The LysR-type transcriptional regulator CbbR controlling autotrophic CO2 fixation by Xanthobacter flavus is an NADPH sensor
van Keulen, G; Girbal, L; van den Bergh, E.R E; Dijkhuizen, Lubbert; Meijer, W.G

Published in:
Journal of Bacteriology

IMPORTANT NOTE: You are advised to consult the publisher’s version (publisher’s PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher’s PDF, also known as Version of record

Publication date:
1998

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
The LysR-Type Transcriptional Regulator CbbR Controlling Autotrophic CO2 Fixation by Xanthobacter flavus Is an NADPH Sensor

G. van Keulen, L. Girbal, E. R. E. van Den Bergh, L. DiJKhuizen, and W. G. Meijer*
Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN Haren, The Netherlands

Received 2 June 1997/Accepted 13 January 1998

Autotrophic growth of Xanthobacter flavus is dependent on the fixation of carbon dioxide via the Calvin cycle and on the oxidation of simple organic and inorganic compounds to provide the cell with energy. Maximal induction of the cbb and gap-pgk operons encoding enzymes of the Calvin cycle occurs in the absence of multicarbon substrates and the presence of methanol, formate, hydrogen, or thiosulfate. The LysR-type transcriptional regulator CbbR regulates the expression of the cbb and gap-pgk operons, but it is unknown to what cellular signal CbbR responds. In order to study the effects of low-molecular-weight compounds on the DNA-binding characteristics of CbbR, the protein was expressed in Escherichia coli and subsequently purified to homogeneity. CbbR of X. flavus is a dimer of 36-kDa subunits. DNA-binding assays suggested that two CbbR molecules bind to a 51-bp DNA fragment on which two inverted repeats containing the LysR motif are located. The addition of 200 μM NADPH, but not NADH, resulted in a threefold increase in DNA binding. The apparent Kd of CbbR was determined to be 75 μM. By using circular permuted DNA fragments, it was shown that CbbR introduces a 64° bend in the DNA. The presence of NADPH in the DNA-bending assay resulted in a relaxation of the DNA bend by 9°. From the results of these in vitro experiments, we conclude that CbbR responds to NADPH. The in vivo regulation of the cbb and gap-pgk operons may therefore be regulated by the intracellular concentration of NADPH.

During autotrophic growth of Xanthobacter flavus, CO2 is assimilated via the Calvin cycle (16, 17). The energy required to operate the Calvin cycle is provided by the oxidation of methanol, formate, thiosulfate, or hydrogen (20). To date, three unlinked transcriptional units encoding Calvin cycle enzymes have been identified: the cbb operon, the gap-pgk operon, and the tpi gene (18, 19, 21, 24). The key enzymes of the Calvin cycle, ribulose-1,5-bisphosphate carboxylase-oxygenase (cbbLS) and phosphoribulokinase, are encoded within the cbb operon (19, 23).

The LysR-type transcriptional regulator CbbR has been identified in several chemo- and photoautotrophic bacteria (5, 6, 13, 19, 25, 32, 37, 38, 42). This protein controls the expression of the cbb operon and, in X. flavus, also the gap-pgk operon (24). LysR-type proteins recognize inverted repeats containing the LysR motif (7). Two LysR motif-containing inverted repeats are present in the intergenic region between cbbR and cbbL, in which the promoter of the cbbLSXFPFTAE operon is located (37). Promoter-distal repeat IR1 is a perfect repeat, whereas promoter-proximal repeat IR2 is imperfect (Fig. 1).

The expression of the cbb and gap-pgk operons is maximally induced during growth in the absence of multicarbon substrates and in the presence of suitable autotrophic substrates, e.g., methanol (4, 20, 24). Although it is firmly established that CbbR plays an important role in transducing cellular signals to the transcription apparatus, the nature of these signals is still unknown. The results from studies with mutants of X. flavus,Ralstonia eutropha, and Pseudomonas oxalaticus blocked in glycolysis and isocitrate lyase indicated that the intracellular concentration of a glycolytic intermediate, e.g., phosphoenolpyruvate or acetyl coenzyme A, is an important factor in the regulation of the cbb operon (10, 18, 21, 22, 28). A correlation between the generation of reducing equivalents and the induction of the Calvin cycle has been demonstrated in both chemo- and photoautotrophic bacteria, suggesting that the intracellular concentration of NAD(P)H could be important in the regulation of the cbb operon (4, 9, 15, 29, 40). A low intracellular phosphoenolpyruvate concentration signals that insufficient carbon is available, which would necessitate CO2 fixation; a high level of NADH signals that sufficient reducing power is available for the Calvin cycle to proceed. Interestingly, the activity of bacterial phosphoribulokinase is inhibited by phosphoenolpyruvate and stimulated by NADPH (34).

A number of LysR-type proteins have been shown to respond to the presence of low-molecular-weight ligands by an altered affinity for their DNA-binding sites and a decrease in the DNA-bending angle introduced upon binding of the protein (31). To obtain further insight in the molecular mechanism by which CbbR regulates the transcription of the cbb operon, the effects of low-molecular-weight compounds on the interaction of CbbR with its cognate binding sites were investigated. This paper describes the purification of CbbR of X. flavus and its interaction with NADPH.

MATERIALS AND METHODS

Bacterial strains and plasmids. The bacterial strains and plasmids used in this study are listed in Table 1.

Media and growth conditions. Escherichia coli strains were grown on Luria-Bertani medium at 37°C (30). When appropriate, the following supplements were added: ampicillin, 100 μg/ml; 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, 20 μg/ml; chloramphenicol, 100 μg/ml; isopropyl-β-D-thiogalactopyranoside (IPTG), 0.1 mM. Agar was added for solid medium (1.5% [wt/vol]).

DNA manipulations. Plasmid DNA was isolated via the alkaline lysis method of Birnboim and Doly (1). DNA-modifying enzymes were obtained from Boehr...
The nucleotides making up the LysR motif (T-N 11-A) are boxed. (B) Alignment of IR1 and IR2, the putative binding sites of CbbR. Identical nucleotides are indicated by asterisks.

\[
\begin{align*}
\text{ATCCTGAGGATCCGGAGGCCGCGG} & \quad \text{IR1} \\
\text{ATCCTGAGGATCCGGAGGCCGCGG} & \quad \text{IR2}
\end{align*}
\]

Purification of CbbR. All steps were performed at 4°C, except when noted otherwise. The presence of CbbR during purification was determined by using denaturing gel electrophoresis, in which it could be detected as the most abundant protein. DNA binding of CbbR was assayed by using a band shift assay. Cell extracts of IPTG-induced E. coli BL21(DE3)/pLysE/pE500 were prepared freshly by passing the cell suspension twice through a French pressure cell (1.4 \times 10^7 kN/m²) after the addition of phenylmethylsulfonyl fluoride (0.1 mM). Cell debris was removed by 30 min of centrifugation at 35,000 \times g. The cell extract was applied to a Q Sepharose (Pharmacia) column (height, 4.5 cm; diameter, 3.5 cm) equilibrated in buffer A at a flow rate of 3 ml/min. The flowthrough fraction containing CbbR was applied to a heparin (Pharmacia) column (height, 11 cm; diameter, 2 cm) equilibrated in buffer A. The heparin column was eluted with a linear gradient of KCl in buffer A (12.5 mM/ml; flow rate, 2 ml/min). The fractions containing CbbR were pooled, and (NH₄)₂SO₄ was added to a final concentration of 1 M. The pooled fractions were subsequently applied to a phenyl-Sepharose HR5/5 column (Pharmacia) equilibrated in buffer A containing (NH₄)₂SO₄ (105 mM/ml). CbbR was eluted with a decreasing (NH₄)₂SO₄ gradient (33.8 M). The pooled fractions were subsequently applied to a Q Sepharose column (height, 4.5 cm; diameter, 3.5 cm) equilibrated in buffer A at a flow rate of 3 ml/min. The fractions containing CbbR were pooled, and (NH₄)₂SO₄ was added to a final concentration of 1 M. The pooled fractions were subsequently applied to a heparin-Sepharose HR5/5 column (Pharmacia) equilibrated in buffer A containing (NH₄)₂SO₄ (105 mM/ml). CbbR was eluted with a decreasing (NH₄)₂SO₄ gradient (33.8 M/ml).

The molecular weight (MW) of native CbbR was determined at 4°C by gel filtration with a Superdex 200 column (Pharmacia) which was calibrated with thyroglobulin (MW, 670,000), gamma globulin (MW, 158,000), ovalbumin (MW, 44,000), myoglobin (MW, 17,000), and cobalamin (MW, 1,350) obtained from Bio-Rad. Protein was determined as described by Bradford, by using bovine serum albumin (BSA) as the standard (2).

FIG. 1. (A) Nucleotide sequences of the 277- and 56-bp DNA fragments used in the band shift assays. The five nucleotides of the 56-bp fragment derived from the nucleotide sequence. The translation of cbbL is from the reverse complement (lowercase letters). Putative ribosome-binding sites are underlined. The transcriptional start site of the cbb operon (19) is indicated by an arrow. The nucleotides protected by CbbR from DNase I digestion are boxed, and the position of the DNase I-hypersensitive nucleotide is indicated by the asterisk. (B) Alignment of IR1 and IR2, the putative binding sites of CbbR. Identical nucleotides are indicated by asterisks.

\[
\begin{align*}
\text{ATCCTGAGGATCCGGAGGCCGCGG} & \quad \text{IR1} \\
\text{ATCCTGAGGATCCGGAGGCCGCGG} & \quad \text{IR2}
\end{align*}
\]
Preparation of DNA fragments used in binding studies. The intergenic region between cbbR and cbbL was amplified by PCR from pSR1 by using oligonucleotides Preind (5'-CGCGAATTCCTGCAGTTGTTTCTG-3') and CR2 (5'-GATCCGAGGATCCCGCCGGGAGG-3'). The resulting 285-bp DNA fragment was ligated into pTZ18U digested with SmaI, yielding pTZ0. A DNA fragment containing the CbbR-binding sites without flanking DNA sequences was obtained by a PCR with pSR1 as the template and oligonucleotides Pr2 (5'-GGGATCCGAGGATCCCGCCGGGAGG-3') and Pr8 (5'-CCTGCCCCGCCCGCCCGGAGG-3'). The resulting fragment was digested with BamHI and EcoRI and subsequently cloned into pBluescript KS digested with BamHI and EcoRI, which yielded pSR168. The nucleotide sequences of the inserts of pSR168 and pTZ0 were determined to verify that mutations were not introduced during the PCR.

Labeling of DNA fragments. To obtain DNA fragments for use in band shift assays, pTZ0 and pSR168 were digested with BamHI and EcoRI and labeled with [(32P)]dCTP (30 Ci/mmol) at 37 °C. Following labeling, the gel was dried and the DNA fragment was subsequently purified by using the Qiaquick PCR purification kit (Qiagen). DNA fragments with blunt ends and oligonucleotides were labeled with [(32P)]dATP (30 Ci/mmol) by using T4 polynucleotide kinase (30).

Band shift assay. Band shift assays were performed as described previously, by using [(32P)]dCTP-labeled DNA fragments, except that 20 µg of BSA was included in the binding assay (37). Metabolites were included in the incubation mixture to a final concentration of 200 µM. The samples were subjected to non-denaturing gel electrophoresis using 6% acrylamide gels in Tris-borate buffer (30) and run at 4°C and 10 V/cm. Following drying, the gel was gelatinized by autoradiography. The relative intensity of the band was quantified with the Molecular Dynamics PhosphorImager by using the ImageQuant program, version 3.3, from the same company.

Band shift assay using circular permuted DNA fragments. The method used employs the band shift assay to examine DNA binding (43). Digestion of pSR168 with HpaII and BamHI liberates a 68-bp fragment which was treated with Klenow enzyme and subsequently cloned into Hpal-digested pBluescript (43), yielding pLG168. The nucleotide sequence of the insert in pLG168 was determined to confirm the correct insertion in pBluescript. Plasmid pLG168 was subsequently digested with either BglII, NheI, EcoRV, PstI, or SmaI, resulting in circular permuted DNA fragments of 189 bp, containing the CbbR-binding sites at various distances from the end of the molecule. Following labeling, the fragments were used in the band shift assay. The binding angles (α) were calculated by using the formula $\mu = 3\sin(2\alpha)$, where μ and μ_0 represent the gel mobilities of DNA molecules with bends in the middle and at the ends, respectively (43).

DNAase I footprinting. Amplification of pTZ0 by using radiolabeled oligonucleotide M13 reverse (5'-AGCGGATAACAATTTCACACAGGA-3') resulted in a DNA fragment of 464 bp, containing the cbbR-cbbL intergenic region. The PCR product was subsequently radiolabeled by using the Qiaquick PCR purification kit (Qiagen). DNA fragments with blunt ends and oligonucleotides were labeled with [(32P)]dATP (30 Ci/mmol) by using T4 polynucleotide kinase (30).

RESULTS

Purification of CbbR. To facilitate purification of CbbR, an efficient expression system was constructed by replacing the GTG initiation codon of cbbR with ATG and by placing cbbR downstream from the T7 promoter present on pET3a. Following induction of T7 RNA polymerase in E. coli BL21(DE3)/pLysE/pET500, CbbR was present as the most abundant protein in the cell extract. CbbR was purified from E. coli BL21(DE3)/pLysE/pET500 in four steps. The resulting CbbR preparation was homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Fig. 2). The CbbR monomer had a molecular mass of 36 kDa, which is in close agreement with the mass of 35,971 Da predicted from the CbbR amino acid sequence (37). The molecular mass of native CbbR at 4°C, as determined by gel filtration, was estimated to be 79 kDa, indicating that CbbR of X. flavus is a dimer in solution. Interestingly, the protein from R. eutropha is a dimer at room temperature and a tetramer at 4°C (14). In contrast to CbbR from R. eutropha, the CbbR protein from X. flavus is completely soluble in buffers containing 25 mM KCl (14). Purified CbbR was stable, with virtually no loss of DNA-binding activity when stored at −80°C for 2 weeks in buffer A.

Localization of CbbR-binding sites. We previously described the binding of CbbR to two binding sites in the intergenic region between cbbR and cbbL, which contains a perfect (IR$_1$) and an imperfect (IR$_2$) inverted repeat containing the LysR motif (37). To determine whether CbbR binds to a DNA fragment containing only these inverted repeats, a 56-bp BamHI-EcoRI DNA fragment (Fig. 1) of pSR168 was radio-labeled and used in a band shift assay. Two protein-DNA complexes with high and low electrophoretic mobilities were observed, which are interpreted to be the result of the interaction between the BamHI-EcoRI DNA fragment with one and two CbbR dimers, respectively (data not shown). To confirm the presence of two CbbR-binding sites on the 56-bp BamHI-EcoRI DNA fragment, a 464-bp DNA fragment containing the cbbR-cbbL intergenic region was end labeled and used in a DNAase I footprint assay with purified CbbR (Fig. 3). CbbR protected nucleotides −75 to −29 relative to the transcriptional start site of the cbb operon from DNAase I digestion. In the protected area, nucleotides between −75 and −50 were strongly protected, whereas protection of nucleotides between −44 and −29 was weaker. A DNAase I-hypersensitive site at −48 was present between the two regions, which could be the result of DNA bending by CbbR. The results from the band shift assay and the DNAase I footprint, therefore, show that CbbR binds to two sites located between positions −29 and −75 relative to the transcription initiation site of the cbb operon.

NADPH enhances the DNA binding of CbbR. In general, LysR-type proteins activate transcription following the binding of low-molecular-weight ligands. In addition, binding of these ligands frequently results in a modest increase or decrease in the DNA-binding affinity of this type of transcriptional regulator (31). The results from physiological studies indicate that transcription of the cbb operon in X. flavus is enhanced in the

FIG. 2. Coomassie brilliant blue-stained denaturing polyacrylamide gel showing CbbR (10 µg) purified from IPTG-induced E. coli BL21(DE3)pLysE/pET500. The MW standards used are shown.
absence of carbon sources and in the presence of methanol, for-
tate, or hydrogen. We therefore tested whether metabo-
lites associated with glycolysis (phosphoenolpyruvate, 2-phos-
phoglycerate, and 3-phosphoglycerate) or energy metabolism
(ATP, ADP, NADH, NAD, NADPH, and NADP) influence
the in vitro binding of purified CbbR to its cognate binding
sites. The addition of 200 μM NADPH to the binding assay
resulted in an increase in DNA binding, whereas the other
metabolites tested did not affect DNA binding by CbbR (Fig.
4).

The addition of NADPH to the DNA-binding assay had two
effects on DNA binding by CbbR (Fig. 5). The total amount of
32P-labeled DNA bound to CbbR increased threefold when the
NADPH concentration was increased from 0 to 500 μM. Sat-
uration occurred at approximately 200 μM NADPH; the ap-
parent K_{NADPH} of CbbR was estimated to be 75 μM. In addi-
tion, the ratio of complex 1 to complex 2 changed dramatically.
In the absence of NADPH, 65% of the 32P-labeled DNA
bound to CbbR was present in complex 1, representing the
binding of CbbR to both cognate binding sites. In the presence
of 500 μM NADPH, virtually all (97%) of the bound 32P-
labeled DNA was present in complex 1.

CbbR induces DNA bending. A number of LysR-type pro-
teins induce a bend in the DNA following binding (31). To
investigate whether CbbR bends DNA, the 68-bp BamH-I-
HindIII DNA fragment of pSR168 containing the CbbR-bind-
ning sites was cloned into pBEND4, yielding pLG168. A series
of circular permuted DNA fragments of the same length and
differing only in the position of the CbbR-binding sites were
isolated following digestion of pLG168 with various enzymes
and used in band shift experiments (Fig. 1 and 6A). The results
show that the electrophoretic mobility of the DNA-CbbR com-
plex is dependent on the distance between the CbbR-binding
sites and the ends of the DNA fragment (Fig. 6C). From the
electrophoretic mobilities of the protein-DNA complexes, it
was calculated that CbbR introduces a bend of 64 ± 3°
following binding to its cognate binding sites.

NADPH relaxes CbbR-induced DNA bending. It has been
reported for some LysR-type proteins that the DNA-bending
angle is reduced when the ligand is added to the binding assay
(31). To determine whether DNA bending by CbbR is influ-
enced by NADPH, 200 μM NADPH was included in the assay
mixture (Fig. 6B and C). Following analysis on nondenaturing
gels, a bending angle of 55 ± 3° was calculated, 9° less than that
calculated in the absence of NADPH.

DISCUSSION

Physiological studies have shown that the expression of the
Calvin cycle in facultatively autotrophic bacteria depends on
the availability of suitable carbon and energy sources. The
discovery that CbbR is a transcriptional regulator of the
cbb operons in chemo- and photoautotrophic bacteria (6, 13, 37,
38, 42) suggested that this protein transduces these physiolog-
ical signals to the transcription apparatus. This paper describes
the effects of metabolic intermediates on the in vitro DNA-
binding characteristics of purified CbbR.

CbbR of X. flavus protects nucleotides −75 and −29 relative
to the transcriptional start site of the cbb operon. A similar
region is protected by CbbR of Thiobacillus ferrooxidans and R.
eutropha, which overlaps the −35 region of the promoter of the
cbb operon. The close proximity of CbbR-binding sites to the
 promoter of the cbb operon facilitates contact between CbbR
and the α subunit of RNA polymerase, which was shown to be
important for transcriptional activation by LysR-type regula-
tors (8, 35). It has been shown that CbbR of \textit{R. eutropha} acts as a repressor of its own synthesis by binding to the \textit{cbbR} promoter. The DNase I footprint obtained by using CbbR from \textit{X. flavus} shows that this protein binds to the same region as the protein of \textit{R. eutropha}, which overlaps the initiation codon of \textit{cbbR} and upstream sequences (Fig. 1). This strongly indicates that in \textit{X. flavus}, transcription of the \textit{cbbR} gene is also repressed by CbbR.

FIG. 5. Effect of NADPH concentration on the DNA-binding characteristics of purified CbbR. (A) Band shift assay using the 277-bp EcoRI-BamHI DNA fragment of pTZ00 and 17 ng of purified CbbR. Lanes: 1, no CbbR added; 2, 0 \textmu M NADPH; 3, 10 \textmu M NADPH; 4, 50 \textmu M NADPH; 5, 100 \textmu M NADPH; 6, 200 \textmu M NADPH; 7, 500 \textmu M NADPH. Arrows indicate the positions of the unbound DNA and the protein-DNA complexes of low (complex 1) and high (complex 2) electrophoretic mobility. (B) Graphical representation of the band shift assay results in panel A. The percentages of total 32P-labeled DNA present in protein-DNA complex 1 (●), protein-DNA complex 2 (▲), and the free-DNA fragment (■) are plotted against the NADPH concentration. The amount of 32P-labeled DNA was determined by quantifying the radioactivity in the bands with a PhosphorImager.

FIG. 6. DNA bending by CbbR in the absence (A) or presence (B) of 200 \textmu M NADPH in the binding assay. Circular permuted DNA fragments of pLG168 containing both CbbR-binding sites were constructed by digestion with various restriction enzymes as described in Materials and Methods. The radiolabeled DNA fragments (10,000 cpm) were incubated with purified CbbR (1.7 \mu g) and analyzed on a nondenaturing acrylamide gel. Lanes: 1; no CbbR added, BglII; 2, BglII; 3, NheI; 4, XhoI; 5, EcoRV; 6, PvuII; 7, Smal. (C) Graphical representation of CbbR bending of the \textit{cbbL} promoter region in the absence (●) or presence (○) of 200 \textmu M NADPH, showing electrophoretic mobility (in centimeters) plotted against the position (in nucleotides [nt]) of IR\textsubscript{1} and IR\textsubscript{2} with respect to the left end of the DNA fragment. The bending angle (\(\alpha\)) was calculated as described in Materials and Methods from five experiments.
true for CbbR of X. flavus (37). DNA binding by CbbR of both species is therefore typical for LysR-type transcriptional regulators, which, in general, bind to two binding sites upstream from the promoter. Since the region protected by CbbR contains two inverted repeats with a LysR motif, it is likely that these inverted repeats represent CbbR-binding sites.

LysR-type transcriptional regulators use low-molecular-weight compounds as ligands which, upon binding, frequently cause a modest increase or decrease in the DNA-binding affinity of the transcriptional regulator and a decrease in the DNA-bending angle (31). Of all of the metabolites tested, only the addition of NADPH to the binding assay had an effect on the DNA-binding characteristics of CbbR. A classical pyridine dinucleotide binding motif (41) is not present in the primary structure of CbbR. This is not altogether surprising, since binding of NADPH to allosteric sites may be quite different from binding to catalytic sites, which usually display the pyridine dinucleotide binding motif. The addition of NADPH caused a threefold increase in total DNA binding by CbbR. Following the addition of NADPH, 97% of the bound CbbR is present in complex 1, which is formed following the binding of two CbbR dimers to their cognate binding sites. In contrast, only 65% of the total bound CbbR interacts with both sites in the absence of NADPH. CbbR therefore resembles TrpI; binding of TrpI to the promoter-proximal binding site is dependent on the presence of the ligand indoleglycerol phosphate (3). Interestingly, CbbR from R. eutropha resembles NodD in that binding to both binding sites is independent of the protein concentration and the presence of a ligand. The CbbR proteins of R. eutropha and X. flavus therefore display different DNA-binding characteristics, although both bind to two binding sites.

CbbR from X. flavus induces DNA bending, which is relaxed in the presence of NADPH. The presence of DNase I-hypersensitive sites between the two CbbR-binding sites in a footprint of the cbb promoter of R. eutropha suggests that CbbR of this bacterium also bends its target DNA (14). It has been shown that DNA bending strongly influences the activity of some promoters (27). This may be due to a conformational change in the DNA helix or, alternatively, may facilitate the formation of productive contacts with RNA polymerase. DNA bending and ligand-induced relaxation of the DNA bend were observed in studies on other LysR-type proteins (31). In OxyR and OccR, relaxation of the DNA bend is associated with repositioning of the LysR-type regulator in the promoter-proximal DNA-binding site (36, 39).

The results of the in vitro experiments described here strongly suggest, but do not prove, that in vivo transcriptional regulation of the cbb and gap-pgk operons by CbbR is regulated by the intracellular concentration of NADPH. A number of experiments show that autotrophic growth is associated with elevated levels of NADPH. The transition of P. oxalatus from heterotrophic to autotrophic growth is accompanied by an increase in the intracellular NADPH-to-NADP ratio (12). Furthermore, NADP is completely reduced during incubation of Rhodospirillum rubrum under anaerobic conditions in the light. NADPH was rapidly oxidized following exposure to oxygen or in the dark. Interestingly, R. rubrum induces the Calvin cycle under the former growth conditions but not under the latter two (11).

Although bacteria use NADH to drive assimilation of CO2 by the Calvin cycle, NADPH may be a better signal in the regulation of Calvin cycle gene expression. NADPH, produced from NADH by transhydrogenase, is used in biosynthesis. A high intracellular NADPH concentration may therefore signal that although sufficient reducing power is available, biosynthetic reactions do not proceed due to the lack of a source of carbon. This is alleviated by the addition of suitable carbon sources to the medium or by induction of the Calvin cycle, followed by the fixation of CO2. The regulation of the cbb operon by the intracellular concentration of NADPH therefore explains why the oxidation of unrelated compounds such as thiosulfate, molecular hydrogen, and methanol induces expression of the Calvin cycle, whereas virtually all carbon sources which are readily assimilated have a repressive effect. The present study strongly suggests that NADPH plays an important role in the transcriptional regulation of the Calvin cycle genes. Future research will aim to characterize the in vivo and in vitro transcriptional regulation of the cbb and gap-pgk operons by the intracellular concentration of NADPH and the interaction between CbbR and NADPH.

ACKNOWLEDGMENTS

We thank J.-P. Sibiec for assisting us with the PhosphorImage.

L. Girbal was supported by a Human Capital and Mobility institutional grant (ERBCHBGCT 930293).

REFERENCES

3. Chang, M., and I. P. Crawford. 1990. The roles of indoleglycerol phosphate and the TrpP protein in the expression of trpBA from Pseudomonas aerugi-

10. Im, D.-S., and C. G. Friedrich. 1983. Fluoride, hydrogen, and formate acti-

13. Kussan, T., and K. Sugawara. 1993. Specific binding of Thiobacillus ferroxia-
17. Lidstrom-O’Conner, M. E., G. L. Fulton, and A. E. Wopat. 1983. Methy-