>LEVEL OF MITOTIC ACTIVITY</td>
<td>NORMAL 0</td>
</tr>
<tr>
<td></td>
<td>LOWER ¼ ONLY 3</td>
</tr>
<tr>
<td></td>
<td>ALSO UPPER ¼ 10</td>
</tr>
<tr>
<td>PRESENCE OF BIZARRE MITOSIS</td>
<td>NONE 0</td>
</tr>
<tr>
<td></td>
<td>SINGLE 6</td>
</tr>
</tbody>
</table>
Each of 280 ROIs were scored and classified based on the most involved lesion (highest EAI or tumor), using the 5 ordered categories. However, care was taken to also include some ROI on normal appearing epithelium. The authors MW and SV scored the selected ROIs of the HE sections in random order by agreement. To validate and correlate our scoring on these ordered categories, 25% (random selection) of the ROIs were scored by pathologist BV, his score was used as the gold standard. When there was disagreement on the combined score of MW, SV vs BV, the score of pathologist BV was used.

Figure 2. Examples of matched confocal fluorescence images (10X magnification) with their corresponding HE images. Fluorescence images (transformed to obtain maximum contrast) depict distribution of mTHPC (colored red), autofluorescence (colored green) and PpIX (colored blue). For aesthetic reasons both fluorescence and HE images were resized. A: Fospeg 48 hours after injection. The highest EAI score found in the HE section was 43. B: Fospeg 8 hours after injection. The highest EAI score found in the HE section was 11. C: Foscan 24 hours after injection. The tissue was determined to be cancerous. D: Foscan 96 hours after injection. The tissue was determined to be cancerous. E: Fospeg 4 hours after injection. The tissue was determined to be normal.
a ROI in a calibrated fluorescence image was performed by selecting the ROI on the corresponding and matched white-light images. These white-light images of the slide were taken by the confocal microscopy in the exact same position and directly after the acquisition of the corresponding fluorescence images. In this manner, the ROI selected previously in the HE section could be matched to the same anatomical location on the white light transmission image. Since the coordinates of the white light transmission image corresponds exactly with that of the fluorescence image (both performed with the same setup without manipulating the 20 μm section), the EAI score and fluorescence of a ROI are matched.

Statistical analysis
Inter-observer agreement on histological scoring and subsequent ordering in 5 tissue categories of ROI was calculated using a linear weighted kappa (κ) 43. Pearson’s correlation coefficient was used (two-tailed, 95% CI) in determining the correlation coefficients (r) between EAI, AF and measured mTHPC fluorescence within a ROI. Further analysis was performed on correlation per tissue type and formulation per similar time point. The two-tailed t-test was used (α=0.05) to compare means of measured fluorescence stratified according to formulation, time point or one of five ordered tissue categories. Both IBM® SPSS® Statistics (software version 20) and Graphpad Prism® (software version 5.0), were used for statistical analysis.

Results

Experimental data
After a mean of 36 weeks (range: 24-45) of exposure to 4NQO, 54 rats were included for the experimental procedures. All rats had a clinically observable intra-oral tumor (figure 1). No rats were lost during the induction of tumors by 4NQO. Typical examples of matched HE sections with corresponding confocal sections are shown in figure 2. The inter-observer agreement on EAI score for 25% of these ROI located within epithelium had a linear weighted kappa (κ) of 0.54 (95% CI 0.32; 0.76), considered a moderate agreement 43. Fifty-five of the ROI scored an EAI of 0 (normal tissue), while 92 ROI were scored as cancerous tissue (tumor). The remaining 133 ROI (slight, moderate or severe dysplasia) had a mean EAI score of 13.68 (SD: 10.9). As a consequence of the use of an induced tumor model, each category of dysplasia (slight, moderate or severe dysplasia) was not always observed in a ROI; some ROIs showed no dysplastic lesions and thus contained only normal tissue.

Correlation of mTHPC fluorescence with EAI score
The correlation of the EAI (as determined in an HE slide) with the calibrated mTHPC fluorescence (as determined in the corresponding confocal fluorescence slide) was plotted for all ROIs (figure 3). The correlation coefficient (r) of mTHPC fluorescence versus EAI stratified for Foscan, Foslip and Fospeg was 0.39, 0.030 and 0.29 respectively. For all formulations at all time points, a tendency (non-significant) was found for increased mTHPC fluorescence within tumor tissue compared to non-tumor tissue. A detailed description of measured mTHPC fluorescence intensities stratified by formulation, time and tissue (grade) is given in the supplementary data.

Distribution of mTHPC in different tissue stratified by time and formulation
When comparing calibrated mTHPC fluorescence in normal epithelium between the different mTHPC formulations a tendency (non-significant) was shown for Foscan to show least fluorescence (figure 4A). However, only at the 4 hour time point a significant difference (p<0.05) in mTHPC fluorescence was found as Fospeg showed higher fluorescence compared to both Foscan (p=0.0107) and Foslip (p=0.0318). When comparing mTHPC fluorescence in subepithelial stroma between the different mTHPC formulations, a tendency was shown for Fospeg to show highest fluorescence with both Foslip and Foscan showing comparable fluorescence (figure 4B). Only at the 96 hour time point a significant higher fluorescence in stroma was found for Foslip compared to Foscan (p=0.0401). No further significant differences were found. Overall, each formulation showed a similar mTHPC fluorescence pharmacokinetic profile for both epithelial and sub-epithelial tissue with a tendency for higher fluorescence for stroma.

When comparing mTHPC fluorescence in tumor tissue between the different mTHPC formulations a tendency (non-significant) was shown for Fospeg to show highest mTHPC fluorescence at all time points (figure 4C). Both liposomal formulations showed higher fluorescence at 2, 4 and 8 hours compared to Foscan. However, at early time points only Fospeg showed significant higher fluorescence intensities in tumor; at 2 hours (p=0.0423) and 8 hours (p=0.0474) compared to Foscan and at 8 hours (p=0.0060) compared to Foslip. No
Figure 4. mTHPC fluorescence kinetic profile in normal epithelium (A), normal stroma (B) and tumor tissue (C) for Foscan, Foslip and Fospeg (error-bars indicate standard-deviation, logarithmic scale for mTHPC fluorescence).

Figure 5. Difference in mTHPC fluorescence kinetic profile in normal epithelium, normal subepithelial tissue (stroma) and tumor tissue for 3 different formulations; Fospeg (A), Foscan (B) and Foslip (C) (error-bars indicate standard-deviation, logarithmic scale for mTHPC fluorescence).
other significant differences were observed at these early time points. At the 24 hour time point Fospeg showed significantly (p=0.0170) higher mTHPC fluorescence compared to Foslip, and at 48 hours to both Foscan (p=0.0242) and Foslip (p=0.0014). At the 48 hour time point Foslip reached the lowest mTHPC fluorescence in tumor of the formulations as it was also significantly (p=0.0388) lower compared to Foscan. No other significant differences were observed at these later time points in tumor (>48 hours).

Distribution of mTHPC for different formulations stratified by tissue type and time
When comparing calibrated mTHPC fluorescence between both normal epithelium or normal stroma vs tumor tissue stratified for formulation, mean fluorescence in tumor tissue showed a tendency towards higher intensity at all time points (figure 5A, B, C). However, no mTHPC formulation showed a significant difference between normal epithelium and tumor tissue at the 2 hour time point. Fospeg showed at all 5 later time points a significant (p<0.05) higher mTHPC fluorescence in tumor tissue compared to normal epithelium (figure 5A). Foscan showed significant (p<0.05) higher mTHPC fluorescence in tumor compared to normal epithelium at 4, 8, 48 and 96 hours (figure 5B). Foslip showed a significant (p<0.05) higher fluorescence in tumor compared to normal epithelium at 4, 8, 48 and 48 hours (figure 5C). When comparing subepithelial stroma tissue with tumor, we found a significant (p<0.05) higher fluorescence intensity in tumor for Fospeg at the first 4 time points. For Foslip the 4, 8 and 48 hour time point showed significant (p<0.05) higher fluorescence in tumor, while for Foscan only at 8 hours a significant (p<0.05) higher mTHPC fluorescence in tumor was found.

Gross analysis of confocal images
While analysis of calibrated fluorescence intensities of mTHPC, AF or PpIX per ROI was the main goal of the study, non-quantitative visual analysis was also performed. All images of tongue tissue showed PpIX present on the filli of the tongue (figure 2B – 2E). Autofluorescence was particularly present on keratinized parts like the palate, keratin pearls, or dysplastic lesions (figure 2A – 2C), mTHPC fluorescence was noted more in tissue characterized as cancerous (figure 2C, D) and around vasculature at early time points (figure 2E). Moreover, more mTHPC fluorescence was visually observed in subepithelial tissue compared to the epithelium. Overall, the visual mTHPC distribution over the different tissue compartments and over of tissue with different grades of dysplasia showed clear differences in spatial distribution.

Discussion
Fospeg showed higher mTHPC fluorescence intensities in normal stroma, normal epithelium, and tumor tissue compared to both Foscan and Foslip. For Fospeg, we found significantly higher mTHPC fluorescence intensity in tumor tissue compared to normal subepithelial stromal tissue between 2-24 hours. For Foslip the significant higher fluorescence intensity at 4, 8 and 48 hours was less evident than that of Fospeg. Foscan showed less tumor selectivity as only at 8 hours a significant higher tumor fluorescence vs stroma was found. The highest mTHPC fluorescence in our experiment was measured for Fospeg in tumor tissue at 8 hours. At that time point the normal to tumor fluorescence ratio was >8. While we used calibrated fluorescence measurements to observe the fluorescence pharmacokinetic profile, non-calibrated visual assessment of mTHPC fluorescence patterns was performed. In these images mTHPC fluorescence within vasculature was observed at early time points (figure 2E), as extensively reported in other studies 20,22,44. At later time points mTHPC fluorescence appeared to be more diffusely spread within tissue.

In complete agreement with our recent window chamber xenograft rat model, Fospeg showed highest mTHPC fluorescence in tumor tissue 8 hours after injection. Furthermore both studies showed significant higher mTHPC fluorescence in tumor tissue at 2, 8 and 48 hours after injection compared to Foscan and Foslip 20. In accordance with other in vivo studies, Fospeg exhibited highest calibrated fluorescence intensities in tissue at earlier time points and with significant higher fluorescence intensities in tumor (selectivity) compared to Foslip and in particular Foscan 5,8,20,21,45.

As suggested in previous studies, both the water-soluble liposomal formulations probably accumulate in tumor tissue due to the EPR-effect thereby increasing selectivity compared to Foscan. The higher mTHPC fluorescence intensity and tumour selectivity of Fospeg over Foslip (that we observed) is most likely to be a consequence of the pegylation of the liposomes in Fospeg. 10,46. These liposomes coated by hydrophilic polymers are known to prevent the uptake by the (MPS). Indeed, non-pegylated conventional liposomes used in Foslip are described with high accumulation in liver and spleen 45. Conversely, mTHPC in pegylated liposomes is less taken up in liver tissue compared to Foscan 7. The relative low fluorescence intensity we found for Foslip compared to Foscan was also observed by others using high performance liquid chromatography 46.

The 4NQO model enabled us to investigate the relation of mTHPC fluorescence intensity with the degree of epithelial dysplasia. A weak correlation coefficient (r) between EAI and mTHPC fluorescence for Foscan (r=0.39) and Fospeg (r=0.29) was found while for Foslip no correlation was found. This suggests that increased mTHPC fluorescence in tumor tissue as found especially for Fospeg, is caused by an increased tumor accumulation possibly due to the altered tissue architecture and tumor angiogenesis and not by pre-malignant cellular changes. Therefore, the EPR effect may not be present in dysplastic tissue but only in tissue with severe disturbances in architecture and lymphatic drainage (tumor tissue). Differences with other studies were the time points at which highest tumor fluorescence was found. For instance, we observed for Foscan highest tumor fluorescence at 48 hours, while in several studies using xenograft models, including our window chamber model, maximum mTHPC tumor fluorescence at 24 hours was observed 5,8,20,24,46. Since the mTHPC formulations were prepared and injected in the exact same manner as in our aforementioned study, a possible explanation for the discrepancies could be the influence of different animal mod-
el on mTHPC (fluorescence) pharmacokinetic profile. Accordingly, while some discrepancies between studies are noted on exact pharmacokinetic profile, the use of different tumor models could be responsible for these. The 4NQO experimental model is very useful model for research in (fluorescence) pharmacokinetics in oral tissue as it closely mimics the clinical context in which mTHPC mediated PDT is used. The induced carcinogenesis model used in our experiment allows for an investigation of fluorescence pharmacokinetics more closely related to the clinical situation than the use of more prolific growing xenografts. Supporting our reasoning, a recent workgroup on nanoparticles and the EPR effect for drug delivery stated that for preclinical research into drugs and their EPR effect, (animal) tumor models characterized by heterogeneous tumor tissue are preferred over xenograft models as they better reflect the clinical situation.

Hence, induced epithelial tumors are bound to consist of more heterogeneous tissue and possibly subepithelial tissue. To correct for this heterogeneity, we included analysis of the fluorescence intensity in normal subepithelial stromal tissue besides the careful analysis of the corresponding HE slides. In contrast to implanted and well vascularised xenografts, induced tumors are not encapsulated and therefore it is more difficult to determine exact tumor boundaries. Furthermore, normal tissue, various grades of dysplastic tissue and tumor tissue are all in close vicinity to each other in our induced tumor model. For these reasons, exact spatial distribution of mTHPC fluorescence distribution by fluorescence microscopy is necessary to describe the influence of tissue grade (none, dysplasia, tumor) and tissue compartment in detail.

One potential advantage of performing fluorescence microscopy on frozen sections is that the effects of differences in tissue optical properties are likely to be much smaller than that in the in vivo optical measurements. Excitation light passes through the tissue section which reduces the influence of light scattering in frozen sections on the fluorescence spectra. We have previously investigated the use of optical imaging on thin (5 μm) frozen sections and found that thinner sections are much more susceptible to variations in quantitative fluorescence (data not shown). This is presumably due to the interaction of exogenous fluorophores with water in thawing samples; an effect that is overcome by imaging an optical slice at the center of a thicker frozen section. Due consideration should be given to the use of mTHPC fluorescence imaging to determine the behavior of different PS formulations since mTHPC fluorescence may be influenced by the effects of mTHPC serum stability, binding and/or aggregation. Moreover, both the incorporation of mTHPC into liposomes and the composition of different liposomes is known to significantly influence the spectral properties. In trying to predict clinical importance of the different mTHPC formulations one could argue that only mTHPC molecules able to fluoresce are important for PDT. However, predicting PDT response in general is difficult as numerous variables are influential in treatment outcome.

Besides various in vitro studies on potentially increased PDT efficacy of liposomal mTHPC, some studies have reported on using liposomal mTHPC for in vivo PDT experiments. Recent in vivo studies on PDT using Fospeg in both rats and cats suggested higher tumor necroses at earlier time points compared to using Foscan. For Foslip one study showed that highest tumor necroses was achieved at an early time point (6 hours), PDT efficacy was unfortunately not compared to Foscan. Curiously, that time point showed tumor and plasma concentrations of mTHPC below their maximal values. This further emphasizes the complexity in predicting PDT damage and the need for additional mTHPC mediated PDT damage experiments performed on induced tumor models.

Conclusion

To the best of our knowledge, our current study is the only one describing calibrated fluorescence intensities of Foscan, Foslip and Fospeg in an induced tumor model. This model also permitted the investigation of a possible relationship between grade of dysplasia and mTHPC fluorescence. Fospeg did show higher tumor fluorescence at earlier time points compared to Foslip and in particular Foscan. Potentially this could mean shortening the currently used drug-light interval of 96 hours and lowering of the currently used dosage to induce similar PDT damage. Thereby possibly lowering the photosensitivity associated with mTHPC mediated PDT. Future studies should be undertaken to demonstrate the PDT efficacy at these earlier time points.

Acknowledgements

The authors wish to thank the Optical Imaging Centre of the ErasmusMC for their support on confocal imaging as well as the Erasmus Centre for Biomics for their help in digitalizing the HE sections.
References

Appendix I. mTHPC fluorescence intensities tabulated for Foscan, Foslip, Fospeg, tissue grade and time point.

<table>
<thead>
<tr>
<th>Tissue Grade</th>
<th>Foscan Fluorescence Intensity Mean</th>
<th>Foscan Fluorescence Intensity SD</th>
<th>Foslip Fluorescence Intensity Mean</th>
<th>Foslip Fluorescence Intensity SD</th>
<th>Fospeg Fluorescence Intensity Mean</th>
<th>Fospeg Fluorescence Intensity SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>225</td>
<td>309</td>
<td>9</td>
<td>306</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>Slight Dysplasia</td>
<td>465</td>
<td>2052</td>
<td>191</td>
<td>596</td>
<td>1432</td>
<td></td>
</tr>
<tr>
<td>Moderate Dysplasia</td>
<td>844</td>
<td>2544</td>
<td>278</td>
<td>463</td>
<td>368</td>
<td></td>
</tr>
<tr>
<td>Severe Dysplasia</td>
<td>2909</td>
<td>4741</td>
<td>488</td>
<td>957</td>
<td>17467</td>
<td></td>
</tr>
<tr>
<td>Normal Stroma</td>
<td>582</td>
<td>533</td>
<td>619</td>
<td>1162</td>
<td>4421</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>36</td>
<td>118</td>
<td>458</td>
<td>572</td>
<td>1642</td>
<td></td>
</tr>
<tr>
<td>Slight Dysplasia</td>
<td>4</td>
<td>3165</td>
<td>4040</td>
<td>5815</td>
<td>3193</td>
<td></td>
</tr>
<tr>
<td>Moderate Dysplasia</td>
<td>5</td>
<td>5747</td>
<td>10716</td>
<td>10716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severe Dysplasia</td>
<td>1367</td>
<td>2668</td>
<td>12381</td>
<td>7206</td>
<td>5885</td>
<td></td>
</tr>
<tr>
<td>Normal Stroma</td>
<td>313</td>
<td>691</td>
<td>1899</td>
<td>2766</td>
<td>1860</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>19</td>
<td>632</td>
<td>1790</td>
<td>801</td>
<td>7038</td>
<td></td>
</tr>
<tr>
<td>Slight Dysplasia</td>
<td>652</td>
<td>1526</td>
<td>1738</td>
<td>567</td>
<td>11812</td>
<td></td>
</tr>
<tr>
<td>Moderate Dysplasia</td>
<td>1381</td>
<td>749</td>
<td>195</td>
<td>1238</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>Severe Dysplasia</td>
<td>2873</td>
<td>4333</td>
<td>1884</td>
<td>1878</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Normal Stroma</td>
<td>3703</td>
<td>760</td>
<td>7047</td>
<td>4330</td>
<td>51706</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>934</td>
<td>917</td>
<td>1776</td>
<td>1086</td>
<td>13235</td>
<td></td>
</tr>
<tr>
<td>Slight Dysplasia</td>
<td>1503</td>
<td>1397</td>
<td>1622</td>
<td>637</td>
<td>726</td>
<td></td>
</tr>
<tr>
<td>Moderate Dysplasia</td>
<td>1381</td>
<td>749</td>
<td>195</td>
<td>1238</td>
<td>578</td>
<td></td>
</tr>
<tr>
<td>Severe Dysplasia</td>
<td>2873</td>
<td>4333</td>
<td>1884</td>
<td>1878</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Normal Stroma</td>
<td>4466</td>
<td>2971</td>
<td>1608</td>
<td>2029</td>
<td>4536</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>2226</td>
<td>2452</td>
<td>1796</td>
<td>2062</td>
<td>761</td>
<td></td>
</tr>
<tr>
<td>Slight Dysplasia</td>
<td>14299</td>
<td>7106</td>
<td>1079</td>
<td>310</td>
<td>52104</td>
<td></td>
</tr>
<tr>
<td>Moderate Dysplasia</td>
<td>801</td>
<td>1109</td>
<td>90</td>
<td>408</td>
<td>3777</td>
<td></td>
</tr>
<tr>
<td>Severe Dysplasia</td>
<td>9731</td>
<td>10217</td>
<td>456</td>
<td>191</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal Stroma</td>
<td>6134</td>
<td>7051</td>
<td>313</td>
<td>193</td>
<td>30238</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>12492</td>
<td>7106</td>
<td>1079</td>
<td>310</td>
<td>52104</td>
<td></td>
</tr>
<tr>
<td>Slight Dysplasia</td>
<td>205</td>
<td>472</td>
<td>2872</td>
<td>2712</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>Moderate Dysplasia</td>
<td>15</td>
<td>26</td>
<td>5494</td>
<td>8272</td>
<td>1306</td>
<td></td>
</tr>
<tr>
<td>Severe Dysplasia</td>
<td>205</td>
<td>472</td>
<td>2872</td>
<td>2712</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>Normal Stroma</td>
<td>4583</td>
<td>3524</td>
<td>6676</td>
<td>9226</td>
<td>6186</td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>1063</td>
<td>1913</td>
<td>3904</td>
<td>3213</td>
<td>2165</td>
<td></td>
</tr>
<tr>
<td>Slight Dysplasia</td>
<td>205</td>
<td>472</td>
<td>2872</td>
<td>2712</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>Moderate Dysplasia</td>
<td>15</td>
<td>26</td>
<td>5494</td>
<td>8272</td>
<td>1306</td>
<td></td>
</tr>
<tr>
<td>Severe Dysplasia</td>
<td>205</td>
<td>472</td>
<td>2872</td>
<td>2712</td>
<td>477</td>
<td></td>
</tr>
<tr>
<td>Normal Stroma</td>
<td>4583</td>
<td>3524</td>
<td>6676</td>
<td>9226</td>
<td>6186</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 4

In vivo quantification of photosensitizer concentration using fluorescence differential path-length spectroscopy: influence of photosensitizer formulation and tissue location

This chapter is an edited version of:
Abstract

Background and objective. In vivo measurement of photosensitizer concentrations may optimize clinical PDT. Fluorescence differential pathlength spectroscopy (fDPS) is a non-invasive optical technique that has been shown to accurately quantify the concentration of Foscan® in rat liver. As a next step towards clinical translation, the effect of different liposomal mTHPC formulations (Fospeg® and Foslip®) on fDPS is investigated. Furthermore, fDPS was evaluated in target organs for Head-and-Neck PDT.

Materials and Methods. Fifty-four healthy rats were intravenously injected with 1 formulation at 0.15 mg/kg mTHPC. fDPS was performed on liver, tongue and lip. mTHPC concentration estimates using fDPS were correlated with the results of the subsequent harvested and chemically extracted organs.

Results. An excellent goodness of fit (R²) between fDPS and extraction was found for all formulations in the liver (R²=0.79). A much lower R² between fDPS and extraction was found in lip (R²=0.46) and tongue (R²=0.10).

Conclusion. fDPS was validated for measuring mTHPC tissue concentration in the liver for Foscan, Foslip and Fospeg. The lower performance in lip and in particular tongue was mainly attributed to the more layered anatomical structure, which influences scattering properties and photosensitizer distribution.

Introduction

Photodynamic therapy (PDT) has been established as a local treatment modality for several kinds of malignancies in various organs 1-7. PDT is based on the use of a light sensitive drug, a photosensitizer, which is locally applied or systemically administered. The photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC INN: Temoporfin) is one of the most potent clinically used photosensitizers to date 8-10. Its development, study and clinical use was recently summarized in a comprehensive review 11. The formulation of mTHPC in ethanol and propylene glycol (Foscan®) is in use for both curative and palliative treatment of head and neck squamous cell carcinoma (SCC) 7,12. The treatment involves excitation of the administered photosensitizer with non-thermal light at the tumor site which leads to the formation of cytotoxic reactive oxygen species (ROS) 9,13-17. The amount of ROS formed depends on the type of photosensitizer, its concentration, tissue oxygenation and the light fluence (rate). In head and neck tumors, treatment is typically performed using a mTHPC dose of 0.15 mg/kg mTHPC and light fluence of 20 J cm⁻² at a fluence rate of 100 mW cm⁻² delivered at 652 nm 11. However, despite the fixed light fluence and administered drug dose differences in PDT response may occur. Monitoring PDT parameters (oxygen, light fluence (rate) and photosensitizer concentration) during therapy could provide insight in the complex and dynamic interactions that occur during PDT and could give information on the deposited PDT dose 18. Our group recently developed fluorescence differential pathlength spectroscopy (fDPS) as a tool to quantify micro vascular oxygen saturation (a surrogate marker of tissue oxygen concentration) and photosensitizer concentration in tissue 19,20. In previous research, we were able to show that fDPS can be used to measure photosensitizer concentration in vivo in rat liver 21. In this proof-of-concept study, our group used the photosensitizer mTHPC (Foscan®) at 0.3 mg/kg as the target photosensitizer. As a next step towards clinical translation, the effect of different liposomal mTHPC formulations (Fospeg® and Foslip®) on fDPS is investigated. Furthermore, fDPS was evaluated in target organs for Head-and-Neck PDT.
nanocarriers for mTHPC. A further advantage of liposomal drug-carrier systems is a reduced uptake by the mononuclear phagocyte system (MPS) and an enhanced permeability and retention effect (EPR) 24. Two liposomal mTHPC formulations that have been developed are Foslip® and Fospeg® 8,25-32. In contrast to Foslip, the surface of the liposomes used in Fospeg is coated by a hydrophilic polymer to decrease recognition by the RES and thus increase circulation time 24,30. Both the incorporation of mTHPC into liposomes and the composition of different liposomes are known to significantly influence the spectral properties 28,30. Furthermore, Foslip and Fospeg are known to exhibit different redistribution patterns and liposomal stability in serum 30. We have therefore also investigated the influence of the use of nanocarriers on fDPS performance.

Material and methods

Animal and procedures

Fifty-four male Wistar rats (HsdCpb:W) weighing between 250 – 350 g, were purchased from Harlan Netherlands B.V. (Horst, The Netherlands). Three different formulations of mTHPC were kindly provided by Biolitec AG (Jena, Germany): Foscan (4 mg mTHPC/ml), Fospeg (1.5 mg mTHPC/ml) and Foslip (1.38 mg mTHPC/ml). Prior to the experiment, Foscan, Foslip and Fospeg were dissolved for intravenous injection under minimal light and kept at 4 °C in the dark, as recommended by the manufacturer. The dose used was 0.15 mg mTHPC /kg and animals were kept under reduced light conditions (< 60 lux). Prior to the experimental measurements the rats were anaesthetized using Isoflurane® /O₂/N₂O as a general inhalation anesthetic. Variations in mTHPC concentrations are achieved by taking measurements at different time points in the pharmacokinetics profile of each formulation. At 2, 4, 8, 24, 48 or 96 hours after injection (n= 3 animals per formulation per time point) tissue concentrations of mTHPC were measured using fDPS. In the oral cavity, 4 measurements were performed on the mucosa of the lip and 6 on the dorsum of the tongue, all at randomly chosen locations. Next, tissue overlying the liver was dissected which allowed measurements at 6 randomly chosen locations on the liver. Directly after the optical measurements the animals were terminated by cervical dislocation. Lip, tongue and liver were immediately excised and snap-frozen in liquid nitrogen. fDPS measured the concentration of mTHPC in lip, tongue and liver based on the emitted fluorescence of mTHPC. The concentration estimates determined by fDPS were compared to the concentration determined by chemical extraction. The experimental design for this study was approved by the experimental welfare committee of the University Medical Center Groningen and conformed to Dutch and European regulations for animal experimentation.

Measurement of mTHPC tissue concentration using fDPS

A measurement setup was used (figure 1) based on the setup described by the group of Amelink et al. 18,21. In short, the measurement probe contained two 800 μm fibers at a core-to-core distance of 880 μm. The surface of the probe was polished under an angle of 15 degrees to minimize specular reflections during the measurements. One 800 μm fiber, the delivery- and-collection fiber (dc), is coupled to a bifurcated 400 μm fiber, containing a “delivery” and a “collection” leg. The delivery leg is coupled to a 200 μm bifurcated fiber, one leg of which is connected to a xenon light source (HPX-2000, Ocean Optics, Duiven, The Netherlands) and the other leg is connected to a 465 nm diode laser (Power Technology Inc., Arkansas, USA). The collection leg is coupled to another bifurcated 200 μm fiber, of which one leg directly leads to the first channel of spectrograph setup (MC-2000-4-TR2, Ocean Optics, Duiven, The Netherlands), while the other leg leads to a 570 nm long-pass filter before leading into the second channel of the spectrograph. The second 800 μm fiber of the probe, the collection fiber (c), is coupled to a bifurcated 400 μm fiber. One leg is directly coupled to the third channel of the spectrograph, while the other leg leads to the 570 nm long-pass filter, before being coupled in to the fourth channel of the spectrograph.

Before every measurement, de fDPS system was calibrated as described previously 7,19. The measured DPS spectra were fitted to a model extensively described by our group in the literature 20,21,24-36, which returned quantitative estimates of blood volume fraction, micro vascular blood oxygenation and vessel diameter. The measured fDPS spectra are corrected for the effect of absorption by multiplying it by the ratio of DPS-signals at the excitation wavelength without and with absorption present, resulting in absorption-corrected fDPS spectra 37. The contribution of mTHPC to the spectra was extracted by using a singular value decomposition (SVD) algorithm 38,39 using autofluorescence, protoporphyrin IX (PpIX) and mTHPC fluorescence as basis spectra.

Measurement of mTHPC tissue concentration using chemical extraction

To determine the concentration of mTHPC in the excised frozen tissues, the chemical extraction method of Kascakova et al. was used 40. In short, small tissue samples (~0.1 grams) of lip, dorsum of the tongue and liver were used. In liver it was possible to randomly obtain three samples of liver tissue per animal, representative of tissue located on the liver surface as measured by fDPS. This way, we could average multiple random locations in both optical and chemical concentrations measurements of the liver. In tongue and lip however, we could only obtain one macroscopically representative tissue sample as measured by fDPS, due to the small size of the lip and tongue of rats. All tissue samples obtained were dissolved in 2 ml of the tissue solvent Solvable™ (Perkin Elmer, Groningen, The Netherlands) during 2 hours at 50 °C, while regularly stirred. Subsequently, the solubilized solution was diluted further with Solvable™ to an optical density (OD) 0.1. The diluted samples were analyzed in a fluorimeter (Perkin Elmer, Groningen, The Netherlands) by using an excitation wavelength of 423 nm and a spectral detection band of 450 to 800 nm with a resolution of 0.5 nm. The basis spectrum of mTHPC was derived after correction for Solvable™ and autofluorescence components. The concentration of mTHPC was derived from a known calibration curve 40.
Confocal Fluorescence Microscopy

Frozen tissue samples of control and mTHPC administered animals were handled under subdued light conditions. Liver, tongue and lip tissue sections of 50 μm were cut and mounted on Starfrost® adhesive glass slides (Menzel, Braunschweig, Germany). Fluorescence images were acquired at 10 x magnification using a confocal fluorescence microscope (LSM510, Zeiss, Jena, Germany). Excitation and light collection was performed using a 405 nm laser equipped with a 505 nm long-pass detection filter combined with spectral detection between 545-706 nm (at 10nm intervals). Typically 5 μm optical slices were acquired from the center of each 50 μm section. Software written in LabVIEW (v7.1) was used to account for the autofluorescence component of raw fluorescence, where the intensity of resulting images was confirmed to be that attributable to mTHPC fluorescence.

Results

Typical DPS and fDPS spectra and their fits are shown in figure 1A, 1B, respectively. The fitted mTHPC contributions of all 54 rats in the lip, tongue and liver at different time points based on the FDPS measurements is shown in figure 2A. The actual mTHPC concentrations determined using chemical extraction are shown in figure 2B.

Comparison of fDPS versus extraction

An overall comparison of fDPS and extraction per tissue type (figure 2A, 2B), show a similar trend for both methods as a function of time. One noticeable difference is that fDPS clearly measures more mTHPC in the lip than in the tongue at all time points, whereas in the extraction the mTHPC concentrations in these tissue types appears to be very similar. A compari-
Influence of mTHPC formulations and tissue type

The influence of mTHPC formulation on fDPS was investigated by assessing differences in slope of regression lines within each tissue type. The sum-of-squares F-test showed a significant (p<0.05, F: 3.252) difference in slope between mTHPC formulations in the liver, with Fospeg showing the highest slope (figure 3A). Similar analysis in lip and tongue tissue, showed no significant (p<0.05) difference in slope between the formulations. Therefore, it is possible to calculate one slope for all three formulations in tongue and lip tissue (figure 3D).

In lip and tongue tissue, the goodness of fit to the shared regression line (lip: y=388.6x, 95% confidence interval). One measurement point represents multiple fDPS and extraction measurements of 1 rat. Best fit linear regression lines forced through the origin are plotted as solid lines. Pooled data per tissue type (D) show significant differences (p<0.001) in the slopes of the regression lines between the tissue types (linear scales). In figure 3D, for clarity purposes only a portion of the data points are shown and error bars are omitted.

Figure 3. Optically measured mTHPC concentration (fDPS) versus true mTHPC concentration (extraction) for 3 different mTHPC formulations (Foscan, Foslip, Fospeg) in tongue (A), liver (B) and lip (C) tissue (error bars indicate SD, logarithmic scales). One measurement point represents multiple fDPS and extraction measurements of 1 rat. Best fit linear regression lines forced through the origin are plotted as solid lines. Pooled data per tissue type (D) show significant differences (p<0.001) in the slopes of the regression lines between the tissue types (linear scales). In figure 3D, for clarity purposes only a portion of the data points are shown and error bars are omitted.

Figure 2. mTHPC concentration vs. time measured by fDPS (A) and chemical extraction (B) in tongue, liver and lip tissue for Foscan, Foslip and Fospeg (error bars indicate SEM). Note the logarithmic scale used for the y-axes.

Influence of mTHPC formulations and tissue type

The influence of mTHPC formulation on fDPS was investigated by assessing differences in slope of regression lines within each tissue type. The sum-of-squares F-test showed a significant (p<0.05, F: 3.252) difference in slope between mTHPC formulations in the liver, with Fospeg showing the highest slope (figure 3A). Similar analysis in lip and tongue tissue, showed no significant (p<0.05) difference in slope between the formulations. Therefore, it is possible to calculate one slope for all three formulations in tongue and lip tissue (figure 3D). In lip and tongue tissue, the goodness of fit to the shared regression line (lip: y=388.6x, 95% confidence interval). One measurement point represents multiple fDPS and extraction measurements of 1 rat. Best fit linear regression lines forced through the origin are plotted as solid lines. Pooled data per tissue type (D) show significant differences (p<0.001) in the slopes of the regression lines between the tissue types (linear scales). In figure 3D, for clarity purposes only a portion of the data points are shown and error bars are omitted.

Figure 3. Optically measured mTHPC concentration (fDPS) versus true mTHPC concentration (extraction) for 3 different mTHPC formulations (Foscan, Foslip, Fospeg) in tongue (A), liver (B) and lip (C) tissue (error bars indicate SD, logarithmic scales). One measurement point represents multiple fDPS and extraction measurements of 1 rat. Best fit linear regression lines forced through the origin are plotted as solid lines. Pooled data per tissue type (D) show significant differences (p<0.001) in the slopes of the regression lines between the tissue types (linear scales). In figure 3D, for clarity purposes only a portion of the data points are shown and error bars are omitted.

Influence of mTHPC formulations and tissue type

The influence of mTHPC formulation on fDPS was investigated by assessing differences in slope of regression lines within each tissue type. The sum-of-squares F-test showed a significant (p<0.05, F: 3.252) difference in slope between mTHPC formulations in the liver, with Fospeg showing the highest slope (figure 3A). Similar analysis in lip and tongue tissue, showed no significant (p<0.05) difference in slope between the formulations. Therefore, it is possible to calculate one slope for all three formulations in tongue and lip tissue (figure 3D). In lip and tongue tissue, the goodness of fit to the shared regression line (lip: y=388.6x, 95% confidence interval). One measurement point represents multiple fDPS and extraction measurements of 1 rat. Best fit linear regression lines forced through the origin are plotted as solid lines. Pooled data per tissue type (D) show significant differences (p<0.001) in the slopes of the regression lines between the tissue types (linear scales). In figure 3D, for clarity purposes only a portion of the data points are shown and error bars are omitted.
fraction differences. Overall analysis of the scattering amplitude per tissue type shows significant differences between tissue types (p<0.05), with the least amount of scattering measured in the liver (table 1). No significant difference between the scattering amplitude for different mTHPC formulations was found at any time point in any tissue location. The blood volume fraction was found to have a significant correlation with mTHPC fluorescence only in the liver at the early (2, 4 and 8 hours) time points; a significant Pearson’s correlation (r) was found of 0.90, 0.57 and 0.82, respectively.

Confocal microscopy

To further investigate our findings of a lower correlation in lip and tongue versus liver, fluorescence microscopy was performed to determine difference in mTHPC distribution. Confocal fluorescence microscopy was performed on 50 μm sections of liver, tongue and lip at various time points. Typical examples are shown in figure 4. Differences between tissue types are clearly observable; mTHPC is homogeneously spread throughout the liver section, while in lip and especially tongue tissue mTHPC is more heterogeneously distributed. Furthermore, the presence of layered structures can be clearly seen on the transmission images in lip and especially the tongue. In tongue tissue, the filiform papillae (arrow) can be clearly seen, and do not contain any mTHPC. In lip tissue, a much smaller superficial layer shows no uptake of mTHPC, combined with an increased uptake in the basement membrane.

Discussion

The direct relationship between mTHPC concentration and therapeutic outcome is complicated as numerous parameters influence the deposited PDT dose. However, the amount of mTHPC present in tissue is clearly an important factor in the deposition of PDT dose. Non-invasive monitoring of mTHPC concentration, as well as other important parameters during PDT, could allow for standardization and optimization of clinical PDT. The aim of this study was to test the optical photosensitizer concentration measurement technique fDPS in a more clinically relevant environment compared to previous research performed on liver tissue. Therefore, in our present study we used both a clinically relevant tissue location.
and a clinically used drug dose. Furthermore, we tested the influence of promising new liposomal mTHPC formulations on fDPS performance.

In the liver, linear regression analysis showed an excellent goodness of fit (R²) for the fDPS data to the extraction data, with Foscan, Foslip, and Fospeg showing similar R². As a further validation for fDPS with our lower drug dose we compared our R² to the results of Kruijt et al. They found a R² value of 0.87 for Foscan measured by fDPS in the liver; we found a slightly lower R² value of 0.74. Our R² values were higher for Fospeg and Foslip at 0.82 and 0.89 respectively. Therefore, our measurements indicate that fDPS results could be reproduced in the liver at the clinically relevant dose of 0.15 mg/kg mTHPC, and extended to the Foslip and Fospeg formulations. Note that although the R² values can be compared between this study and the study of Kruijt et al., the regression line slopes cannot be compared between these two studies due to differences in the distance between the probe tip and the calibration standard combined with a difference in excitation wavelength in these studies. The lower wavelength in the current study excites mTHPC at its maximum absorption peak, to maximize mTHPC fluorescence at a lower drug dose. Since both the calibration method and the excitation wavelength were kept constant during our current study, comparison of regression line slopes within our study is possible.

The influence of mTHPC formulation on fDPS performance

The influence of mTHPC formulation on fDPS signal proved to be significant in liver; Foslip showed a higher slope of the regression line compared to both Fosip and Foscan. This suggests Fospeg has a significant higher quantum yield compared to the other formulations, in vivo. This could be explained by a relatively higher amount of non-aggregated mTHPC molecules in liposomal formulations 24,25. Other in-vivo studies also describe a higher fluorescence of Fospeg compared to Foscan 25,26, although in these studies fluorescence intensity is also influenced by formulation specific pharmacokinetics such as aggregation and EPR. The significant difference in slope between the regression lines of Fospeg and Foslip probably depend on the detailed characteristics of the liposomes. It is known that pegylation of liposomes lengthens the plasma half-life of liposomes, thereby enabling a longer relative monomeric state of mTHPC in Fospeg, resulting in a relatively higher slope of the regression line compared to Foslip.

In both tongue and lip tissue, no significant difference in slope of the regression lines between the three mTHPC formulations was present. However, this may well be related to the lower goodness of fit and the higher CI of the regression lines in tongue and lip compared to liver, making a significant difference difficult to establish.

Influence of tissue type on fDPS performance

Our results clearly indicated a difference in fDPS performance depending on tissue type. Indeed, data analysis (figure 3D) showed very distinct differences in both the goodness of fit (R²) and in the slope of the regression lines between tissue types.

To investigate the potential reasons for these differences, the different tissues were microscopically analyzed. Fluorescence microscopy showed clear differences in tissue specific distribution of mTHPC at all time points; in liver mTHPC was much more homogeneously distributed compared to both lip and tongue tissue (figure 4). Furthermore, in tongue tissue an absence of mTHPC fluorescence was seen in the most superficial, dorsal layer around the papillae. In contrast, in lip tissue a distinct layer (basement membrane) close to the surface shows more mTHPC fluorescence compared to the stroma, while similar to the tongue the most superficial layer shows almost no mTHPC fluorescence; however, in lip tissue this superficial layer is much smaller than in tongue tissue. These differences in distribution of mTHPC can be explained by the known difference in uptake of the dye in various structures like epithelium, lamina propria, striated muscle, smooth muscle, glands and fibro-connec-tive tissue 31,47. While liver tissue consists of multiple similar lobules, lip and tongue have a more complicated, layered composition.

The most important anatomical difference between lip and tongue tissue is the presence of keratinized stratified mucosa in the dorsal tongue while the inner side of the lip is covered by smooth non-keratinized mucosa. Besides tissue specific differences in mTHPC uptake, the biodistribution of mTHPC varies greatly with time 45,46. However, the tissue specific mTHPC distribution is bound to have some influence on optical concentration measurements.

More challenging for our fluorescence measurement are the structural differences between tissue types. The layered, heterogeneous anatomy will certainly influence the tissue specific optical properties, in particular scattering properties. This difference is illustrated by significantly higher scattering amplitudes for lip and tongue tissue compared to liver tissue. Further indication of heterogeneity of lip and tongue tissue is given by the overall larger standard deviations of the scattering amplitude data compared to liver (table 1).

With knowledge of the microscopic differences observed in anatomy and mTHPC distribution between tissue types, we can explain the tissue specific differences in fDPS performance. The significant difference we found between correlation coefficients and slopes of the regression lines for different tissue types (figure 3D) is potentially caused by a combination of three factors: 1) the layered biodistribution of photosensitizer in combination with the superficial sampling volume of fDPS vs. larger sampling volume of chemical extraction, 2) inter-animal variations in the thickness of the keratin layer, and 3) the large differences in scattering properties between tissue types. With regards to the last point, although fDPS yields absorption corrected data, it does not correct for inter- and intra-tissue scattering differences 26,27,28. As a result, the slope of the correlation between fDPS and extraction will be influenced by the average scattering coefficient of the tissue under investigation. Table 1 shows that the scattering properties vary with tissue type, resulting in different correlation
slopes; furthermore, intra- and inter-animal variations in scattering properties are more pronounced in more heterogeneous, layered tissue, such as tongue, resulting in a poorer correlation. A future challenge in improving optical concentration measurements performance would therefore be the ability to correct for scattering.

With regards to the first two factors, the correlation coefficients and slopes of the regression lines are also affected by a difference in interrogation volume of both techniques (extraction and fDPS). The minimum interrogation volume necessary to obtain accurate extraction data needs to be $\approx 10^{-3}\text{mm}^3$ (≈ 0.1 gram of tissue), compared to $\approx 0.2\text{mm}^3$ for fDPS. This difference will influence the slope of the regression line in tissue with a relatively heterogeneous (layered) mTHPC distribution, as found in tongue and lip tissue. In tongue a large part of the fDPS interrogation depth (≈ 500 μm) of the dorsal tongue consists of papillae (keratin layer), as previously noted (figure 4). Papillae in the rat can be up to 200 μm in length and showed decreased mTHPC uptake. Therefore only roughly half the fDPS interrogation volume contains mTHPC resulting in a lower slope of the regression line between fDPS-extracted mTHPC concentration and chemical extraction in the tongue. Conversely, because the surface of the lip tissue has an increased uptake of mTHPC compared to the surface of the tongue, the fDPS-measured mTHPC fluorescence in the lip increases for the same chemically extracted mTHPC concentration. This explains the significantly higher mTHPC fluorescence as measured by fDPS in lip compared to tongue tissue, whereas in the extraction the mTHPC concentrations in these tissue types appear to be very similar (figure 2). Furthermore, a lower correlation will be found for tissues with more heterogeneous photosensitizer distributions. Although multiple fDPS measurements are averaged for each animal on each tissue type, inter-animal variations in photosensitizer biodistribution with tissue depth will not be averaged out and result in poor correlations. Similarly, inter-animal variations in average keratin layer thickness will also result in poor correlations between the superficially localized fDPS measurement and the “bulk” chemical extraction. The average thickness of the keratin layer in the Wistar rat tongue is described by others as 150μm (SD ± 100), measured at a central portion of the dorsal tongue. However, the highly keratinized filiform papillae are well known to have substantial, intra-animal morphological variation among differing sites of the dorsal rat tongue. This is supported by the even higher variation in average thickness we found for the whole dorsal tongue; 200 μm (SD: ± 120).

Extrapolation of our current results to the clinic is difficult; the dimensions and anatomy in normal human tissue are different compared to that of a rat. For example, in humans the keratin layer of normal tissues is on average much smaller than in a rat, which is likely to pose less of a problem for the application of our technique on human tongue. Furthermore, the pharmacokinetics of mTHPC differs between humans and rodents. Another complicating factor is significant spatial variation in mTHPC biodistribution within tumors. Moreover, tumors of the oral cavity could also disrupt or change the keratin layer, and therefore influence the performance of our technique. All these aspects may lead to very different observations and very different levels of homogeneity and heterogeneity in human (tumor) tissues. In our current pre-clinical study, the emphasis has been on careful investigation of quantitative mTHPC measurements in optically more challenging tissues and of the influence of liposomal formulations. Promising nonetheless, were the results of a recent clinical study using fDPS. The feasibility of clinical fDPS was shown, as clinical PDT treatments were monitored in three patients with SCCs of the oral cavity.

Conclusion

The non-invasive optical technique fDPS shows promising results in determining the mTHPC concentration in the rat liver for Foscan and for both liposomal formulations; Foslip and Fospeg. In liver, Fospeg showed a significant higher quantum yield compared to the other formulations. In optically homogeneous liver, the correlation with the extraction data was excellent. In the more heterogeneous lip tissue the correlation was lower. In tongue tissue the correlation was poor. The most likely cause of these differences in correlation is the more demanding optical characteristics of lip and especially tongue tissue. In tongue tissue fDPS performance is probably even further decreased by a thick layer of keratinized epithelium, which influences the optically sampled mTHPC distribution. Furthermore, in order to accurately monitor mTHPC concentration in heterogeneous tissue, a correction for scattering is needed. This is particularly important for (future) monitoring of mTHPC in spatially heterogeneous tumor tissues.
References

Chapter 5

Summary, general discussion and future perspectives
Summary

Standard treatment of head and neck squamous cell carcinoma (HNSCC) consists of surgery, radiotherapy or chemoradiation, as monotherapy or multimodal strategy. Most treatment strategies of HNSCC are associated with localized impairment of organ function and diminished aesthetic appearance. These side effects are more pronounced at certain anatomical locations, increased tumor size and with treatment of recurring or additional tumors. Photodynamic Therapy (PDT) is used in curative and palliative local treatment for tumors of various anatomical origins. Currently, the potent photosensitizer meta-tetra(hydroxyphenyl)chlorin (mTHPC) is used in its clinically available Foscan® formulation as an alternative treatment for early stage and advanced stage HNSCC with promising clinical results, supposedly with a decrease of treatment related morbidity. However, literature seldom reports efficacy or morbidity of PDT in relation to the standard treatment regimes. Even so, (pre)clinical studies describe some drawbacks of mTHPC due to its properties; prolonged phototoxicity, aggregation of the highly hydrophobic mTHPC in physiological conditions and high uptake by the mononuclear phagocyte system (MPS) resulting in reduced bioavailability at the target organ. To enhance the properties of mTHPC while retaining its potency, water-soluble liposomal mTHPC formulations have been designed. Another possible route for enhancement of PDT is by in vivo dosimetry of the complex, interdependent dynamic interactions of the parameters (oxygen, fluence rate) and photosensitizer) involved in PDT.

In the research described in this thesis the efficacy of currently used mTHPC mediated PDT for HNSCC is presented. Moreover, the results of the evaluation of two liposomal mTHPC formulations in tumor models and a new tool (fDPS) to measure mTHPC tissue concentrations are presented.

Chapter 2.1 is a systematic review of the literature on mTHPC mediated PDT (Foscan) in treatment of HNSCC. Twelve studies were included for our review, none of which exceeded level 3 on the Oxford levels of evidence. Six of 12 studies described PDT with palliative intent of which 3 described surface illumination and the remaining 3 studies described interstitial PDT of tumors with a bigger volume. Findings from this review support the use of PDT and surgery for tumors of various anatomical origins. Currently, the potent photosensitizer metatetra(hydroxyphenyl)chlorin (mTHPC) is used in its clinically available Foscan® formulation as an alternative treatment for early stage and advanced stage HNSCC with promising clinical results, supposed with a decrease of treatment related morbidity. However, literature seldom reports efficacy or morbidity of PDT in relation to the standard treatment regimes. Even so, (pre)clinical studies describe some drawbacks of mTHPC due to its properties; prolonged phototoxicity, aggregation of the highly hydrophobic mTHPC in physiological conditions and high uptake by the mononuclear phagocyte system (MPS) resulting in reduced bioavailability at the target organ. To enhance the properties of mTHPC while retaining its potency, water-soluble liposomal mTHPC formulations have been designed. Another possible route for enhancement of PDT is by in vivo dosimetry of the complex, interdependent dynamic interactions of the parameters (oxygen, fluence rate) and photosensitizer) involved in PDT.

In the research described in this thesis the efficacy of currently used mTHPC mediated PDT for HNSCC is presented. Moreover, the results of the evaluation of two liposomal mTHPC formulations in tumor models and a new tool (fDPS) to measure mTHPC tissue concentrations are presented.

Chapter 2.1 is a systematic review of the literature on mTHPC mediated PDT (Foscan) in treatment of HNSCC. Twelve studies were included for our review, none of which exceeded level 3 on the Oxford levels of evidence. Six of 12 studies described PDT with palliative intent of which 3 described surface illumination and the remaining 3 studies described interstitial PDT of tumors with a bigger volume. Findings from this review support the use of PDT and surgery for tumors of various anatomical origins. Currently, the potent photosensitizer metatetra(hydroxyphenyl)chlorin (mTHPC) is used in its clinically available Foscan® formulation as an alternative treatment for early stage and advanced stage HNSCC with promising clinical results, supposed with a decrease of treatment related morbidity. However, literature seldom reports efficacy or morbidity of PDT in relation to the standard treatment regimes. Even so, (pre)clinical studies describe some drawbacks of mTHPC due to its properties; prolonged phototoxicity, aggregation of the highly hydrophobic mTHPC in physiological conditions and high uptake by the mononuclear phagocyte system (MPS) resulting in reduced bioavailability at the target organ. To enhance the properties of mTHPC while retaining its potency, water-soluble liposomal mTHPC formulations have been designed. Another possible route for enhancement of PDT is by in vivo dosimetry of the complex, interdependent dynamic interactions of the parameters (oxygen, fluence rate) and photosensitizer) involved in PDT.

In the research described in this thesis the efficacy of currently used mTHPC mediated PDT for HNSCC is presented. Moreover, the results of the evaluation of two liposomal mTHPC formulations in tumor models and a new tool (fDPS) to measure mTHPC tissue concentrations are presented.

Chapter 2.1 is a systematic review of the literature on mTHPC mediated PDT (Foscan) in treatment of HNSCC. Twelve studies were included for our review, none of which exceeded level 3 on the Oxford levels of evidence. Six of 12 studies described PDT with palliative intent of which 3 described surface illumination and the remaining 3 studies described interstitial PDT of tumors with a bigger volume. Findings from this review support the use of PDT and surgery for tumors of various anatomical origins. Currently, the potent photosensitizer metatetra(hydroxyphenyl)chlorin (mTHPC) is used in its clinically available Foscan® formulation as an alternative treatment for early stage and advanced stage HNSCC with promising clinical results, supposed with a decrease of treatment related morbidity. However, literature seldom reports efficacy or morbidity of PDT in relation to the standard treatment regimes. Even so, (pre)clinical studies describe some drawbacks of mTHPC due to its properties; prolonged phototoxicity, aggregation of the highly hydrophobic mTHPC in physiological conditions and high uptake by the mononuclear phagocyte system (MPS) resulting in reduced bioavailability at the target organ. To enhance the properties of mTHPC while retaining its potency, water-soluble liposomal mTHPC formulations have been designed. Another possible route for enhancement of PDT is by in vivo dosimetry of the complex, interdependent dynamic interactions of the parameters (oxygen, fluence rate) and photosensitizer) involved in PDT.

In the research described in this thesis the efficacy of currently used mTHPC mediated PDT for HNSCC is presented. Moreover, the results of the evaluation of two liposomal mTHPC formulations in tumor models and a new tool (fDPS) to measure mTHPC tissue concentrations are presented.

Chapter 2.1 is a systematic review of the literature on mTHPC mediated PDT (Foscan) in treatment of HNSCC. Twelve studies were included for our review, none of which exceeded level 3 on the Oxford levels of evidence. Six of 12 studies described PDT with palliative intent of which 3 described surface illumination and the remaining 3 studies described interstitial PDT of tumors with a bigger volume. Findings from this review support the use of PDT and surgery for tumors of various anatomical origins. Currently, the potent photosensitizer metatetra(hydroxyphenyl)chlorin (mTHPC) is used in its clinically available Foscan® formulation as an alternative treatment for early stage and advanced stage HNSCC with promising clinical results, supposed with a decrease of treatment related morbidity. However, literature seldom reports efficacy or morbidity of PDT in relation to the standard treatment regimes. Even so, (pre)clinical studies describe some drawbacks of mTHPC due to its properties; prolonged phototoxicity, aggregation of the highly hydrophobic mTHPC in physiological conditions and high uptake by the mononuclear phagocyte system (MPS) resulting in reduced bioavailability at the target organ. To enhance the properties of mTHPC while retaining its potency, water-soluble liposomal mTHPC formulations have been designed. Another possible route for enhancement of PDT is by in vivo dosimetry of the complex, interdependent dynamic interactions of the parameters (oxygen, fluence rate) and photosensitizer) involved in PDT.

In the research described in this thesis the efficacy of currently used mTHPC mediated PDT for HNSCC is presented. Moreover, the results of the evaluation of two liposomal mTHPC formulations in tumor models and a new tool (fDPS) to measure mTHPC tissue concentrations are presented.
In chapter 3.2 the ratio fluorescence imaging technique we developed and used for the quantification of fluorescence images in the window chamber model (chapter 3.1) is tested and explained. A problem associated with fluorescence measurements is the difficulty of obtaining quantitative fluorescence, due to varying optical properties of tissues in time. The ratiometric quantification method we developed to monitor mTHPC pharmacokinetics in the rat window-chamber model uses a combination of dual-wavelength excitation and dual-wavelength detection and accounts for the wavelength dependence of tissue optical properties. Fluorescence images were captured by a CCD after injection of 0.15 mg/kg mTHPC. Excitation wavelengths were at 629 nm and 652 nm. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC (720 nm) and one in a region of tissue autofluorescence and no photosensitizer fluorescence (> 763 nm). An algorithm was used to correct for optical properties.

During the experimentation time, the autofluorescence intensity showed a steady increase for all tissues above 24 hours. Furthermore, uncorrected fluorescence signals showed larger intra-chamber variations than the corrected fluorescence signal of the same tissue. Only at early time points in vasculature large variations in corrected mTHPC fluorescence were observed. A similar fluorescence pharmacokinetic profile was observed when comparing our correction algorithm with a previously validated double ratio ratiometric technique.

In chapter 3.3, we used the 4-nitroquinoiline-1-oxide (4NQO) induced oral cavity carcinogen model to compare the localization of the different mTHPC formulations (Foscan, Foslip and Fospeg) within normal, precancerous and cancerous tissue in 54 rats. When oral examination revealed tumor, the rats received 0.15 mg/kg mTHPC. At several time points between 2 - 96 hours after injection the rats were terminated. Oral tissue was sectioned for hematoxylin and eosin (HE) couples and for corresponding fluorescence confocal microscopy. The HE slides were assessed on tissue type and scored on the severity of dysplasia by the Epithelial Atypia Index (EAI). Our measurements were corrected for variations in the experimental setup. Fospeg showed higher fluorescence in normal and tumor tissue compared to Foslip and Foscan, in particular at early time points (<24 hours). Fospeg showed more tumor selectivity (mTHPC fluorescence intensity in tumor vs normal stroma) compared to Foslip and especially Foscan at early time points. Highest mTHPC fluorescence was shown for Fospeg in tumor tissue 8 hours after injection. Only a weak correlation between increasing grade EAI and higher mTHPC fluorescence was found. Our findings derived from the 4NQO model suggest that Fospeg has a superior fluorescence pharmacokinetic profile and tumor uptake at early time points over Foslip and in particular Foscan. In contrast to tumor tissue, precancerous tissue does not show significant increased mTHPC fluorescence intensities.

In chapter 4.1, we investigated the effect of different mTHPC formulations (Foscan, Foslip and Fospeg) and clinically relevant, heterogeneous tissue on the performance of fluorescence differential path-length spectroscopy (fDPS). fDPS is a non-invasive optical technique developed to accurately quantify the concentration of mTHPC in tissue. In 54 healthy rats multiple fDPS measurements were performed on liver, tongue and lip tissue at several time point 2 - 96 hours after injection of 0.15 mg/kg mTHPC. After fDPS measurements, rats were terminated and the measured tissue was harvested. mTHPC concentrations determined by fDPS were correlated with the mTHPC concentrations of the harvested and chemically extracted tissue using linear regression analysis. An excellent goodness of fit between fDPS and extraction was found for all formulations in the liver. In lip and especially in tongue tissue a much lower goodness of fit between fDPS and extraction was found. Fluorescence microscopy clearly showed differences in tissue specific distribution of mTHPC at all time points; in liver mTHPC was much more homogeneously distributed compared to both lip and tongue tissue. In tongue tissue a thick layer of keratinized epithelium without mTHPC uptake was present, taking up a big portion of the fDPS interrogation volume. Lip and tongue tissue differed further from liver as it showed significantly higher scattering amplitudes accompanied by larger standard deviations. The different formulations of mTHPC influenced fDPS; the slope of the regression line for Fospeg was higher compared to both Foslip and Foscan. fDPS can reliable measure mTHPC concentrations of Foscan, Foslip and Fospeg in the optically homogenous liver. fDPS in optically more heterogeneous tissue is hampered by scattering.

General discussion

Evaluation of mTHPC mediated Photodynamic therapy in clinical treatment of head and neck squamous cell carcinoma

In chapter 2 we described the current evidence in literature on both curative and palliative mTHPC mediated PDT. Our review clearly showed a lack of prospective, comparative, randomized studies hurting the attributed evidence of papers on mTHPC mediated PDT (chapter 2.1). Despite this limitation, our review concluded that PDT should be considered for patients with untreatable local disease lacking any further treatment options as substantial tumor response and increase in quality of life was noted. Comparing the results of PDT with palliative intent to conventional modalities has not been performed in literature. However, the added value of such a study is uncertain as heterogeneity of patients and tumors with respect to previous treatments, tumor spread and co morbidities are to be expected. Instead of comparing PDT with the often used systemic treatments (combination chemotherapy) in patients with end stage disease, proper indications for the use of the local treatment modality PDT in these difficult to treat patients should be made 1-3. Even though interstitial PDT was found to have an excellent local treatment response in big tumors considering the lack of further treatment options, gains in efficacy could probably be achieved by the use of digital pre-treatment dosimetric planning for the positioning of the interstitial fibers 2. While the clinical application of dosimetry is to be encouraged, the complexity of the interdependent...
treatment parameters underlying PDT needs better understanding to allow for true clinical, in vivo, feedback on the factors determining deposited PDT dose. Therefore, a first step should be quantification of oxygen saturation, mTHPC uptake, blood flow, fluence (rate) and the influence of optical properties on measurement techniques. The complexity of PDT is further illustrated by the time-dependent yet not fully predictable pathway of PDT inflicted cell death. Similar to interstitial PDT, to a lesser degree these same problems arise in the prediction of treatment response after superficial PDT of smaller tumors. The absence of comparative studies on mTHPC mediated PDT for early stage disease is surprising for a drug that is on the market for nearly two decades. In contrast to palliative treatment, comparable treatment groups for PDT and surgery/radiotherapy could be performed in well-designed, randomized, studies. Most of the studies on PDT with curative intent described similar treatment response, better aesthetic outcome and preservation of organ function compared to surgery and radiotherapy evidenced by mainly anecdotal evidence and own experience.

While we can confirm the potential of PDT from our own experience, the use of PDT for treatment of early stage disease should be backed up by solid evidence; as both surgery and radiotherapy of early stage disease have high cure rates, PDT must reach at least similar rates to be considered a worthwhile treatment option. In order to get some comparison of PDT versus surgery in treatment of early stage disease, we performed a retrospective study. While several flaws in design can be identified in the study we performed, it allowed us to make some sort of comparison between PDT and surgery. Despite the problematic study design, our inclusion criteria were chosen so that the cases from our surgical database optimally reflect the cases from the PDT database. Our main conclusion was that PDT and surgery resulted in similar treatment results for T1 tumors, for T2 tumors PDT performed worse (chapter 2.2). Overall survival was similar for surgery and PDT stratified according to tumor size. This may well suggest that failure of primary treatment of T2 tumors after PDT is manageable by subsequent salvage treatment. Future comparative studies should address the treatment specific differences in assessment of a complete response for PDT (visual inspection) and surgery (histopathological analysis). For surgery this difference resulted in a benefit over PDT as re-excision after compromised surgical margins is often seen as one primary treatment. To account for this, we used the need for retreatment and survival as endpoints for our study. A known intrinsic advantage of PDT over radiotherapy and surgery is the possibility of re-treatment of recurrent or residual disease by either PDT or conventional treatment after previous PDT. While the efficacy of PDT in achieving treatment response could be compared to surgery as described previously, a comparison in post-treatment morbidity was not identified and could not be performed in our retrospective comparative study. Therefore we can only conclude that the possible clinical advantage in aesthetic outcome and function preservation of PDT over surgery and radiotherapy, tough often mentioned, and observed in our institute, is without any evidence. As one of the main problems in treating HNSCC are patients with multiple primary or recurrent tumors in which treatment is associated with loss of organ function, possible organ sparing treatments like PDT should be investigated. We were able to investigate the complications attributed to PDT which were mostly phototoxicity reactions due to non compliance of patients to the stringent light protocol in combination with mTHPC associated photosensitivity. Pain or discolouration at the injection site is also common and suggests a problematic injection, due to the problematic solubility of hydrophobic mTHPC in plasma. Clinical mTHPC mediated PDT is a welcome addition for treatment of patients with end-stage HNSCC without further treatment options. The benefit of PDT over conventional treatment for early-stage HNSCC is not sufficiently investigated; in retrospective studies, treatment results seem similar to surgery, however influence on morbidity compared to surgery is not assessed. The main advantage of PDT is that it does not utilize ionizing radiation and thus does not have a maximal cumulative dose. Information on PDT associated morbidity compared to surgery and radiotherapy in clinical treatment is missing and is necessary to give a verdict over PDT for clinical treatment of early stage disease. To evaluate a possible added benefit of mTHPC mediated PDT in the treatment of early stage disease, future prospective studies should compare efficacy of PDT with conventional treatment on a group of well defined tumors besides the desired comparison in treatment related morbidity. Some of the complications described in literature associated with the hydrophobicity of Foscan, may be avoided or decreased by the use of mTHPC encapsulated into liposomes. Currently, mTHPC mediated PDT seems worthwhile for patients with advanced local disease without further treatment options left. Treatment with curative intent for T1 tumors shows similar treatment results to surgical treatment in the need for retreatment, any difference in treatment related morbidity should be investigated further.

Enhancement of mTHPC fluorescence pharmacokinetics by liposomes

Liposomal drug-carrier systems have previously shown to increase tumor uptake and improve water-solubility of mTHPC in a few, flawed studies. For the first time Foslip, Fospeg (both liposomal mTHPC) were compared to Foscan within one animal tumor models up to 96 hours after injection. We compared fluorescence pharmacokinetics of Foscan with both Foslip and Fospeg to gain insight into the possibilities for future (pre) clinical PDT studies using liposomal mTHPC formulations. Chapter 3 described the fluorescence pharmacokinetics over 96 hours of systemically administered Foscan, Foslip and Fospeg in a xenograft window-chamber model (chapter 3.1) and in the induced 4NQO tumor model (chapter 3.3). We concluded from our results that liposomal encapsulation of mTHPC clearly increases mTHPC fluorescence in tissue at earlier time points compared to Foscan. Of the two liposomal formulations, Fospeg showed the most mTHPC fluorescence during our experiments suggesting a clinical interesting ability of increased PDT efficacy. Fospeg even showed signs of accumulation in tumor tissue or so called tumor selectivity. The data extracted from the window chamber model allowed us to compare the non-invasive fluorescence pharmacokinetics of mTHPC in tumor, vasculature and normal tissue over 96 hours within the same animal. Quantification of measured mTHPC fluorescence is essential to determine small differences in fluorescence emitted from different tissue types and different formulations.
Quantification was partly possible due to the thin tissue layer present in the window chamber model, decreasing influence of optical properties. The most significant step in acquiring quantitative in vivo mTHPC fluorescence was the development of a technique that corrects for varying optical properties in time (chapter 3.2). The ratiometric quantification method uses a combination of dual-wavelength excitation and dual-wavelength detection in the near infrared region (NIR) where the tissue absorption and scattering are relatively small. The first excitation wavelength of 652 nm (720 nm detection) was used to excite the mTHPC and autofluorescence whereas the second excitation wavelength at 629 nm (763 nm detection) only excited autofluorescence, so that this could be subtracted. This subtraction was performed as autofluorescence was not significantly different for 629 and 652 nm excitation. Subsequently the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. Because even small differences in mTHPC fluorescence between tissue types or formulations should be investigated, accurate quantification of mTHPC is important. The need for accurate quantification was clearly shown as autofluorescence of the same tissue changed over time and uncorrected fluorescence signals showed relative large intra-chamber variations. The importance of the 4NQO model used lies in the possibility to investigate the influence of precancerous tissue on mTHPC uptake for different formulations in a non-xenograft model. While xenograft models are suited to investigating pharmacokinetics, induced tumor models are more likely to mimic pharmacokinetics of tumors encountered in the clinic. The choice of tumor model is important as the tumor model used is most likely the cause of the different results reported in several, similar pharmacokinetic studies. The prolific growth pattern often characteristic of xenograft models influences almost all aspects of tumor biology and thereby its influence on pharmacokinetics. The most important factors affecting transport of drugs to tumor tissue are the tumor vasculature, tumor growth environment and functioning of the MPS. A known characteristic of tumor vasculature is the occurrence of the enhanced permeability and retention (EPR) effect, in which “leaky vasculature” without adequate lymphatic drainage cause passive accumulation of liposomes (macromolecules) in tumor tissue. These factors affecting drug transportation are known to vary based on the function of lymphatic drainage are clearly factors of importance on the magnitude of the EPR effect 16,23. Inter- and intra-variations in tumor characteristics will influence the clinical pharmacokinetics of Fospeg and may alter the selectivity for tumor over normal tissue. The proposed increased uptake of liposomal mTHPC in tumor tissue was indeed present for Foslip and especially Fospeg. This tumor selectivity was mostly present at early time points (< 24 hours). Our assumption that precancerous tissue accumulates significantly higher amounts of mTHPC proved incorrect; only a weak correlation between dysplasia grade induced in the 4NQO model and mTHPC fluorescence was found for all mTHPC formulations. The higher fluorescence intensities for both liposomal formulations in tumor tissue is due to the EPR effect causing passive accumulation of liposomes (macromolecules) in tumor tissue without adequate lymphatic drainage. Our data suggests that this EPR effect may not be present in dysplastic tissue but only in tumor tissue. The higher mTHPC fluorescence intensity and tumor selectivity of Fospeg over Foslip are explained by the increased circulation time and thereby increased possibility for uptake in tumor tissue due to the coating of the liposomes used in Fospeg by hydrophilic polymers. This coating results in a diminished recognition by the MPS of these “stealth” liposomes. Aggregation of hydrophobic mTHPC molecules in plasma are the cause of the observed lower fluorescence intensities of Foscan which is associated with diminished fluorescence, increased uptake by the MPS and delayed uptake into tissue. Although emitted mTHPC fluorescence is influenced by mTHPC serum stability, binding and/or aggregation and the incorporation into liposomes of mTHPC, one could argue that only mTHPC molecules able to fluoresce are important for PDT. Liposomal mTHPC is of interest for further (pre)clinical studies due to its enhanced pharmacokinetic profile compared to Foscan. However, PDT is based upon a complex independent reaction of various treatment parameters, therefore predicting PDT response in general is difficult. But for one of the parameters involved, the photosensitizer used, an improvement in properties by using liposomal mTHPC seems likely to benefit PDT. From a clinical perspective, the possible shortening of the drug-light interval, lowering of the drug-dose and the use of a photosensitizer (PS) with better solubility and similar efficacy could be worthwhile. The importance of the EPR effect we found for Fospeg in our preclinical model and its potential role in clinical treatment should be considered as increased tumor accumulation of several nanodrugs is attributed to EPR. Most interestingly, even micronodal metastases in the liver were shown to exhibit the EPR effect. Notwithstanding these findings, blood flow, blood pressure, degree of tumor vascularisation, presence of necrotic cores and the function of lymphatic drainage are clearly factors of importance on the magnitude of the EPR effect. Inter- and intra-variations in tumor characteristics will influence the clinical pharmacokinetics of Fospeg and may alter the selectivity for tumor over normal tissue. It is therefore important to recognize that further clinical work is necessary to confirm the translational relevance of the finding presented.
Chapter 4

Liposomal mTHPC formulations investigated in this thesis showed superior fluorescence pharmacokinetics over the clinically used Foscan. In particular Fospeg showed increased fluorescence and tumor selectivity at earlier time points. Our results warrant research into PDT efficacy for Fospeg at early time points and reduced drug dose compared to Foscan. The choice of preclinical model used is important, as it ideally must represent patients with solid tumors and all of the aspects influencing the EPR effect. Therefore, induced tumor models should be used for PDT studies comparing inflicted tissue damage between mTHPC formulations at different drug-light intervals. A possible method to calculate PDT damage is to calculate necroses from a tumor as a percentage of the whole tumor surface area. The use of quantitative spectroscopy, such as fDPS, in early phase clinical studies would be particularly advantageous for determining if Fospeg shows enhanced pharmacokinetics in human tumors. These types of measurements would provide additional clinical data to support the use of PDT light treatment planning.

in vivo quantification of photosensitizer concentration using fluorescence differential path-length spectroscopy

The relationship between mTHPC concentration and therapeutic outcome in PDT is known to be complicated. Nonetheless, mTHPC tissue concentration is an important factor in the deposition of PDT dose. Fluorescence differential path-length spectroscopy (fDPS) is a non-invasive optical technique that has shown previously to accurately quantify the concentration of Foscan in rat liver. Chapter 4 described the use of fDPS in a clinically relevant and optically more challenging environment. Furthermore, we tested the influence of different mTHPC formulations (Foscan, Foslip and Fospeg) at a clinically relevant drug dose of 0.15 mg/kg on fDPS performance instead of the previously used 0.30 mg/kg mTHPC. mTHPC concentration estimates using fDPS were correlated with the results of the subsequent harvested and chemically extracted organs using linear regression analysis. An excellent goodness of fit between fDPS and extraction was found for all formulations in the liver. This finding validates fDPS in the liver for the different mTHPC formulations at a clinically relevant dose. In lip and especially in tongue tissue a much lower goodness of fit between fDPS and extraction was found. The most likely cause of these differences in correlation is the more layered anatomical structure, which influences photosensitizer distribution and scattering properties. Fluorescence microscopy clearly showed differences in tissue specific distribution of mTHPC at all time points; in liver mTHPC was much more homogeneously distributed compared to both lip and tongue tissue. As the extraction technique averages mTHPC concentration over the entire measured volume and fDPS is able to take several measurements within that volume, spatial heterogeneous mTHPC distribution will result in decreased correlation. In tongue tissue fDPS performance is probably decreased by a thick layer of keratinized epithelium without mTHPC uptake, which further influences the optically sampled mTHPC distribution. The differences in interrogation volume of both techniques (extraction and fDPS) are therefore relatively more pronounced in heterogeneous tongue tissue. Differences in scattering amplitude were illustrated by significantly higher scattering amplitudes accompanied by larger standard deviations for lip and tongue tissue compared to those of liver tissue. The different formulations of mTHPC influenced the fDPS measurements; the slope of the regression line for Fospeg in liver was higher compared to both Foslip and Foscan suggesting a higher quantum yield for Fospeg. This could be explained by a relatively higher amount of non-aggregated mTHPC molecules in liposomal formulations.

Other in vivo studies also describe a higher fluorescence of Fospeg compared to Foscan, although in these studies fluorescence intensity is also influenced by formulation specific pharmacokinetics such as aggregation and EPR. Within lip and tongue tissue, no significant difference in slope of the regression lines between the mTHPC formulations was present which is probably related to the overall lower goodness of fit and the higher confidence intervals of these regression lines.

The biggest challenging for optical fluorescence measurement are the structural differences between and within tissue types; our results clearly indicated a difference in fDPS performance depending on tissue type, notwithstanding the influence of different interrogation volumes for fDPS and extraction. Layered, heterogeneous anatomy influences the tissue specific optical properties, in particular scattering properties. In order to accurately monitor mTHPC concentration in heterogeneous tissue, a correction for scattering is needed. This is particularly important for (future) monitoring of mTHPC in spatially heterogeneous tumor tissues with even higher expected variations in scattering coefficient. However, a clinical PDT study performed on patients treated with interstitial PDT for head and neck tumors showed promising results. In patients, fDPS was shown to measure Foscan 96 hours after injection and monitor the reduction of mTHPC fluorescence (photobleaching) during PDT. In healthy patients, fDPS correctly estimated the absence of mTHPC in healthy volunteers. Therefore, fDPS demonstrated the feasibility of monitoring in vivo several treatment parameters during PDT. Interestingly, these measurements showed low in vivo oxygen saturation within tumor tissue. An explanation for these positive results of these clinical fDPS studies in contrast to our findings could be our dependence on a mismatch in interrogations volumes of our measurement methods in combination with choosing highly keratinized tissue with its associated increased scattering coefficients. Recently, multi-diameter single fiber reflectance (MDSFR) spectroscopy showed potential in in vivo quantification of optical properties. The mechanisms underlying the deposition of PDT dose are complex, however with the fDPS technique measuring blood saturation, blood volume and mTHPC fluorescence over the same interrogated volume, optical monitoring of these parameters could guide clinical PDT. Fospeg was shown to be a reliable non-invasive tool for measuring mTHPC concentration for Foscan, Foslip and Fospeg in homogeneous liver tissue. In tissue with spatially more heterogeneous mTHPC distribution one could argue that fDPS was able to measure small differences in spatial mTHPC distribution while the extraction technique averaged the mTHPC concentration over the entire interrogated volume. Due to differences in interrogation volume between fDPS and the golden standard of extraction, spatial heterogeneity of mTHPC...
distribution combined with the influence of scattering, validation of fDPS in optically more layered tissue proved challenging. Possible correction for scattering would enhance these measurements and allow for real-time dosimetry of important PDT treatment parameters.

Future perspectives

Improvement of clinical PDT

As our studies showed (chapter 2), randomized, prospective studies comparing PDT with conventional treatment modalities on treatment response and treatment related morbidity are lacking. The experience of most clinicians using mTHPC (Foscan) is that PDT compares favorably to both surgery and radiotherapy in terms of patient esthetics and oral function after treatment; therefore comparative studies should be performed on treatment related morbidity besides treatment response. To measure morbidity after treatment of HNSCC, questionnaires assessing quality of life should be used as well as clinical assessments of speech and swallowing. Furthermore, the treatment cost and (psychological) burden of treatment should also be investigated. Of course, these studies on comparative morbidity are more needed for early stage tumors. For patients with incurable, local disease without further treatment options our review (chapter 2.1) clearly stated that PDT results in increased quality of life. Enhancement of currently used mTHPC mediated PDT could be achieved by the application of current developments and a better understanding of PDT. One of the drawbacks of clinically used Foscan, its photocytotoxicity, could be improved upon by using liposomal mTHPC. We suggest a comparison of Foscan with Foslip and Fospeg on induced tumor response at varying drug-light intervals and at decreased mTHPC dose. In order to gain clinically more relevant information, induced preclinical tumor models instead of xenografts should be used for these experiments as an evaluation of potential clinical benefit (less phototoxicity due to decreased dose) of these formulations. The local pain, irritation and phototoxicity at the injection site associated with the hydrophobicity of administered Foscan may be improved upon by using the better water-soluble liposomal formulations of mTHPC. Combined uses of PDT with other therapeutic modalities such as surgery, radiotherapy, chemotherapeutics and drugs have been described extensively as a strategy to improve the effectiveness of PDT 5. For instance, Cox-2 inhibitors enhance the anti-tumor effect of PDT 31. In combination with radiotherapy, PDT sensitizes cancer cells to radiotherapy and radiotherapy enhances efficacy of PDT 32-34. Identifying various agents that combined with PDT result in improved tumor cell kill without an increase in normal cell kill will undoubtedly be a major focus of clinical research.

An interesting approach, is to use a PS to enhance the release of endocytosed macromolecules into the cytosol; the photochemical internalization (PCI) technique 35,36. PCI uses the principle of PS molecules located in endocytic vesicles. Light activation of the PS results in the production of reactive oxygen species (ROS) that damage the membranes of these vesicles with the subsequent release of the endocytosed macromolecule (a drug) to the cytosol where its therapeutic targets are located. PCI may be used to activate the entrapped drug only in the light-exposed area. However, both the precise requirements for a PS to be used in PCI and knowledge on the clinical therapeutic effect of entrapped drugs on solid tumors are limited. Currently, a promising clinical phase I/II trial is ongoing using Amphinex®9, an experimental chlorine type PS, in combination with low-dose of Bleomycin, a chemotherapeutic which is rapidly entrapped in endocytic vesicles 8. The lower dose used is preferred as Bleomycin is related to severe lung morbidity 37. The use of the clinically approved mTHPC in PCI with Bleomycin, instead of the less potent, experimental Amphinex, is the focus of current preclinical research. Potentially, an increased local tumor reaction could be reached by using liposomal mTHPC with its increased tumor uptake combined with light-activated release of Bleomycin. The PCI effect is not limited to Bleomycin as PCI of other macromolecules that cannot pass the plasma membrane (such as adenoviruses, immunotoxins, ribosome-inactivating proteins etc.) also showed increased biological activity 38,39. Modified adenoviruses are widely studied for their possible use as oncolytic viruses. Similar to tumor cells, (oncolytic) viruses can alter the cell cycle and cellular pathways and therefore have the potential to target tumor cells, replicate and destroy tumor cells 38. As a sufficient level of delivery of the oncolytic virus into target cells is essential, enhancement of this delivery is needed. Despite the promising preclinical work and the clinical trial, PS induced phototoxicity is also of concern in PCI. Furthermore, (partial) destruction of the entrapped drug besides destruction of endocytic vesicles and oxygen competition between PS and the entrapped drug (Bleomycin) will affect PCI. Although high doses of radiotherapy, chemotherapy and even major surgery have an immunosuppressive effect, PDT is increasingly described with having an immunostimulatory effect in preclinical models with a small immunosuppressive component 31. Besides the direct cell kill and shutdown of vasculature, PDT induces local inflammation at the treatment site. After PDT, fragments of disintegrated tumor cells attract leukocytes, forms tumor-specific T cells and can evoke tumor specific immune response. Ideally, not only the primary treated tumor would be destroyed by PDT but also remaining tumor cells by the capability of boosting the immune response by way of tumor specific immunity 5. Preclinical studies showed that PDT was able to control the growth of tumors outside of the light-exposed area 5,41. However, clinical studies measuring a possible immune recognition of tumor cells after PDT are needed to assess the usefulness of this effect in PDT.

Improvement of photosensitizer pharmacokinetics

The problematic solubility of the potent mTHPC is largely due to its overall symmetrical structure. Advances in synthesis of unsymmetrical mTHPC related molecules allow for a modulation of pharmacological properties (increased water solubility) without big changes in its basic photochemistry 42. Other synthetic advances could result in PS with longer wavelength absorption or conjugation with two-photon absorbers, potentially allowing for a more focused (thus more selective) two-photon excitation using NIR resulting in an
In vivo monitoring of PDT parameters

Monitoring parameters of importance during PDT is essential to understand mechanisms of action underlying PDT and to enhance treatment. For instance, varying clinical response to similar treatment could be explained. Future challenges lay in correction for the intra-and inter-subject variations in parameters such as PS pharmacokinetics, tissue optical properties, local oxygen saturation and delivered fluence (rate). The parameters influence the deposited PDT dose and even change during treatment. Ideally, monitoring of these parameters is done during treatment and can provide instant feedback to detect (technical) problems, optimize PDT and subsequently increase tumor response. Our study (chapter 4) indicated that for monitoring of PS concentration future studies should account for the influence of optical properties (scattering in particular) and spatial distribution of the PS in tissue and therefore the interrogation volume chosen. Clinical proof of principle studies using optical guidance to quantitatively measure PDT parameters, such as mTHPC concentration, could be used to get insight into PDT and allow for individualized clinical treatment regimes.

increased treatment depth. Another way of enhancing PS delivery is the use of “nano” particles or drug carrier systems. Nanoparticles containing PS have been developed and investigated for their enhanced tumor selectivity and increased water-solubility for years. Potential “nano” carrier systems are quantum dots, liposomal formulations, dendritic micelles and silica nanoparticles to name a few. In our current studies on drug carrier systems of mTHPC (chapter 3), liposomes were used that would accumulate in (tumor) tissue by virtue of the EPR effect. Literature suggests that the EPR effect could be augmented using systemic nitroglycerin, ACE-inhibitors and angiotensin-II induced hypertension. A general advantage of PSs encapsulated in nanocarriers, is the uncoupling of the chemical properties of the encapsulated PS from the delivery process. This concept makes future targeting and delivery of an encapsulated PS dependant on the drug carrier system used.

An approach to target tumor tissue is the attachment of a tumor-selective particle, monoclonal antibodies, molecule to a photosensitizer or a drug-carrier system encapsulating a photosensitizer. A possible target for PDT in treatment of HNSCC is the epidermal growth factor receptor (EGFR), which is seen in >90% of patients. Triggering of the molecular signaling pathway in tumor cells with EGFR by ligand binding or cross-talk with other receptors, results in activation of pathways which regulate cell proliferation, apoptosis, metastases and angiogenesis. Therefore, monoclonal antibodies (e.g., Cetuximab) and tyrosine kinase inhibitors (e.g., Erlotinib) targeting EGFR have become clinically important in these cancers. Another target could be vascular endothelial growth factor (VEGF) and its receptors, which is one of the most important factors regulating the angiogenesis and metastasis characteristic for tumor tissue. Uptregulation of low-density lipoprotein (LDL) receptors and folate receptors on tumor cells could also be of use in active targeting of PDT. Folic acid is very attractive as a targeting molecule because it is inexpensive, not toxic or immunogenic, it is stable and it can be easily coupled to the surface of nanocarriers or conjugated to a PS. However, Folic acid receptors are only present in 45% of primary HNSCC. A recent in vitro study attached folic acid to Fospeg and reported an improved uptake of mTHPC in cells expressing folate receptors and increased cell kill compared to “passive” Fospeg. However, the targeted Fospeg only showed a modest selectivity in mTHPC uptake in cell with folate receptors, indicating that non-specific endocytosis remains the prevailing mechanism of cell internalization. Combining PSs with monoclonal antibodies have been mostly unsuccessful, with some recent exceptions, due to difficulties in conjugation. The ability to target the drug-carrier to control the localization of the drugs, could result in a decrease of phototoxicity and damage of healthy tissue. However, development of a “standard” approach for targeting of HNSCC seems unlikely. Due to the heterogeneity and dynamic changes of the molecular basis of the tumor cells, the expression profiles of tumor-associated antigens will alter. Furthermore, changes in tumor vasculature and stroma will affect pharmacokinetics of targeted drugs. Thus, only when carefully adapting the PS to the tumor cells, its stage of disease, its micro-environment and its molecular targets a real targeted, tailor-made treatment with associated benefits will have arrived.
References

Chapter 6

Samenvatting
Introductie

De behandeling van de primaire tumor en eventueel aanwezige lymfekliermetastasen in de hals bestaat uit chirurgische verwijdering, bestraling of uit een combinatie van voornoemde behandelmethode. Soms wordt gekozen voor concomitante chemotherapie of radiotherapie, voornamelijk bij tumoren in een vergevorderd stadium. Het resultaat van de behandeling heeft vaak grote cosmetische en functionele gevolgen, zoals vermindering van het vermogen tot kauwen, slikken en spreken. De aard en ernst van deze bijwerkingen zijn afhankelijk van de aard en grootte, de lading en de hydrofobe of hydrofiele eigenschappen van de fotosensitizer molecule, de injectie locatie en de gebruikte oplossing. De reactieve zuurstofradicalen veroorzaken weefselschade door een combinatie van vasculaire schade en infarcering, die wordt veroorzaakt door een combinatie van vasocostrictie, trombusvorming en een verhoogde permeabiliteit van het endotheel voor PDT. De distributie van de fotosensitizer in het weefsel is daarom van belang voor de gewenste weefselschade door PDT. De distributie van de fotosensitizer wordt bepaald door de lokale vasculaire permeabiliteit en de temperatuur van het wondgebied. Behalve de directe overdracht van energie naar de fotosensitizer kan een indirecte overdracht plaatsvinden door een chemische reactie van de fotosensitizer gevolgd door belichting van het doelweefsel. Hierbij kan PDT weefselschade veroorzaken door een chemische reactie van de fotosensitizer als gevolg van excitatie door fotonen die een voor de fotosensitizer specifieke golflengte hadden. De fotosensitizer kan naar zijn grondtoestand terugkeren door een chemische reactie van de fotosensitizer gevolgd door belichting van het doelweefsel. Hierbij kan PDT weefselschade veroorzaken door een chemische reactie van de fotosensitizer als gevolg van excitatie door fotonen die een voor de fotosensitizer specifieke golflengte hadden. De fotosensitizer kan terugkeren naar zijn grondtoestand door 1) emissie van de geabsorbeerde energie door licht met een lager energieniveau (fluorescentie) of 2) door verval van de fotosensitizer naar een aangeslagen triplet toestand. De fotosensitizer kan in zijn aangeslagen triplet toestand energie overdragen aan nabijgelegen weefsel waarmee het reageert (type I reactie). Daar- naast kan een rechtstreekse overdracht van energie aan zuurstof plaatsvinden (type II reactie). Beide reactie types vinden gelijktijdig plaats, waarbij de verhoudingen tussen de type I en II reacties afhankelijk is van de gebruikte fotosensitizer, de concentratie van de fotosen- sitizer, de weefseloxygenatie en het dosistempo van de belichting. Vooral de type II reactie is, door het ontstaan van potente reactieve zuurstofradicalen, geassocieerd met door foto- dynamische therapie veroorzaakte weefselschade. Door de korte halfwaardetijd en hoge re- activiteit van zuurstofradicalen, respectievelijk 10-320 nanoseconden en 10-55 nanometer, wordt alleen weefsel beïnvloed in de directe nabijheid van het gebied waar de zuurstofradicalen worden gevormd.

In 1913 werden porphyrines als fotosensitizer geïntroduceerd door Meyer-Betz. Vijftig jaar later werd het haemotoporphyrin derivaat (HPD) ontwikkeld. Bij dieronderzoek met dit middel bleek sprake van een verhoogde opname in tumorweefsel. In 1970 werden de eerste patiënten succesvol behandeld met HPD. In 1993 werd Photofrin® (porfinumannium, gedeeltelijk zuiverde HPD) als eerste fotosensitizer goedgekeurd door de Food and Drug Administration voor toepassing bij de behandeling van maligne tumoren. Photofrin heeft als nadelen dat hoge doses van de fotosensitizer en licht nodig zijn voor de gewenste tumorrespons, de penetratie diepte in het weefsel beperkt is, de langdurige lichtgevoeligheid van de huid na toediening van het middel en een complex protocoldoorgewegde met de ingewikkelde chemische samenstelling. De beperkingen van Photofrin leidden tot de ontwikkeling van...
Door Biolitec AG zijn twee liposomale dragers van mTHPC ontwikkeld: Foslip® en Fospeg®. Beide fotosensitizers worden gebruikt bij de behandeling van actinische keratosen en basaalcellcarcinoom. Verteporfin (Visudyne®), dat intraveneus wordt toegediend, wordt gebruikt bij de behandeling van maculadegeneratie van het oog. Metatetrahydroxyfenyl chlorine (mTHPC) is een andere fotosensitizer van de tweede generatie. Deze fotosensitizer heeft een penetratie diepte van tenminste 10 mm en de potentie tot weefseldestructie is hoger dan van Photofrin. mTHPC met ethanol (Foscan®) wordt gebruikt voor de behandeling van kleine en grote plaveiselcellcarcinoom in het hoofd-halsgebied. Hoewel enkele klinische studies zijn gepubliceerd met veelbelovende resultaten over de effectiviteit van mTHPC gemedieerde fotodynamische therapie, wordt de werkzaamheid en morbiditeit van deze behandeling sporadisch vergeleken met de standaard behandeling. Het onervaren van de publicaties over Foscan gemedieerde PDT geeft vooral inzicht in het werking mechanisme van de fotodynamische therapie en de behandeling resultaten van een beperkt aantal patiënten. Ondanks de gerapporteerde goede resultaten van fotodynamische therapie bij de behandeling van plaveiselcellcarcinoom in het hoofd-halsgebied, de effectiviteit van Foscan gemedieerde PDT ten opzichte van standaard behandeling onduidelijk.

Naast de positieve beschrijvingen van Foscan gemedieerde PDT zijn ook enkele nadelen beschreven. Nadelen zijn de lange periode van 96 uur tussen injectie en belichting, de aggregatie van mTHPC moleculen in de bloedbaan en de lage tumorselectiviteit. Andere nadelen bij de behandeling met de fotosensitizer Foscan zijn langdurige lichtgevoeligheid en pijn ter plaatse van de injectieplaats. Om deze nadelen van mTHPC gemedieerde PDT te verminde ren met behoud van de potentie om weefselchade te induceren, werden wateroplosbare liposomale mTHPC formuleringen ontwikkeld. Liposomale dragers van mTHPC hebben een goede wateroplosbaarheid waardoor minder aggregatie van mTHPC in de bloedbaan zal plaatsvinden. Onder fysiologische omstandigheden, zoals in de bloedbaan, veroorzaakt de aggregatie van de fotosensitizer moleculen namelijk een lagere productie van zuurstofra dikale. De slechte wateroplosbaarheid van Foscan zorgt ook voor een snelle opname en afvoer van de mTHPC moleculen door het mononucleair fagocyto systeem (MPS) waardoor de concentratie mTHPC in het tumorweefsel laag is. Liposomale dragers kunnen, naast de verbeterde wateroplosbaarheid en het tegengaan van aggregatie, mogelijk ook de opname van mTHPC in tumorweefsel verhogen. Passieve accumulatie van grote liposomale dragers (“macromoleculen”) zou kunnen bijdragen aan een hogere concentratie van mTHPC in het tumorweefsel omdat in tumorweefsel sprake is van een verhoogde permeabiliteit van de bloedvaten en de afwezigheid van een goed functionerend lymfevaatstelsel. Deze combinatie van factoren resulteert in een toename van de extravasatie van macromoleculen uit de bloedbaan in het tumorweefsel zonder dat ze worden afgevoerd door het lymfekapstelsel. Door Biolitec AG zijn twee liposomale dragers van mTHPC ontwikkeld: Foslip® en Fospeg®. In tegenstelling tot Foslip zijn de liposomen van Fospeg aan de oppervlakte bekleed met een polymer. Hierdoor zijn ze verminderd detecteerbaar voor het mononucleair fagocyto systeem (MPS) waardoor de beschikbaarheid in de circulatie toeneemt. Onderzoeken suggereren dat liposomale dragers van mTHPC zorgen voor een snellere en een hogere opname van mTHPC in tumorweefsel. Er is onduidelijkheid over de kinetiek van deze liposomale mTHPC dragers in klinische tumormodellen en vergelijkende onderzoeken met Foscan ontbreken.

De effectiviteit van mTHPC gemedieerde PDT kan worden verbeterd door nauwkeurige en directe bepaling van factoren die van invloed zijn op het resultaat van fotodynamische therapie (“in vivo dosimetrie”). De PDT reactie wordt bepaald door een complexe, dynamische interactie van het zuurstofgehalte in het weefsel, het licht dosistempo en de PS concentratie. Dosimetrie van deze parameters tijdens de fotodynamische therapie geeft de mogelijkheid tot het real-time aanpassen van de variabelen waardoor de PDT reactie tijdens de behandeling geoptimaliseerd zou kunnen worden.

In dit proefschrift werd door middel van literatuuronderzoek het klinische bewijs voor Foscan gemedieerde PDT bij de behandeling van plaveiselcellcarcinoom in het hoofd-halsgebied geëvalueerd en vergeleken met de chirurgische behandeling. De kinetiek van de liposomale mTHPC dragers in tumormodellen werd vergeleken met die van Foscan. Een methode om in vivo mTHPC weefselconcentraties te meten door middel van IDPS (fluorescence Differential Pathlength Spectroscopy) werd getest op klinisch relevant en optisch heterogene weefsel in een diermodel.

Samenvatting

In hoofdstuk 2.1 wordt een systematische evaluatie beschreven van de publicaties over Foscan gemedieerde PDT bij de behandeling van plaveiselcellcarcinoom in het hoofd-halsgebied. Slechts twaalf studies konden worden geïdentificeerd en geselecteerd voor een kritische beoordeling. Alle studies scoorden niet hoger dan niveau 3 volgens de Oxford levels of evidence. In zes van de 12 studies werd fotodynamische therapie als palliatieve behandeling toegepast waarbij in 3 studies patiënten werden behandeld door middel van oppervlaktebelichting. De andere 3 studies beschreven fotodynamische therapie van tumoren met een groot volume die werden behandeld met interstitiële belichting. Bij de interstitiële behandeling worden, voor een egale lichtdosisverdeling, catheters op strategische plaatsen in het tumorweefsel geplaatst. Analyse van de studies waarbij fotodynamische therapie werd gebruikt voor palliatieve behandeling van uitbehandelde patiënten, toonde aan dat er sprake was van een lagere respons en daardoor een verbetering van de levenskwaliteit. Wel bleek een lagere respons te treden bij oppervlaktebelichting van tumoren met een tumordikte van meer dan 10 mm en bleek dat, vanwege de zwelling, een alternatieve luchtweg meestal

Chapter 6
Hoofdstuk 2.2 is een retrospectief onderzoek waarin de resultaten van Foscan gemedieerde PDT voor in opzet curatieve behandeling van primaire, kleine plaveiselcellcarcinomen van de mondholte werd vergeleken met die van transoriale chirurgische behandeling. De gegevens van de patiënten die waren behandeld met fotodynamische therapie werden verkregen van de studies die zijn beschreven in de systematische evaluatie van de literatuur (hoofdstuk 2.1). De chirurgisch behandelde patiënten werden gerekruiteerd uit de UMC database met als selectiecriterium een tumorinfiltratiediepte tot en met 5mm. Selectie van tumoren met een vergelijkbare diepte was nodig om de resultaten van de behandeling door middel van fotodynamische therapie en chirurgie te kunnen vergelijken. De PDT groep bestond uit 126 T1 en 30 T2 tumoren. De chirurgiegroep bestond uit 58 T1 en 33 T2 tumoren. De volledige respons (complete response) na fotodynamische en chirurgische behandeling was niet significant verschillend. Het percentage tumoren met een volledige respons na fotodynamische en chirurgische behandeling was voor T1-tumoren respectievelijk 86% en 76% en voor T2-tumoren respectievelijk 63% en 78%. Fotodynamische therapie had zowel bij T1- als T2-tumoren een significant kortere lokale ziektevrije overleving in vergelijking met de chirurgische behandeling. Bij het vergelijken van de noodzaak tot lokale herbehandeling vanwege een recidief, bleek bij T1-tumoren geen significant verschil tussen beide behandelingen. Bij T2-tumoren bleek na chirurgische behandeling een significant lagere noodzaak voor lokale herbehandeling. De algehele overleving van patiënten die waren behandeld met fotodynamische therapie of chirurgie waren behandeld, was niet significant verschillend. Geconcludeerd werd dat de resultaten van behandeling van primaire T1 plaveiselcellcarcinomen van de mondholte met Foscan gemedieerde PDT en chirurgische verwijdering vergelijkbaar zijn. Fotodynamische therapie voor behandeling van primaire T2-tumoren lijkt minder effectief.

In hoofdstuk 3.1 wordt de fluorescentie kinetiek van Foslip en Fospeg, twee liposomale dragers van mTHPC, vergeleken met die van Foscan. Foslip is mTHPC ingekapseld in conventionele liposomen en Fospeg mTHPC is ingekapseld in gepegyleerde liposomen. Foslip, Fospeg en Foscan werden intraveneus geïnjecteerd met een dosis van 0,15 mg/kg mTHPC in raten die waren geprepareerd met het kamertjesmodel. In het rattenmodel werd de huid, met een diameter van 1 centimeter, van de rug verwijderd en vervangen door een transparant raampje. Dit raampje bood de mogelijkheid om het onderliggende weefsels met daarin een getransplanteerde tumor over lange tijdsperieodes te volgen. Op 7 verschillende tijdstippen na injectie, variërend van 5 minuten tot 96 uur, werden mTHPC fluorescentie opnames gemaakt met een charge coupled device (CCD). De verkregen opnames werden gecorrigeerd voor veranderingen in de optische eigenschappen van de weefsels door middel van een ratiometrische correctie-algoritme (hoofdstuk 3.2). De drie verschillende mTHPC formuleringen toonden een duidelijk verschil in fluorescentie kinetiek. Fospeeg had op de onderzochte tijden een duidelijk hogere fluorescentie in het vaatstelsel dan Foscan en Foslip. Maximale mTHPC fluorescentie in tumorweefsel was bij Fospeeg 8 uur na injectie en bij Foscan en Foslip 24 uur na injectie bereikt. Fospeeg liet tussen 2 en 48 uur na injectie hogere mTHPC fluorescentiewaarden in tumorweefsel zien dan Foscan en Foslip. Significante tumorselectiviteit van mTHPC fluorescentie werd alleen 2 en 4 uur na injectie van Fospeeg gevonden. Fospeeg had op enkele tijdstippen een bijna significante tumorselectiviteit. Fospeeg had op geen van de tijdpunten een significante of bijna-significante hogere mTHPC fluorescentie in tumorweefsel waarbij dit werd vergeleken met de fluorescentie in het omringende normale weefsel. De bevindingen suggereren dat, vergeleken met Foscan, liposomale dragers van mTHPC (vooral Fospeeg) de biologische beschikbaarheid van mTHPC in het vaatstelsel en het tumorweefsel verhogen.

In hoofdstuk 3.2 wordt een ontwikkelde ratiometrische correctie-algoritme beschreven die werd gebruikt voor het kwantificeren van mTHPC fluorescentie in het kamertjesmodel (hoofdstuk 3.1). Omdat de weefseloptische eigenschappen en dus de autofluorescentie veranderen in de tijd, bemoeilijkt dit het kwantificeren van de fluorescentiemetingen. Om kwantitatieve mTHPC fluorescentiewaarden te kunnen bepalen bij experimenten met het kamertjesmodel, werd de ratiometrische kwantificeringsmethode ontwikkeld. Dit algoritme corrigeert de gemeten mTHPC fluorescentie voor de veranderende optische weefseleigenschappen in het kamertjesmodel gedurende de experimentele periode. Het algoritme maakt gebruik van een combinatie van excitatie en detectie van mTHPC- en autofluorescentie bij verschillende golflengtes waarmee rekening wordt gehouden met de golfgelengte afhankelijke optische eigenschappen van weefsels. Fluorescentiebeelden werden gemaakt met een CCD na intraveneuze injectie van 0,15 mg/kg mTHPC. De gebruikte excitatie golfgelengte waren 629 nm en 652 nm. Twee fluorescentie-emissie-banden werden gebruikt waarbij een was gelegen op de secundaire fluorescentie emissiepiek van mTHPC (720 nm) en een op een golfgelengte met autofluorescentie van weefsels en zonder mTHPC fluorescentie (> 783 nm). De gemeten waarden werden door middel van het algoritme gecorrigeerd voor de optische eigenschappen. Hierdoor was het mogelijk om de gezwakte mTHPC fluorescentie en de gezwakte autofluorescentie te bepalen. Tijdens het experiment toonden alle typen weefsels een stijging van de autofluorescentie 24 uur na injectie. Bovendien liet de
ongecorrigeerde fluorescentie grotere intra-kamer variaties zien in vergelijking met de ge-
corrigeerde fluorescentie van hetzelfde weefsel. Beide bevindingen toonden aan dat correc-
tie van de optische eigenschappen nodig was om de fluorescentie te kwantificeren.

In hoofdstuk 3.3 wordt de distributie in de tumor van de verschillende mTHPC formuleringen (Foscan, Foslip, Fospeg) vergeleken in een 4-nitroquinoline-1-oxide (4NQO) tumormodel. In het onderzoek werden bij 54 ratten epitheel dysplasieën en plaveiselcellcarcinoomen van het mondslijmvlies geïnduceerd door middel van het toedienen van het carcinogeen 4NQO. Op het moment dat de tumor klinisch zichtbaar werd, werd bij de ratten een van de 3 mTHPC formuleringen (0,15 mg/kg mTHPC) intravenus toegediend. Op 1 van de 6 verschillende tijdstippen tussen de 2 en 96 uur na injectie werden de ratten geterminaerde. Mondslimjvlies weefsel, met daarin tumoren, werd uitgenomen voor coupes die met hematoxyline-eosine (HE) werden gekleurd en coupes voor confocale fluorescentie microscopic. De HE coupes werden histologisch ingedeeld naar weefseltype en de mate van dysplasie werd beoordeeld met behulp van de Epithelial Atypia Index (EAI). Confocale microscope werd gebruikt om de mTHPC fluorescentie te meten. De fluorescentiemetingen werden gecorrigeerd voor varia-
ties in de microscopische opstelling. Fospeg toonde voornamelijk op de vroege tijdstippen (<24 uur) een hogere fluorescentie in zowel normaal als tumorweefsel in vergelijking met Foslip en Foscan. Fospeg vertoonde tijdens de vroege tijdstippen meer tumorselectiviteit dan Foslip en Foscan. De hoogste mTHPC fluorescentie in tumorweefsel werd gemeten 8 uur na de injectie met Fospeg. Er werd slechts een zwakke correlatie gevonden tussen toene-
mende EAI en toeneemende mTHPC fluorescentie. De bevindingen suggereerden dat Fospeg een vroegere en hogere opname van mTHPC heeft in (tumor)weefsel dan Foslip en Foscan. In tegenstelling tot hogere mTHPC fluorescentie in tumorweefsel, liet dysplastisch veranderd weefsel geen significant toename in mTHPC fluorescentie zien in vergelijking met normaal weefsel. Er was slechts een zwakke correlatie tussen de EAI en mTHPC fluorescentie.

In hoofdstuk 4 wordt het effect beschreven van verschillende mTHPC formuleringen (Fo-
scan, Foslip en Fospeg) op de meetmethode fluorescence Differential Pathlength Spectro-
copy (fDPS). Ook wordt de invloed van klinisch relevant, maar optische heterogene weefsel op fDPS onderzocht. fDPS is een niet-invasieve optimale techniek waarmee de concentratie mTHPC in weefsels kwantitatief kan worden gemeten. 54 gezonde ratten werden gecorregeer voor varia-
ties in de optische eigenschappen nodig was om de fluorescentie te kwantificeren. Beide bevindingen toonden aan dat correctie van de optische eigenschappen nodig was om de fluorescentie te kwantificeren...

De onderzoeken in dit proefschrift toen aan dat Foscan gemedieerde PDT kan worden toe-
gepast bij de palliatieve behandeling van patiënten met een plaveiselcellcarcinoom in het
hoofd-halsgebied. De resultaten van curatieve behandeling van kleine plaveiselcelcarci-
nomen (T1) met Foscan gemedieerde PDT en chirurgische behandeling zijn vergelijkbaar. Gerandomiseerde, prospectieve studies over de resultaten van fotodynamische therapie waarbij deze worden vergeleken met chirurgische behandeling of radiotherapie ontbreken
echter. Liposomale dragers van mTHPC, in het bijzonder Fospeg, liet een hogere en eerder opname in tumorweefsel zien in vergelijking met Foscan. De resultaten rechtvaardigen na-
der onderzoek naar de effectiviteit van Fospeg gemedieerde PDT in vergelijking met Foscan
gemedieerde PDT. Hieruit moet blijken of een lagere dosis mTHPC en vroegere belichting de gewenste weefelschade veroorzaakt.

fDPS bleek een betrouwbare, niet-invasieve methode om de mTHPC concentratie in homo-
geen weefsel te meten. In weefsel met een meer heterogene mTHPC distributie bleek het mogelijk om met fDPS kleine verschillen in de ruimtelijke mTHPC distributie te meten. Door een verschil in het interrogatie volume tussen fDPS en de gouden standaard, chemische ex-
tractie, was de correlatie tussen beide meetmethodes echter laag. Waarschijnlijk berust dit
on de grotere nauwkeurigheid van de fDPS metingen terwijl bij chemische extractie sprake
is van middelende metingen. De fDPS meetmethode biedt door zijn real-time informatie over
de mTHPC concentraties en de zuurstofoxygenatie, de mogelijkheid om de complexe PDT re-
actie te optimaliseren. Eventuele correctie voor verschillen in lichtverstrooiing zouden deze
metingen versterken, zodat mogelijk een betere real-time dosisverdeling van belangrijke
behandelingsparameters kan plaatsvinden tijdens PDT behandeling.
List of abbreviations used in this thesis

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>4NQO</td>
<td>4-nitroquinoline-1-oxide</td>
</tr>
<tr>
<td>(5-)ALA</td>
<td>5-aminolevulinic acid</td>
</tr>
<tr>
<td>μs</td>
<td>scattering coefficient</td>
</tr>
<tr>
<td>μa</td>
<td>absorption coefficient</td>
</tr>
<tr>
<td>AF</td>
<td>autofluorescence</td>
</tr>
<tr>
<td>AJCC</td>
<td>American Joint Committee on Cancer</td>
</tr>
<tr>
<td>a.u.</td>
<td>arbitrary units</td>
</tr>
<tr>
<td>CCD</td>
<td>charge-coupled device</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CODT</td>
<td>Center of Optical Diagnostics and Therapy</td>
</tr>
<tr>
<td>CR</td>
<td>complete response</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>DAMPs</td>
<td>damage associated molecular patterns</td>
</tr>
<tr>
<td>DPPC</td>
<td>dipalmitoylphosphatidylcholine</td>
</tr>
<tr>
<td>DPPG</td>
<td>dipalmitoylphosphatidylglycerol</td>
</tr>
<tr>
<td>DPS</td>
<td>differential pathlength spectroscopy</td>
</tr>
<tr>
<td>DR</td>
<td>double ratio</td>
</tr>
<tr>
<td>EAI</td>
<td>Epithelial Atypia Index</td>
</tr>
<tr>
<td>EGFR</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>EORTC</td>
<td>European Organisation for Research and Treatment of Cancer</td>
</tr>
<tr>
<td>EPR</td>
<td>enhanced permeability and retention</td>
</tr>
<tr>
<td>fDPS</td>
<td>fluorescence differential path-length spectroscopy</td>
</tr>
<tr>
<td>HE</td>
<td>hematoxylin and eosin</td>
</tr>
<tr>
<td>HNSCC</td>
<td>head and neck squamous cell carcinoma</td>
</tr>
<tr>
<td>HPD</td>
<td>haemtoporphyrin derivative</td>
</tr>
<tr>
<td>HPV</td>
<td>human papillomavirus</td>
</tr>
<tr>
<td>ICD-10</td>
<td>International Classification of Diseases (10th edition)</td>
</tr>
<tr>
<td>INN</td>
<td>International Nonproprietary Names</td>
</tr>
<tr>
<td>IKNL</td>
<td>Integraal Kankercentrum Nederland</td>
</tr>
<tr>
<td>IV</td>
<td>intravenous</td>
</tr>
<tr>
<td>iPDT</td>
<td>interstitial PDT</td>
</tr>
<tr>
<td>IQR</td>
<td>inter quartile range</td>
</tr>
<tr>
<td>LDFS</td>
<td>local disease free survival</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>MDSFR</td>
<td>multi-diameter single fiber reflectance</td>
</tr>
<tr>
<td>MPS</td>
<td>mononuclear phagocyte system</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>mTHPC</td>
<td>meta-tetra(hydroxyphenyl)chlorin</td>
</tr>
<tr>
<td>NiR</td>
<td>near infrared</td>
</tr>
<tr>
<td>OS</td>
<td>overall survival</td>
</tr>
<tr>
<td>OSCC</td>
<td>oral squamous cell carcinoma</td>
</tr>
<tr>
<td>PCI</td>
<td>photochemical internalization</td>
</tr>
<tr>
<td>PDT</td>
<td>Photodynamic therapy</td>
</tr>
<tr>
<td>p.i.</td>
<td>post injection</td>
</tr>
<tr>
<td>PpIX</td>
<td>protoporphyrin IX</td>
</tr>
<tr>
<td>PS</td>
<td>photosensitizer</td>
</tr>
<tr>
<td>QLQ</td>
<td>Quality of Life Questionnaire</td>
</tr>
<tr>
<td>RECIST</td>
<td>Response Evaluation Criteria In Solid Tumors</td>
</tr>
<tr>
<td>ROI</td>
<td>region of interest</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>SCC</td>
<td>squamous cell carcinoma</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>UICC</td>
<td>Union for International Cancer Control</td>
</tr>
<tr>
<td>UMCG</td>
<td>University Medical Center Groningen</td>
</tr>
<tr>
<td>US</td>
<td>ultrasound</td>
</tr>
<tr>
<td>UW-QOL</td>
<td>University of Washington Quality of Life Questionnaire</td>
</tr>
<tr>
<td>VEGF</td>
<td>vascular endothelial growth factor</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
Dankwoord
Dankwoord

Een proefschrift is het resultaat van de inzet van een groot aantal geïnteresseerde, enthousiaste en stimulerende collega’s. Graag wil ik iedereen bedanken die op enigerlei wijze een bijdrage heeft geleverd. In het bijzonder wil ik de volgende personen bedanken die een belangrijke rol hebben vervuld bij het tot stand komen van dit proefschrift. Zonder hun grote en onvoorwaardelijke inzet was er geen boekje geweest;

Mijn eerste promotor, prof. dr. J.L.N. Roodenburg, geachte professor. Ik wil u danken voor de onvoorwaardelijke inzet die u mij heeft geboden om dit onderzoek uit te voeren. We zijn nu enkele jaren verder en ik ben verheugd dat mijn promotietraject met succes is voltooid. Tijdens deze periode heb ik me altijd gewaardeerd en begrepen gevoeld. De combinatie van experimenten in de dierenlaboratoria in Groningen en Rotterdam, de studie Tandheelkunde, en de opleiding Kaakchirurgie was niet altijd makkelijk maar wel een uitdaging. U heeft mij altijd bijstaan in de dierenlaboratoria in Groningen en Rotterdam, de studie Tandheelkunde, en de opleiding Kaakchirurgie was niet altijd makkelijk maar wel een uitdaging. U heeft mij altijd bijgestaan, ondersteund en het vertrouwen gegeven om de uitdaging aan te gaan. Hobbels op de weg werden door u glad gestreken en u gaf op de juiste momenten advies. Het schoudergestaan, ondersteund en het vertrouwen gegeven om de uitdaging aan te gaan. Hobbels op de weg werden door u glad gestreken en u gaf op de juiste momenten advies. Het schouderkloppje op zijn tijd was natuurlijk niet nodig maar werd door mij stiekem wel op prijs gesteld. Ik heb veel respect voor uw onvoorwaardelijke inzet en de wijze waarop u mij heeft geholpen en ondersteund om mijn wetenschappelijke kwaliteiten te ontwikkelen.

Mijn tweede promotor, prof. dr. J.R. Sterenborg, geachte professor, beste Dick. Dit onderzoek is een voortzetten van een al jaren bestaand samenwerkingsverband tussen Groningen en Rotterdam en resulteerde opnieuw in een proefschrift. Ik wil u danken voor de geboden mogelijkheden om gebruik te kunnen maken van de faciliteiten en de expertise van het Centre of Optical Diagnostics and Therapy (CODT) van het Erasmus Medisch Centrum. De momenten waarop wij, aan het einde van een week met veel experimenten, de resultaten van de onderzoeken bespraken, zal ik blijven herinneren. Op een ontspannen, deskundige en relativerende wijze zette je mijn onderzoeksresultaten in een breder perspectief. Na ieder gesprek, verliet ik met een goed gevoel het CODT. Het SPIE congres in Innsbruck staat me ook goed bij. Niet alleen vanwege de voordrachten maar vooral onze goede en stimulerende gesprekken onder het genot van een glas wijn.

Mijn eerste co-promotor, dr. M.J.H. Witjes. Beste Max, waar moet ik beginnen? De onderzoekspunt, je enthousiasme, je stimulerende en kritische vragen? Jij was de drijfvercucht en je vermogen om snel tot de essentie van uitdagende onderzoeksvragen te komen. Je statistische kennis en interpretatie van de data, “the data is the data”, waren van groot belang en ik heb er veel van geleerd. Onze fDPS experimenten tijdens het volgen van de olympische spelen op een laptopje, zijn voor mij verbonden aan dat onderzoek. Het tot stand brengen van een bruikbaar wifi signaal in de bunker was bijna uitdagender dan het experiment zelf. De muziek van “The National” behoort sindsdien ook tot mijn favorieten. Ik wens je veel succes in Eindhoven.

Ik wil ook de leden van de beoordelingscommissie bedanken: prof. dr. J.A. Langendijk, prof. dr. V. Vander Poorten en prof. dr. L.E. Smeele. Ik ben u zeer erkentelijk voor uw deskundige beoordeling voor de wijze waarop je mij je wetenschappelijke activiteiten combineert met je drukke klinische werkzaamheden. Daarenboven vind ik het een plezier om met je samen te werken. Mijn tweede co-promotor, dr. D.J. Robinson. Dear Dom, thank you for your support, patience, guidance, quick responses and enthusiasm for our project. It all seemed to make the 200 kilometers between Groningen and Rotterdam non-existent. When in Rotterdam, we always had lengthy discussions about our experimental setups and its limitations. Your experience with experimental PDT, knowledge of the intricate workings of PDT and your insight in the clinical role of PDT is impressive and was put to good use in this thesis. Most of all, you always made my trip to Rotterdam worthwhile and on the way back to Groningen the journey proved even faster as I had thoughts about new challenges, further analysis and additional research. Fortunately, we did not have to use photoshop corrections in the end; it all worked out!

Mijn derde co-promotor, dr. A. Amelink, beste Arjen. Dankbaar heb ik gebruik gemaakt van je deskundigheid die zich onder andere uit in het stellen van kritische vragen, je wetenschappelijke ideeën en je vermogen om snel tot de essentie van uitdagende onderzoeks vragen te komen. Je statistische kennis en interpretatie van de data, “the data is the data”, waren van groot belang en ik heb er veel van geleerd. Onze fDPS experimenten tijdens het volgen van de olympische spelen op een laptopje, zijn voor mij verbonden aan dat onderzoek. Het tot stand brengen van een bruikbaar wifi signaal in de bunker was bijna uitdagender dan het experiment zelf. De muziek van “The National” behoort sindsdien ook tot mijn favorieten. Ik wens je veel succes in Eindhoven.

Ik wil ook de leden van de beoordelingscommissie bedanken: prof. dr. J.A. Langendijk, prof. dr. V. Vander Poorten en prof. dr. L.E. Smeele. Ik ben u zeer erkentelijk voor uw deskundige beoordeling van mijn proefschrift. Ik verheug me op de aankomende verdediging.

Prof. dr. F.K.L. Spijkervet, geachte professor, beste Fred. Ik wil u bedanken voor de mogelijkheden die u mij heeft geboden om dit onderzoek uit te voeren. We zijn nu enkele jaren verder en ik ben verheugd dat mijn promotietraject met succes is voltooid. Tijdens deze periode heb ik me altijd gewaardeerd en begrepen gevoeld. De combinatie van experimenten in de dierenlaboratoria in Groningen en Rotterdam, de studie Tandheelkunde, en de opleiding Kaakchirurgie was niet altijd makkelijk maar wel een uitdaging. U heeft mij altijd bijstaan in de dierenlaboratoria in Groningen en Rotterdam, de studie Tandheelkunde, en de opleiding Kaakchirurgie was niet altijd makkelijk maar wel een uitdaging. U heeft mij altijd bijgestaan, ondersteund en het vertrouwen gegeven om de uitdaging aan te gaan. Hobbels op de weg werden door u glad gestreken en u gaf op de juiste momenten advies. Het schouderkloppje op zijn tijd was natuurlijk niet nodig maar werd door mij stiekem wel op prijs gesteld. Ik heb veel respect voor uw onvoorwaardelijke inzet en de wijze waarop u mij heeft geholpen en ondersteund om mijn wetenschappelijke kwaliteiten te ontwikkelen.

Mijn tweede co-promotor, dr. M.J.H. Witjes. Beste Max, waar moet ik beginnen? De onderzoeksopzet, je enthousiasme, je stimulerende en kritische vragen? Jij was de drijfvercucht en je vermogen om snel tot de essentie van uitdagende onderzoeks vragen te komen. Je statistische kennis en interpretatie van de data, “the data is the data”, waren van groot belang en ik heb er veel van geleerd. Onze fDPS experimenten tijdens het volgen van de olympische spelen op een laptopje, zijn voor mij verbonden aan dat onderzoek. Het tot stand brengen van een bruikbaar wifi signaal in de bunker was bijna uitdagender dan het experiment zelf. De muziek van “The National” behoort sindsdien ook tot mijn favorieten. Ik wens je veel succes in Eindhoven.

Ik wil ook de leden van de beoordelingscommissie bedanken: prof. dr. J.A. Langendijk, prof. dr. V. Vander Poorten en prof. dr. L.E. Smeele. Ik ben u zeer erkentelijk voor uw deskundige beoordeling van mijn proefschrift. Ik verheug me op de aankomende verdediging.
Prof. dr. L.G.M. de Bont, geachte professor. Ik wil u bedanken voor de mogelijkheden die ik heb gekregen om het onderzoek uit te voeren aan de afdeling Kaakchirurgie. Een goede werkomgeving heeft er voor gezorgd dat ik met veel voldoening mijn onderzoek heb uitgevoerd.

Dr. S. Kascakova, dear Slavka, thank you for helping me with the window chamber experiments and the chemical extraction experiments. Even while it was tedious work, I enjoyed performing these experiments. I have fond memories about the wrapping of every tiny little detail of our experiment in aluminum foil, writing everything (and I mean everything) down, and of course listening to Slovakian music. I hope that you will have a splendid time in France. Pa, pa.

Dr. H.S. de Bruijn and mevr. A. Van der Ploeg – van de Heuvel, beste Riëtte en Lique, dank voor jullie fantastische hulp en ondersteuning. Wanneer ik in Rotterdam kwam, hadden jullie er voor gezorgd dat ik direct aan de slag kon met de kamertjes modellen, het snijden van de vriescoupes en de confocale microscoop. Mijn bezoeken aan Rotterdam waren door jullie inzet efficiënt en plezierig. Jullie voorbereidende werkzaamheden bij het kamertjesmodel en de hulp in de vroege en late weekenddagen waren essentieel voor de studies. Vooral heel veel dank voor de gezellig gesprekken tijdens de dagenlange sessies achter de (vaak met olie ingesmeerde) microscoop.

Ik wil de collega’s bedanken die als co-auteur een bijdrage hebben geleverd aan de onderzoeken die in dit proefschrift zijn beschreven. Prof. dr. P.U. Dijkstra, beste Pieter, jouw kennis en begeleiding bij het systematisch uitvoeren van een systematic review heeft geleid tot 2 artikelen waaronder de eerste systematic review over de waarde van Foscan PDT. Prof. dr. I. Bing Tan, beste Bing, in 2006 heb ik bij jullie keuze co-schap bij jou in het Antoni van Leeuwenhoek ziekenhuis mogen lopen. Ik heb een fantastische tijd gehad en kwam tijdens deze periode voor het eerst in aanraking met allerlei aspecten van de PDT. Bedankt voor het beschikbaar stellen van je data. Drs. B. Karakul-luku en drs. L.J. Melchers, beste Baris en Lieuwe, ik ben jullie dankbaar voor onze prettige samenwerking en het ter beschikking stellen van jullie database waardoor een vergelijkend onderzoek tussen PDT en chirurgisch onderzoek kon worden geïnitieerd. Dr. V. Peng, beste Wei, je in-vitro werk laat interessante data zien, ik ben erg benieuwd naar de uitkomsten van ons in-vivo PCI experiment met Foscan, succes met het onderzoek!

Dr. A. van Leeuwen, drs. S.H. Visscher, beste Anne en Susan. We begonnen gelijktijdig aan de opleiding Tandheelkunde. Vanwege het deel van het onderzoek dat in Rotterdam plaatsvond, heb ik de keuze gemaakt om me eerst volledig op het onderzoek te richten. Ik kon daarom helaas pas later starten met de studie Tandheelkunde. Ik vond het jammer dat ik daardoor de directe aansluiting met jullie verloor. Ik kijk terug op een tijd met leuke momenten maar ook onze gezamenlijke frustraties tijdens de preklinische fase. Anne, jij bent mijn gewaardeerde, gepromoveerde collega arts-assistent. Susan, binnenkort zal ook voor jou ook een einde komen aan je promotieonderzoek: veel succes met je tandheelkundige carrière.

Beste stafleden, arts-assistenten, onderzoekers en ondersteunend personeel van de afdeling Mondziekten, Kaak- en Aangezichtschirurgie van het UMCG. Jullie zorgen ervoor dat elke dag een leerzame en uitdagende dag is op een afdeling met een gemoedelijke sfeer; dank daarvoor.

Beste vrienden uit Grun, jullie hebben de afgelopen jaren gezorgd voor veel plezier en ontspanning. Nadat ik de studie Geneeskunde had afgerond, begon het nieuwe, andere leven met de studie Tandheelkunde. Het was gedaan met het wonen op kamers, pizza’s bestellen, korte nachten, slechte films, de drankjes en de cafés. Of toch niet helemaal? Ik wil in wilkeurige volgorde, Martijn, Frans, Jasper, Yvette, Jurrit, Sander, Ellen, Joost, Daan, Dimitri, Willemijn, Rick, Koen, Stijn, Jan-Peter en Thijs bedanken voor de boorrels, de etentjes en de gezelligheid. Mogen er nog veel partijen volgen!

Beste Joost en Ingeborg, dank voor jullie gastvrijheid wanneer ik weer eens in Rotterdam was. Joost, ik wens je veel succes met je opleiding en promotieonderzoek aan de KNO-afdeling in Nijmegen.

Lieve Jan, mijn broer. Jij hebt de gave om mensen op hun gemak en welkom te laten voelen. Dat is een groot talent. We moeten wat vaker tijd voor elkaar maken. Ik vind het een eer dat je mijn paranimf wilt zijn.

Lieve Martine, mijn zus. Ik ben trots hoe jij je eigen weg vindt. Ik hoop dat ik nu wat meer tijd heb in de weekenden om vaker naar Amsterdam te kunnen komen.

Lieve Pa en Ma, jullie staan en stonden altijd voor mij klaar. Dat klinkt als vanzelfsprekend, maar dat is niet het. Samen met de Opa's en Oma's hebben jullie altijd veel belangstelling getoond voor mijn interesses, studies en werk. Ik kijk met warme gevoelens terug aan Hurdegaryp, Hengelo en Veldhoven. Jammer dat Opa de Visscher dit niet meemaakt. Lieve Ma, ik ben je erg dankbaar dat je mij een heerlijke jeugd hebt bezorgd, niet is bij jou onmogelijk voor je kinderen. Het heeft mij aan niets ontbroken. Lieve Pa, goed voorbeeld doet volgen. Ik heb veel respect hoe jij je inzet voor je werk en je gezin, je wilt altijd het beste voor ons.

Liefste Selma, ik ben zo blij met jou! Dank voor je eindeloze geduld tijdens mijn nog “eventjes” momenten, je hulp, je steun en je liefde. Ik ben ontzettend trots op je doorzettingsvermogen en positieve karakter, ook als het wat minder gaat. We hebben samen een hele mooie toekomst in het verschiet.

Sebastiaan de Visscher, december 2013

Curriculum Vitae

Sebastiaan Antonius Hendrik Johannes de Visscher was born on November 1st 1981 in Nijmegen, The Netherlands. In 2000 he graduated at the “Stedelijk Gymnasium” (pre-university education) in Leeuwarden. That same year he started his medical education at the University of Groningen. After obtaining his medical degree (MD), he started in 2007 his research at the University Medical Center Groningen, at the department of Oral and Maxillofacial Surgery. This work was combined with his dental training. After obtaining his dental degree (DDS) he started his Oral and Maxillofacial Surgery residency at the Department of Oral and Maxillofacial Surgery, University Medical Center Groningen (head: Prof. dr. F.K.L. Spijkervet, former head: Prof. dr. L.G.M. de Bont).
The printing and distribution of this thesis was financially supported by:

Nederlandse Vereniging voor Mondziekten, Kaak- en Aangezichtschirurgie (NVMKA) www.nvmka.nl
Biolitec www.biolitec.com
Nederlandse Maatschappij tot bevordering der tandheelkunde (NMT) www.tandartsennet.nl
University of Groningen www.rug.nl
University Medical Center Groningen www.umcg.nl
Tandtechnische laboratorium Laverman www.ttllaverman.nl
Boehringer Ingelheim www.boehringeringelheim.nl
KLS Martin www.klsmartin.com
Dentalair www.dentalair.nl
Gerrit van Dijk Tandtechnisch laboratorium www.dammedical.nl
Dam Medical www.examvision.nl
Examvision www.robouwmedical.nl
Robouw www.henryschein.nl
Henry Schein www.straumann.com
Straumann www.mundipharma.nl
Mundipharma www.pentaxmedical.com
PENTAX medical www.ortholab.nl
Ortholab