
 

 

 University of Groningen

Reasoning about self and others

Meijering, Ben

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to
cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2014

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Meijering, B. (2014). Reasoning about self and others [S.l.]: s.n.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 20-09-2017

https://www.rug.nl/research/portal/en/publications/reasoning-about-self-and-others(613bb6a2-fc02-47ab-b9ae-80f41069bc30).html


Reasoning about self and others62

Chapter 6 
 
Modeling inference of mental states: As simple as 
possible, as complex as necessary

Abstract

Behavior oftentimes allows for many possible interpretations in terms of mental states, such 
as goals, beliefs, desires, and intentions. Reasoning about the relation between behavior 
and mental states is therefore considered to be an effortful process. We argue that people 
use simple strategies and thus expend less effort as a way of dealing with limited cognitive 
resources. To test this hypothesis, we developed a computational cognitive model, which was 
able to simulate previous empirical findings: People start with simple strategies first, and only 
start revising their strategies when necessary. The model could simulate these findings by 
means of an interaction between factual knowledge and problem solving skills. At first, the 
model only considers its own goal, the most basic problem solving skill. Later, the model 
learns to attribute its problem solving skills to the other player, which only happens if its 
successes – stored as factual knowledge in declarative memory – do not increase anymore. 
The model was validated by means of a comparison with findings of a developmental study. 
This comparison showed that children use the same simple strategies that the model used. To 
conclude, the model was able to simulate two empirical findings: (1) People try to use simple 
strategies to infer mental states of others, and (2) they are able to improve such inference by 
attributing their own strategies to the other player.

This chapter was submitted to a journal and is currently under revision.
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Introduction

In social interactions, we try to understand others’ behavior by reasoning about their goals, 
intentions, beliefs, and other mental states. Reasoning about mental states requires a so-
called theory of mind, abbreviated ToM (Baron-Cohen, Leslie, & Frith, 1985; Wellman, Cross, 
& Watson, 2001; Wimmer & Perner, 1983). ToM has been implemented in computational 
cognitive models before (Hiatt & Trafton, 2010; Van Maanen & Verbrugge, 2010). However, 
these models either simulated one specific instance of ToM (Hiatt & Trafton, 2010) or 
attributed too much rationality to human reasoning (Van Maanen & Verbrugge, 2010). Here, 
we present a model that simulates application of various ToM strategies, ranging from simple 
strategies to full-blown recursive ToM. It is based on previous empirical results (Meijering, 
Van Maanen, Van Rijn, & Verbrugge, 2010; Meijering, Van Rijn, Taatgen, & Verbrugge, 2011) 
and is validated by means of a re-analysis of a previous developmental study by Flobbe et al. 
(2008). The model can explain why people use strategies that are relatively simple, while still 
being successful at inferring mental states of others.

Many studies have shown that people cannot always account for another’s mental states 
in order to predict their behavior, particularly in the context of two-player sequential games 
(e.g., Flobbe et al., 2008; Hedden & Zhang, 2002; Raijmakers, Mandell, Van Es, & Counihan, 
2013; Zhang, Hedden, & Chia, 2012). Sequential games require reasoning about complex 
mental states, because Player 1 has to reason about Player 2’s subsequent decision, which 
in turn is based on Player 1’s subsequent decision (Figure 6.1). Typically, performance is 
suboptimal and that is probably because players do not have a correct model of the other 
player’s mental states (Johnson-Laird, 1983). By means of hypothesis testing, they may try 
to figure out which model works best in predicting the other player’s behavior (Gopnik & 
Wellman, 1992; Wellman et al., 2001). However, a particular action or behavior can have 
many possible mental state interpretations (Baker, Saxe, & Tenenbaum, 2009), and testing all 
these interpretations strains our cognitive resources. 

To alleviate cognitive demands, people generally start testing simple models or strategies 
that have been proven successful before (Todd & Gigerenzer, 2000). Because application of 
ToM and especially recursive ToM is an effortful process (Keysar, Lin, & Barr, 2003; Lin, 
Keysar, & Epley, 2010; Qureshi, Apperly, & Samson, 2010), reasoning about mental states 
probably also comprises the use of simple strategies. So where do these strategies come 
from? We hypothesize that they are a legacy of our childhood years. Raijmakers et al.’s (2013) 
findings corroborate this claim, as the children in their study consistently used strategies that 
were not fit to deal with the logical structure of the games presented to them. The strategies 
sometimes did yield the best possible outcome, however, which may be an explanation for 
why they still exist in adult reasoning: Simple strategies do not exhaust cognitive resources 
and are appropriate in a wide range of circumstances. Indeed, our computational cognitive 
model will show that the presence of simple strategies depends on the proportion of games in 
which they yield an optimal outcome.

In this study, we present a computational cognitive model that simulates inference of mental 
states in sequential games. The model initially uses a simple strategy that ignores many task 
aspects. However, if the model’s strategy does not work, it learns to acknowledge that the other 
player has a role in its outcome. The model will therefore start attributing its own strategy to 
the other player. We will show that this process can account for the differential learning effects 



Reasoning about self and others64

in Meijering et al.’s study (2011; also see Chapter 2 in this dissertation), in which participants 
adopted distinct strategies based on the training regimen that was administered to them. To 
validate the model, the developmental study of Flobbe et al. (2008) was re-analyzed, searching 
for patterns that are indicative of the use of simple strategies in children. 

Before we explain the model, we will first explain the empirical findings on which it is 
based. 

Empirical findings

Meijering et al. (2011) studied second-order ToM reasoning in two-player sequential games. 
Take the game in Figure 6.1 as an example game: Each end node contains a pair of payoffs, 
left-side payoffs belonging to Player 1 and right-side payoffs belonging to Player 2. The end 
node in which a game is stopped determines the payoff each player obtains in that particular 
game. Each player’s goal is to obtain his or her greatest attainable payoff. As a player’s outcome 
depends on the other player’s decision, both players have to reason about one another’s mental 
states. Participants are always assigned to the role of Player 1, and decide at the first decision 
point whether to stop the game at A or to continue to the next decision point, which is Player 
2’s decision between his payoff in B and his payoff in either C or D, which in turn depends on 
Player 1’s decision between Player 1’s payoffs in C and D. Thus, before making a decision at 
the first decision point, participants have to reason about Player 2, who in turn has to reason 
about Player 1’s subsequent decision. In other words, participants have to apply second-order 
ToM when making a decision. 

Meijering et al.’s study was based on the findings of Hedden and Zhang (2002; 2012) 
and Flobbe et al. (2008). Flobbe et al. had raised some concerns about Hedden and Zhang’s 

Player 1

Player 1

Player 2
A (3, 2)

B (4, 3)

C (2, 1) D (1, 4)

I

II

III

Figure 6.1: An extensive form representation of a two-player sequential game. Player 1 
decides first, Player 2 second, and Player 1, again, third. The decision points are indicated 
in Roman numerals (I – III). Each end-node has a pair of payoffs, of which the left-side is 
Player 1’s payoff and the right-side Player 2’s payoff. Each player’s goal is to obtain their 
highest possible payoff. In this particular game, the highest possible payoff for Player 1 is a 
4, which is obtainable because Player 2’s highest possible payoff is located at the same end 
node (i.e., B). Player 2’s payoff of 4 is not obtainable because Player 1 would decide "left" 
instead of "right" at the third decision point (III).
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training procedure, because it consisted of so-called trivial games (Figure 6.2; right panel), 
which are easier to play than truly second-order games such as in Figure 6.1. Trivial games 
are easier because Player 2 does not have to reason about Player 1’s decision at III: Player 2’s 
payoff in B is either lower or higher than both his payoffs in C and D. Consequently, Player 
2 does not have to apply ToM, and Player 1 can suffice with first-order ToM. Flobbe et al. 
therefore argued that the training of Hedden and Zhang does not prepare people to play 
truly second-order ToM games. To test this claim, Meijering et al. administered two types of 
training procedures. 

One group of participants was administered Hedden and Zhang’s training procedure, 
which will henceforth be referred to as Undifferentiated Training, as all games had three 
decision points. The other group was administered Flobbe et al.’s training phase, but slightly 
modified (cf. Meijering et al., 2011). The latter training procedure will henceforth be referred 
to as Stepwise Training, as each additional decision point was introduced in subsequent blocks 
of games (Figure 6.2; left panel). Meijering et al. hypothesized that these training procedures 
would have distinct effects on strategy formation and thus performance. They predicted that 
Stepwise Training would facilitate participants to incorporate mental states of increasing 
complexity into their decision making process, yielding high accuracy. Undifferentiated 
Training, in contrast, would not motivate participants to develop recursive ToM, as they could 
suffice with application of first-order ToM. As expected, the participants that were assigned 
to Stepwise Training performed better than the participants assigned to Undifferentiated 
Training (see Figure 6.5). 

One specific behavioral pattern is of particular interest to validate the model: The 
performance of participants assigned to Undifferentiated Training rose to ceiling during 
the training phase and dropped again when the experimental phase started (Figure 6.5). We 
hypothesize that the participants applied simple, child-like strategies during the training 
phase, because these strategies worked and did not consume much cognitive resources. At 
the start of the experimental phase, however, these strategies did not work anymore and 
accuracy dropped, because the games, while superficially similar, required more complex 
reasoning. Nevertheless, accuracy increased again over the course of the experimental phase, 
as the participants were able to revise their strategies. We will show that our computational 
cognitive model can simulate this process: The model’s most important characteristic is that 
the complexity of its reasoning gradually increases by repeatedly attributing its own (evolving) 

Player 1

Player 1

Player 2
A (3, 2)

B (4, 3)

C (2, 1) D (1, 4)

Player 1

Player 2
A (2, 1)

B (3, 2) C (1, 3)

Player 1

A (2, 1) B (1, 3)

4 zero-order games 8 �rst-order games 8 second-order games

Player 1

Player 1

Player 2
A (3, 1)

B (4, 2)

C (2, 4) D (1, 3)

24 trivial games

Figure 6.2: Extensive forms of example games (see Figure 6.1 for a detailed explanation). 
Stepwise Training consisted of 4 zero-order, 8 first-order, and 8 second-order games. 
Undifferentiated Training consisted of 24 trivial games. Each game had a unique 
distribution of payoffs.
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strategy to the other player. 

Computational cognitive model

The model1 is implemented in the ACT-R cognitive architecture (Anderson, 2007; Anderson 
et al., 2004). ACT-R comprises a production system, which executes if-else rules, and contains 
declarative knowledge, which is presented as memory representations, or so-called chunks. 
In addition, ACT-R also includes modules that simulate specific cognitive functions, such as 
vision and attention, declarative memory, motor processing, et cetera. The results of these 
simulations appear as chunks in the modules’ associated buffers, which the model continually 
checks (and manipulates) by means of its production system. ACT-R imposes natural 
cognitive constraints, as buffers can hold just one chunk at a time, and production rules can 
only fire successively, whenever their pre-specified conditions are matched. ACT-R does allow 
for parallel processing whenever a task induces cognitive processing in distinct modules. The 
model that we present here runs atop of ACT-R. 

The model’s behavior partially depends on memory dynamics. It needs to retrieve factual 
knowledge from declarative memory, and both the speed and success of retrieval depend on 
the so-called base-level activation of a fact (or chunk). The higher the base-level activation is, 
the greater the probability and speed of retrieval. The base-level activation in turn is positively 
correlated with the number of times a fact is retrieved from memory and the recency of the 
last retrieval.

The model simulates inference of mental states in sequential games. It uses a simple 
strategy at first and gradually revises that strategy until it can process recursive mental states. 
We consider the application of a particular strategy, and revising that strategy, to be deliberate 
processes. Therefore, application and revision are implemented by means of an interaction 
between factual knowledge and problem solving skills. Arslan, Taatgen, and Verbrugge (2013) 
successfully used a similar approach in modeling the development of second-order ToM in 
another ToM paradigm (i.e., the false-belief task). Van Rijn, Van Someren, and Van der Maas 
(2003) have successfully modeled children’s developmental transitions on the balance scale 
task in a similar vein. Factual knowledge is represented by chunks in declarative memory, 
which store what strategy the model should be using. The problem solving skills, or strategy 
levels, are executed by (recursively) applying a small set of production rules. The model’s goal 
is to make decisions that yield the greatest possible payoff. Decisions are either ‘stop the game’ 
or ‘continue it to the next decision’. The model was presented with the same distributions of 
payoffs (i.e., items) as were presented to the participants.

The model’s initial simple strategy is to consider only its own decision at the first decision 
point and to disregard any future decisions. The model’s decision is based on a comparison 
between its (i.e., Player 1’s) payoff in A and the maximum of its payoffs in B, C, and D. If the 
model’s payoff in A is greater, the model will decide to stop. Otherwise, the model will decide 
to continue. By using this simple strategy the model seeks to maximize its own payoff, which 
can be considered a direct translation of the instructions given to the participants.

This strategy will work in some games but not in all. Whenever the strategy works, 
the model receives positive feedback and stores in declarative memory what strategy it is 
currently using. In fact, the model stores a strategy level, which is level-0 in the case of the 
1	  The model can be downloaded from http://www.ai.rug.nl/~meijering/iccm2013
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simple strategy described above. Whenever the strategy does not work, the model receives 
negative feedback and stores in declarative memory that it should be using a higher strategy 
level (e.g., level-1).

The higher strategy level means that the model should attribute whatever strategy it was 
using previously to the other player at the next decision point. In the case of strategy level-1, 
the model attributes the model’s initial simple strategy (i.e., level-0) to Player 2. Accordingly, 
the model is applying first-order ToM, as it reasons about the mental state of Player 2, who 
considers only his own payoffs and disregards any future decisions.

Again, this strategy will work in some games but not in all. Whenever it does not work, the 
model receives negative feedback and stores in declarative memory that it should be using a 
higher strategy level. At a higher strategy level, the model will attribute whatever strategy level 
it was using previously to Player 2. At strategy level-2, the model attributes strategy level-1 
to Player 2, who in turn will attribute strategy level-0 to the player deciding at third decision 
point: Player 1. Now the model is applying second-order ToM.

Assumptions

The model is based on two assumptions. The first assumption is that participants, unfamiliar 
with sequential games, start playing according to a simple strategy that consists of one 
comparison only: Participants compare their current payoff, when stopping the game, 
against the maximum of all their future payoffs, when continuing the game. This strategy 
can be considered the simplest possible strategy, as participants who are using it ignore the 
consequences of any possible future decision, whether their own or the other player’s. 

If participants obtain expected outcomes, they do not have to revise their strategy. 
However, if participants obtain unexpected outcomes, they have to acknowledge that the 
unexpected turn of events was caused by the other player deciding at the next decision point. 
Reasoning about the other player, participants can only attribute a strategy they are familiar 
with themselves. This is our second assumption, which is based on variable frame theory 
(Bacharach & Stahl, 2000). Imagine a scenario in which two persons are asked to select the 
same object from a set of objects with differing shapes and colors but one person is completely 
colorblind. The colorblind person cannot distinguish the objects based on color, nor can he 
predict how the other would do that. Therefore, the colorblind person can only predict or 
guess what object the other would select based on which shape is the least abundant. The 
seeing person should account for the colorblind person’s reasoning and also choose the object 
with the least abundant shape. This variable frame principle also applies to reasoning about 
others: We can only attribute to others goals, intentions, beliefs, and strategies that we are 
familiar with ourselves.

Mechanisms

The simple strategy is implemented in two production rules. The first production rule 
determines what the payoff will be when stopping the game; the other production rule 
determines what the highest future payoff could possibly be when continuing the game. Both 
productions are executed from the perspective of whichever player is currently deciding 
(Figure 6.3). The model will attribute this simple strategy from the current decision point to 
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the next, each time the model updates its strategy level (i.e., incrementing strategy level by 
one). The model will thus heighten its level, or order, of ToM reasoning.

Zero-order ToM
Before the model starts applying its strategy, it needs to construct a game state representation 
to store the payoffs that are associated with a stop and continue decision, respectively. To 
construct a game state, the model first retrieves from declarative memory what strategy level 
it is currently using. At the beginning of the experiment, strategy level has a value of 0, which 
represents the simple strategy. After retrieving strategy level, the model constructs its current 
game state.

Starting with the simple strategy, the model will determine its own stop and continue payoffs 
(see Figure 6.3, left panel), which will be stored in the game state representation. The model 
will then compare these payoffs and make a decision. After the model has made a decision, 
it will update declarative memory by storing what strategy level the model should be playing 
in the next game: If the model’s decision was correct, the model should continue playing its 
current strategy level; otherwise the model should be playing a higher strategy level.

After playing a couple of games in which the simple strategy (i.e., level-0) does not work, 
the higher strategy level (i.e., level-1) will have a greater probability of being retrieved, as its 
base-level activation increases more than the simple strategy’s base-level activation. At the 
start of the next few games, before the model constructs its game state, it will begin retrieving 
strategy level-1 from declarative memory.

First-order ToM
Playing strategy level-1, the model will first determine what payoff is associated with a stop 
decision at the first decision point (I). However, before determining what payoff is associated 
with a continue decision, the model needs to reason about the future and therefore consider 
the next decision point (II). It attributes strategy level-0 to Player 2, who is deciding at II. 

STOP

CONTINUE

max

STOP

CONTINUE

max

3, 2

4, 3

2, 1 1, 4

4, 3

2, 1 1, 4

3 < max(4, 2, 1) => Continue 3 < max(1, 4) => Continue

Figure 6.3: Depiction of the simple strategy. In the left panel, the model compares its 
payoff if it would stop (light grey) against its maximum possible payoff if it would continue 
(dark grey). In the right panel, the model compares Player 2’s payoff if Player 2 would 
stop (light grey), against Player 2’s maximum possible future payoff (dark grey). The left 
panel schematically represents the application of zero-order ToM, and the right panel the 
attribution of zero-order ToM to the other player.
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Later, the model will return to the first decision point and determine what payoff is associated 
with a continue decision.

At II, the model will apply strategy level-0, but from the perspective of Player 2 (Figure 
6.3, right panel). When reasoning about Player 2’s decision, the model constructs a new game 
state, which references the previous one. The previous games state is referenced, because the 
model needs to jump back to that game state and determine what payoff is associated with a 
continue decision in that game state. At II, the model will execute the same production rules 
that it executed before when it was playing according to strategy level-0: It will determine 
what payoffs are associated with a stop and a continue decision, but from the perspective of 
Player 2.

The model will not produce a response whenever it determines the stop and continue 
payoffs at II, because the problem state at II references a previous one (i.e., I). The model will 
therefore backtrack to the previous game state representation, which did not yet have a payoff 
associated with a continue decision. That payoff can now be determined based on the current 
game state (i.e., Player 2’s decision). The model will retrieve the previous game state from 
declarative memory.

After retrieving the previous game state representation, the model has two game states 
stored in two separate locations, or buffers: The current game state is stored in working 
memory, or the problem state buffer (Anderson, 2007; Borst, Taatgen, & Van Rijn, 2010), 
and the previous game state is stored in the retrieval buffer, which belongs to the declarative 
memory module. The model will determine what payoff is associated with a continue decision 
in the previous game state (stored in the retrieval buffer) given the decision based on the 
current game state (in the problem state buffer). It will update the previous game state and 
store it in working memory.

Playing strategy level-1 and being back in the previous game state, there is no reference to 
any previous game state and the model will make a decision based on a comparison between 
the payoffs associated with the stop and continue decisions. As explained previously, the model 
will stop if the payoff associated with stopping is greater; otherwise the model will continue.

Again, after the model has made a decision, it will update declarative memory by storing 
what strategy level the model should be playing in the next game(s). If the model’s decision 
is correct, it will apply the current strategy level. Otherwise, the model will revise its strategy 
level by storing in declarative memory that it should be using strategy level-2 in the next 
game(s). 

Second-order ToM
The model will first determine what payoff is associated with stopping the game and then 
consider the next decision point. There, the model proceeds as if it were playing strategy 
level-1, but from the perspective of Player 2. In other words, the model is applying second-
order ToM.

The strategy described above closely fits the strategy of forward reasoning plus backtracking 
(Meijering, Van Rijn, Taatgen, & Verbrugge, 2012; Chapter 5 in this dissertation). Meijering 
et al. (2012) conducted an eye-tracking study, and participants’ eye movements reflected a 
forward progression of comparisons between payoffs, followed by backtracking to previous 
decision points and payoffs. Such forward and backward successions are present in strategy 
level-2 as well: Payoffs of stop decisions are determined one decision point after another, and 
this forward succession of payoff valuations is followed by backtracking, as payoffs of previous 



Reasoning about self and others70

continue decisions are determined in backward succession.

Results

The model was presented with the same trials as in Meijering et al.’s (2011) study (see also 
Chapter 2 in this dissertation), with stepwise training versus undifferentiated training as 
a between-subjects factor. The model was run 100 times for each training condition. Each 
model run consisted of 20 (stepwise) or 24 (undifferentiated) training games, followed by 64 
truly second-order games. The results are presented in Figures 6.4 and 6.5.

Figure 6.4 shows the proportions of models that apply strategy levels 0, 1, and 2, 
calculated per trial. The left panel of Figure 6.4 shows the output of the models that received 
24 undifferentiated training games before playing 64 second-order games. As can be seen, 
initially all models apply strategy level-0, corresponding with zero-order ToM, but that 
proportion decreases quickly in the first couple of games. The proportion of models applying 
zero-order ToM decreases because that strategy yields too many errors, which can be seen in 
Figure 6.5. The models store in declarative memory that they should be using strategy level-1, 
but it takes a few games before the base-level activation of the level-0 chunk drops below the 
retrieval threshold. After it does, the models start retrieving level-1 chunks and will apply 
strategy level-1, which corresponds with first-order ToM. The proportion of models that 
use strategy level-1 increases up to 100% towards the end of the 24 undifferentiated training 
games. The models do not start applying strategy level-2 during the training phase, because 
strategy level-1 yields correct decisions in all undifferentiated training games, which can be 
seen in Figure 6.5. However, in the experimental games, which are truly second-order games, 
strategy level-1 yields too many errors, and accuracy drops. It takes approximately 40 games 
before the base-level activation of the level-1 chunk has dropped below the threshold in at 
least half of the models. The models gradually start using strategy level-2, and accuracy starts 
to increase again, as can be seen in Figure 6.5.

The right panel of Figure 6.4 shows the output of the models that were presented with 20 
stepwise training games (4 zero-order, 8 first-order, and 8 second-order games) before playing 
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Figure 6.4: Proportion of models that apply strategy levels 0, 1, and 2; plotted as a function 
of trial. The left panel depicts these proportions for the model that received undifferentiated 
training; the right panel depicts the proportions for the model that received stepwise 
training.
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64 second-order games during the experimental phase. As can be seen, all models start 
applying strategy level-0, and they use it longer than the models that received undifferentiated 
training. The reason is that strategy level-0 yields a correct answer in the first four games 
during stepwise training, because those are zero-order games. As can be seen in Figure 6.5 
(right panel), accuracy is 100% in the first few games. In the next eight first-order training 
games (Trials 5 – 12), the proportion of models that apply strategy level-0 decreases, as 
strategy level-0 yields too many errors. Simultaneously, the proportion of models applying 
strategy level-1 increases, as the base-level activation of the level-0 chunk decreases and the 
models start retrieving the level-1 chunk. In the next eight second-order training games 
(Trials 13 – 20), the proportions of models that apply strategy level-0 and level-1 decrease, 
as both strategy levels yield too many errors. Simultaneously, the proportion of models that 
apply strategy level-2 increases. As strategy level-2 yields a correct decision in the remainder 
of the games, accuracy increases up to ceiling, which can be seen in Figure 6.5 (right panel).

The accuracy trends in the models’ output qualitatively fit those of Meijering et al.’s study 
(2011). The quantitative differences are probably due to the fact that not all participants 
started out using the simple strategy, whereas all models did. One possible explanation is that 
some participants started with intermediate-level strategies and, due to large proportions of 
optimal outcomes, did not proceed to the highest level of reasoning. We could account for 
this by storing level-0, level-1, and level-2 chunks in declarative memory, and having the base-
level activation of these chunks follow the distribution of zero-order, first-order, and second-
order ToM in the adult population. A meta-review of (higher-order) ToM in adults and 
children may be a good starting point to find the appropriate distributions. Nevertheless, the 
qualitative trends in the model data, changing as a function of game complexity, correspond 
with the response patterns in the behavioral data. The trends suggest that people use simple 
strategies for as long as these yield expected outcomes.

In the introduction we hypothesized that simple strategies are a legacy of our childhood 
years, and that adults keep using those strategies that have proven themselves successful 
during development. To test this hypothesis, we have re-analyzed the data from Flobbe et al.’s 
(2008) developmental study. We expected that few children would have sufficient cognitive 
resources to apply second-order ToM, and that performance levels would therefore align well 
with lower and intermediate strategy levels. The most obvious prediction is that prevalence 
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of level-0, level-1, and level-2 strategies can be ranked, where level-0 is the most dominant 
strategy and level-2 is least frequent.

Developmental study

Flobbe et al. (2008) studied the application of second-order ToM in children that were in 
between 8 and 10 years (M = 9;2). They presented the children with sequential games, and 
performance was just above chance-level (57% correct). As children of age 9 are at the brink 
of mastering second-order ToM (Flobbe et al., 2008; Miller, 2009; Perner & Wimmer, 1985), 
we expect the lower and intermediate strategies to be most prevalent in Flobbe et al.’s study, 
which is thus perfect to validate our model. 

We hypothesize that children apply the same simple strategies that are implemented in our 
computational cognitive model. We predict that the children start out with the simplest (i.e., 
zero-order) strategy, and that some will learn to attribute that strategy to the other player. 
Probably few children will learn that the other player, in turn, attributes the simple strategy to 
the player who decides next (i.e., to them). As each child was first asked to predict the other 
player’s decision, before they were asked to make a decision themselves, we have a direct 
measure of the child’s perspective of the other player’s strategy. We will analyze both the 
predictions and the decisions.

Predictions

We applied a binomial criterion to reliably categorize a participant’s predictions as belonging 
to either level-1 or level-2: The predictions in at least 8 out of 10 consecutive games had to be 
congruent with one particular strategy level to label the predictions accordingly. This might 
seem strict, but 8 out of 10 is the minimum quantile that is still significant with a significance 
level of 0.05. As the experiment consisted of 40 second-order games, we categorized each 
child’s responses in 4 sets of 10 games. Figure 6.6 depicts the proportion of children that 
applied either first-order or second-order ToM. These ToM-orders correspond with level-1 
and level-2 in the computational model. 
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Figure 6.6: The proportion of children that applied zero-order ToM (level-0), first-order 
ToM (level-1), or second-order ToM (level-2) to the other player; depicted in 4 consecutive 
sets of 10 games.
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Note that sets of predictions that could not be categorized level-1 or level-2 do not 
necessarily imply the use of level-0, because the predictions in those sets could have been 
completely random, or a mixture of the various strategy levels. The decisions are therefore 
analyzed to determine the prevalence of strategy level-0. 

As can be seen in Figure 6.6, the proportion of children that applied first-order ToM by 
attributing strategy level-0 to the other player is greater than the proportion of children that 
applied strategy second-order ToM. Furthermore, many children’s predictions could not 
be labeled according to one of the strategies at all (13 out of 40). These children probably 
switched frequently between multiple possible perspectives, and such switching is difficult 
to reliably capture by means of a statistical model. Nevertheless, most of the children whose 
responses could be categorized, were applying first-order ToM by attributing the simple (i.e., 
level-0) strategy to the other player. Almost none of the children was able to consistently 
attribute strategy level-1 to the other player, thereby applying second-order ToM.

Decisions

As explained above, the predictions required application of first-order ToM at minimum and 
could therefore not be indicative of zero-order ToM. Therefore, the decisions were analyzed 
to determine how many children applied zero-order ToM, ignoring the other player entirely. 
Again, we categorized the decisions based on the binomial criterion that at least 8 out of 10 
consecutive responses should be consistent with application of zero-order ToM (i.e., level-0 
in the model). As can be seen in Figure 6.6, most of the children that consistently responded 
according to one of the strategies applied zero-order ToM when making a decision. This 
is remarkable, because each child that participated in the experimental phase successfully 
passed a training block in which they were required to apply first-order ToM. This finding 
suggests that the children could not see how first-order ToM would fit in the more complex 
games in the experimental blocks. They may have recognized that it did not work, but still 
could not revise their strategy to incorporate an additional ToM level.

To conclude, a re-analysis of Flobbe et al.’s (2008) study shows that few children were 
able to apply second-order ToM (level-2), and that most children used simple strategies. The 
most dominant strategy was the simplest one that did not account for any future decision 
points. Most children seemed to apply zero-order ToM (level-0) while making a decision. 
Some children, though, were able to attribute that simple strategy to the other player, thereby 
applying first-order ToM (level-1). These strategies are the same as those implemented in our 
computational cognitive model. The model is thus supported in two ways: (1) Its most simple 
strategies are found in children, and (2) it learns to revise its strategies as adults do. 

Conclusions

In this study we presented a computational cognitive model that simulates inference of 
mental states in sequential games. More specifically, the model was required to apply ToM 
recursively, a skill that appears to be unique to human intelligence. Many studies have shown 
that people oftentimes fail to apply ToM to interpret the behavior of others (e.g., Apperly et al., 
2010; Keysar et al., 2003; Lin et al., 2010). In this study, in contrast, we show that people do not 
necessarily fail to apply ToM, but rather first apply simple strategies that are computationally 
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less costly. Only when necessary do people revise their strategies to account for complex 
mental states.

The model is based on previous empirical findings (Meijering et al., 2011) that seemed 
to imply that people exploit the possibility of using simple strategies for as long as these pay 
off. We implemented one such simple strategy that ignores any future decisions and simply 
compares the immediate payoff, when stopping a game, against the maximum of all future 
possible payoffs. By means of simple memory dynamics the model either retrieves a chunk 
that specifies that the model should continue using this strategy, or chunks that specify that 
the model should attribute the simple strategy to the player who decides next. Although this 
updating process may seem simplistic at first sight, the model does gradually master second-
order ToM, but only because that is required in the games in this study. In other words, the 
model’s most important dynamics are not task-specific, and because of that, the model is 
flexible and can accommodate many other two-player sequential games.

We found support for the model in the data from Flobbe et al.’s (2008) developmental study 
in which 9-year-old children were presented with similar sequential games. Most children 
used the simple, level-0, strategy when making a decision. The second-most prevalent strategy 
was the level-1 strategy. Using that strategy, the children attributed the simplest possible 
strategy (i.e., level-0) to the other player. Few children were able to apply second-order ToM 
mind. They did not recognize that the other player, in turn, attributed the simplest strategy 
(i.e., level-0) to them. These findings show that the children used the same simple strategies as 
the adults initially used in Meijering et al.’s study. However, the adults were able to revise their 
strategies to achieve the highest required level of ToM reasoning, whereas the children may 
not have had sufficient cognitive resources to achieve that same level of reasoning.

Our notion of zero-order ToM (i.e., strategy level-0) closely maps with the instruction 
given to the participants: to maximize their payoff. This strategy corresponds with a risk-
seeking perspective, because it does not account for the fact whether higher future payoffs 
are actually attainable. There are other notions of a level-0 strategy, however. A risk-seeking 
strategy can be contrasted with a risk-aversive strategy according to which one would stop if 
there were any lower future payoffs. There is still another notion of a level-0 strategy: Hedden 
and Zhang (2002; 2012) defined a so-called myopic level-0 strategy that only considers the 
current payoff and the closest future payoff. Player 1, for example, would only compare his 
payoffs in A and B, ignoring his payoffs in C and D. These strategies, however, are almost non-
existent in Flobbe et al.’s dataset. 

The findings from this study raise the question why younger children of 6 to 8 years are 
perfectly capable of accounting for second-order mental states in traditional false-belief 
studies (Coull, Leekam, & Bennett, 2006; Flobbe et al., 2008; Perner & Wimmer, 1985; Sullivan, 
Zaitchik, & Tager-Flusberg, 1994), as well as when they are asked to discriminate between 
ironic and deceptive speech acts (Winner & Leekam, 1991). One possible explanation is 
practice: Children have encountered false beliefs, irony, and deception more often than games 
such as in this study. Another explanation is that games can have a large space of possible 
outcomes, which requires extensive reasoning. False-belief stories and speech acts, on the 
other hand, are a given and thus require fewer computations. On a related note, children are 
better at reasoning about past events than about future possible outcomes (e.g., McColgan & 
McCormack, 2008; Suddendorf, Nielsen, & Gehlen, 2011). Reasoning about past events can 
be considered a linear traversal backwards in time, whereas reasoning about future events 
may follow an expanding tree-like structure. 
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This study has at least two methodological implications: One, experimenters should be 
careful in selecting ‘practice’ items, as participants exploit the possibility of using simple 
strategies when possible. Two, average proportions of correct answers, a popular statistic 
in most ToM studies, may not be as informative as a categorization of responses (also see 
Raijmakers et al., 2013). Flobbe et al., for example, reported that performance was just above 
chance-level (i.e., 57% correct), and the most common interpretation would be “on average 
children were able to apply second-order ToM in 57% of the games.” However, the current 
study shows that this score can be obtained if 1 or 2 children are applying second-order ToM 
and most of them below-optimal strategies such as zero-order and first-order ToM. 

The theoretical implication of this study is that people do not necessarily perceive sequential 
games in terms of interactions between mental states. They know that there is another player 
making decisions, but they have to learn over time, by playing many games, that the other 
player’s depth of reasoning could be greater than initially thought. Learning takes place when 
people obtain unexpected outcomes and start recognizing that the other player has a role in 
their outcomes. They will have to attribute their own, simple, strategies to the other player, 
thereby developing increasingly more complex strategies themselves. Over time, reasoning 
will become as complex as necessary, as simple as possible.


