Chicks from a high and low feather pecking line of laying hens differ in apomorphine sensitivity

Yvonne M. van Hierden a,c,*, Jaap M. Koolhaas c, L’ubor Košťál b, Pavel Výboh b, Monika Sedláčková b, Marek Rajman b, Marian Juráni b, S. Mechiel Korte a

a Animal Sciences Group of Wageningen UR, Division of Animal Resources Development, Research group Animal Welfare, P.O. Box 65, NL-8200, AB Lelystad, The Netherlands
b Department of Endocrinology and Ethology, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, 900 28 Ivanka pri Dunaji, Slovakia
c University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands

Received 4 August 2004; received in revised form 2 January 2005; accepted 24 January 2005

Abstract

Proactive rodents show a larger behavioral response to apomorphine (APO) than reactive copers, suggesting a more sensitive DA system in proactive individuals. Previously, chicks from a high feather pecking (HFP) and low feather pecking line (LFP) have been suggested to display a proactive and reactive coping strategy, respectively. Therefore, at approximately 4 weeks of age, the behavior of 48 LFP and 48 HFP chicks in response to an APO injection was studied using an open field. Another objective of the present study was to determine whether behavioral variation (in an open field) between HFP and LFP birds, after APO injection, is also reflected by variation of D1 and D2 receptor densities in the brain. Receptor binding capacities were assessed by measuring specific binding of tritiated D1 and D2 receptor ligands in different regions of the brain of control HFP and LFP chicks.

In the present study, it is shown that indeed HFP chicks display a more enhanced behavioral response to acute APO treatment (0.5 mg/kg BW) than LFP birds in an open field. This difference was not reflected by variation of D1 and D2 receptor densities in the brain between both lines.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Coping strategy; Dopamine; Apomorphine; Open field; Feather pecking

1. Introduction

Feather pecking behavior in laying strains of domestic fowl is a long-standing welfare problem in the layer industry. It is characterised by rather stereotypic pecking [18] and compulsive pulling [26] at feathers of conspecifics, ultimately leading to injury and death. Despite years of research, its complex aetiology remains hard to fathom. Feather pecking is usually performed by a limited number of individuals in a flock [15]. Specific interaction between a genetic predisposition for the development of feather pecking and environmental challenges is believed to underlie this behavioral pathology [3,18].

Previously [43], we reported that birds from a high (HFP) and low feather pecking (LFP) line of laying hens displayed different physiological and neurobiological response patterns when challenged. More specifically, it was shown that in response to acute stress induced by manual restraint, HFP chicks had lower plasma corticosterone levels and lower dopamine (DA) and serotonin (5-HT) turnover levels in the forebrain than LFP chicks. The results from the study supported earlier findings [20,21] that the (physiological) characteristics of HFP and LFP birds show considerable analogy to the characteristics of, respectively, the proactive and reactive coping strategy, known to exist in other species like rodents and pigs. From this study [43] we also
postulated that the difference in feather pecking behavior between both lines might be causally related to a difference in the functioning of the 5-HT and DA system.

Recently [41,42], we found evidence for a causal role of the 5-HT system in the development and performance of feather pecking. In the present study we investigate a possible role of the DA system in feather pecking behavior.

It has been suggested that the neurobiological characteristics of ‘proactive’ individuals make them more vulnerable to develop (behavioral) pathologies than ‘reactive’ individuals [5,8,19,37,39]. A difference in the functioning or sensitivity of the DA (receptor) system has been suggested to (partly) account for this difference in vulnerability [6]. Apomorphine (APO), a full agonist of the dopaminergic D_1 and D_2 receptors, with similar intrinsic activity as DA, is often used to predict individual differences in the sensitivity of the (receptor) DA system [23,38]. By stimulation of the postsynaptic D_1 and D_2 receptors, APO, dose-dependently, induces an increase of locomotor activity and stereotyped behavior [2], like stereotypic pecking in chickens [31,44]. Proactive copers show a larger behavioral response to injection with APO than reactive copers [1,4], suggesting a more sensitive DA (receptor) system in proactive individuals.

From the above we postulate that birds from the (proactive) HFP line have a higher sensitivity of the DA (receptor) system, and will therefore show an enhanced behavioral response to acute APO treatment compared to (reactive) LFP birds. To test this hypothesis, the behavior of LFP and HFP chicks in response to an APO injection was studied using an open field. Another objective of the present study was to determine whether behavioral variation (in an open field) between HFP and LFP birds, after APO injection, is also reflected by variation of D_1 and D_2 receptor densities in the brain. Therefore, receptor binding capacities were assessed by measuring specific binding of tritiated D_1 and D_2 receptor ligands in different regions of the brain of control HFP and LFP chicks.

2. Methods

2.1. Birds and housing

In this study 96 White Leghorn chicks were used: 48 LFP and 48 HFP chicks (for line specifications see Ref. [20]). All birds were female and non-beaktrimmed. Chicks arrived on the day of hatching and were kept in groups of 4 animals per line (12 groups per line) and housed in pens (0.75×1.0 m) with wood shavings. The pens were placed in a climate controlled room. Individual pens were visually isolated by hardboard partitions. Chicks were individually marked on the back with waterproof markers (black, purple, blue and green) before housing.

The environmental temperature was gradually lowered from 34 °C on day 1 to 22 °C at 5 weeks of age. On days 1 and 2 of age the chicks received 24 h of light. From 3 days to 5 weeks of age the light regime gradually decreased from an 18 h to a 10 h light period. All birds had access to three drinking cups and one square feeding trough placed along one of the walls of the pen. Water and commercial feed (mash) were provided ad libitum.

2.2. APO injection and open field test

Apomorphine hydrochloride (Sigma RBI, the Netherlands) was freshly dissolved in distilled water (vehicle) every day. APO was injected into the breast muscle at a dose of 0.5 mg/kg BW in a volume of 1 ml/kg BW. A pilot study showed that this dose was the most effective in eliciting a change in behavior of the chicks (data not shown). This finding is in agreement with previous studies [31,44]. The control chicks were injected (i.m.) with a volume of 1 ml distilled water/kg BW.

At either 29, 30 or 31 days of age each chick was individually tested in an open field. Two identical test rooms, with two identical open fields were used, to allow simultaneous testing of birds. During the test birds did not have visual or auditory contact with birds in adjacent rooms.

A chick was captured individually, taken to the test room and injected into the breast muscle with either APO or distilled water (control). In each pen two APO and two control chicks were randomly chosen. The open field was situated in a separate room, to ensure auditory isolation, and the ambient temperature and humidity were maintained at a similar level to that of the home environment. The open field consisted of a wooden box, measuring 1.5×1.5×1.5 m (L×W×H), with white solid walls and wood shavings on the floor.

Immediately following APO or vehicle injection, the chick was placed in the middle of the open field. The behavior of the chicks was videotaped for 30 min using an overhead camera and scored afterwards using Ethovision® 2.1 software programme (Noldus, Wageningen, The Netherlands). For the analysis of the open field behavior, the 30-min observation period was divided into 6 periods of 5 min. Furthermore, the behavior of the birds was divided into the states ‘moving’ and ‘not moving’ (i.e. ‘velocity’=0.5 cm/s in Ethovision). The statistical analysis was performed only on the ‘moving’ state. For the ‘moving’ state the mean and maximum velocity (cm/s), total distance moved (cm) and the total time spent ‘moving’ (%) of time were calculated.

2.3. Dopamine D_1 and D_2 receptor binding

For analysis of D_1 and D_2 receptor binding in LFP and HFP chicks, only the control birds were used. At the age of 35 days the two control birds were captured from their home cage and killed by rapid decapitation. Their brains were removed immediately and dissected into 4 brain regions; telencephalic pallium, basal telencephalon, diencephalon and the mesencephalon (for details see Refs. [3,22]).
Dissected tissue samples were frozen in a mixture of isopentane and dry ice and stored at −70 °C. The frozen samples were transported on dry ice from Lelystad (the Netherlands) to Ivanka pri Dunaji (Slovakia).

The densities of D1 and D2 receptors were determined according to the method described by KošáI et al. [22]. Each dissected brain region was weighed individually and homogenised in cold 50 mmol/l Tris–HCl (1:10 w/v) buffer (pH 7.8). The homogenate was diluted 1:4 with the same buffer and centrifuged at 48,000 g for 10 min at 4 °C (Beckman L5-65, Ty-65 rotor). The supernatant was discarded, the pellet washed in the same buffer and recentrifuged as before. The final pellet was resuspended in 4 ml of 50 mmol/l Tris–HCl incubation buffer (pH 7.4), containing 1 mmol/l MgCl₂, 2 mmol/l CaCl₂, 120 mmol/l NaCl and 5 mmol/l KCl and next diluted with the same buffer to give a concentration of 1 mg protein per ml, based on estimated protein content [24].

Membrane suspensions were incubated in duplicate for 30 min at 37 °C. For the estimation of specific binding to D₁ receptors each plastic tube contained 300 μl of membrane suspension (1 mg protein/ml), 100 μl of 0.59 mmol/l [³H]SCH 23390 (75.5 Ci/mmol, DuPont NEN, USA) and 100 μl of incubation buffer (total binding) or 100 μl of unlabelled SCH 23390 (1 μmol/l, RBI, USA; non-specific binding). For the estimation of specific binding to D₂ receptors each plastic tube contained 300 μl of membrane suspension, 100 μl 0.05 mmol/l [³H] spiperone (23 Ci/mmol, Amersham, Great Britain) and 100 μl of incubation buffer (total binding) or 100 μl of (+)-butaclamol (1 μmol/l, RBI, USA; non-specific binding). Following incubation, separation of free from bound ligand was achieved by centrifugation at 23,000 g for 6 min at 4 °C. Supernatant was removed by aspiration, and the tips of the tubes (containing unrinsed pellets) were cut off with a heated wire and placed in scintillation vials. After addition of scintillant, the vials were shaken for 2 h, allowed to equilibrate, and radioactivity (dpm) was counted (Beckman LS 6000SE, USA).

The assay used in the present study was fully validated for measurements of specific binding to dopamine D₁ and D₂ receptors in the chicken brain. Binding was specific, of high affinity and saturable (for details see Refs. [3,22]).

2.4. Statistical analysis

Open field behavior was analyzed per time period with a mixed analysis of variance model with main effect and interactions for the factors Age (day 29, 30 or 31), Open Field (1 or 2), Line (HFP/LFP) and Treatment (APO/Control). Pen was entered as a random effect in the analysis. The behavioral data were not normally distributed. Therefore, these data were analyzed according to techniques described by Engel and Keen [10] and Engel and Buist [9], employing Genstat 5 procedure IRREML [16]. The Wald test [34], was used for estimation of Line×Treatment, Line and Treatment effects. No Age or Open Field effects were found and therefore these factors were excluded from the analysis.

For the analyses of the levels of the D₁ and D₂ receptors in the four brain regions, components were estimated with Restricted Maximum Likelihood Model (REML) procedure [32]. The Wald test [34] was used for estimation of the Line effect.

When used in the IRREML procedure, the Wald statistic (W) is an estimation of the F-statistic, when used in the REML procedure, the Wald statistic is equal to the F-statistic. Differences were considered significant if P<0.05. For all calculations GenStat® 6 [11] was used.

Table 1

<table>
<thead>
<tr>
<th>Time period</th>
<th>Effect</th>
<th>Total distance moved</th>
<th>Mean velocity</th>
<th>Maximum velocity</th>
<th>Total duration of moving</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L×T</td>
<td>W=4.20; P=0.04</td>
<td>W=6.55; P<0.01</td>
<td>W=6.46; P<0.01</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>W=8.10; P=0.004</td>
<td>W=16.30; P<0.001</td>
<td>W=59.25; P<0.001</td>
<td>W=15.28; P<0.001</td>
</tr>
<tr>
<td>2</td>
<td>L×T</td>
<td>W=7.37; P<0.007</td>
<td>W=12.91; P<0.001</td>
<td>W=6.72; P<0.01</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>W=6.05; P<0.01</td>
<td>W=17.88; P<0.001</td>
<td>W=18.82; P<0.001</td>
<td>ns</td>
</tr>
<tr>
<td>3</td>
<td>L×T</td>
<td>W=3.61; P=0.05</td>
<td>W=5.15; P<0.02</td>
<td>W=16.79; P<0.001</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>W=15.45; P<0.001</td>
<td>W=19.68; P<0.001</td>
<td>W=16.79; P<0.001</td>
<td>ns</td>
</tr>
<tr>
<td>4</td>
<td>L×T</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>W=33.67; P<0.001</td>
<td>W=34.49; P<0.001</td>
<td>W=21.32; P<0.001</td>
<td>W=6.95; P<0.008</td>
</tr>
<tr>
<td>5</td>
<td>L×T</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>W=61.81; P<0.001</td>
<td>W=61.11; P<0.001</td>
<td>W=36.24; P<0.001</td>
<td>W=11.50; P<0.001</td>
</tr>
<tr>
<td>6</td>
<td>L×T</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>L</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>W=38.32; P<0.001</td>
<td>W=37.63; P<0.001</td>
<td>W=4.01; P<0.001</td>
<td>W=8.32; P<0.001</td>
</tr>
</tbody>
</table>

ns=non-significant, if P>0.05.
3. Results

3.1. Open field behavior

Table 1 shows the Line×Treatment (L×T) interactions, Line and Treatment effects, per time period, for the parameters measured in the open field. No significant overall Line effects were found for open field behavior. Significant Line×Treatment interactions were only observed during the first 3 time periods. Therefore, we restrict the discussion of the behavioral results of the LFP and HFP birds presented in Fig. 1 to these first 3 time periods.

For ‘total distance moved’ and ‘mean velocity’ (Fig. 1A and B) significant Line×Treatment effects were found. During the first 15 min, APO treated HFP birds showed significantly enhanced levels of ‘total distance moved’ and ‘mean velocity’, compared to control HFP birds. Whereas, no significant differences were found between APO treated and control chicks of the LFP line during this period of time.

The ‘maximum velocity’ is shown in Fig. 1C. In the first time period, a significant Treatment effect was found. Both APO-treated HFP and LFP chicks showed a significantly higher ‘maximum velocity’ than control HFP and LFP.
chicks. Furthermore, a significant Line×Treatment interaction was found for the first two time periods. APO treatment enhanced the ‘maximum velocity’ in the HFP birds significantly more than in the LFP birds.

For ‘total duration of moving’ (Fig. 1D), no significant Line×Treatment effects were found. Except for time period 3, significant Treatment effects were found. Control birds spent more time moving during time periods 1 and 2, compared to APO treated birds.

3.2. D1 and D2 receptor binding

There were no significant Line differences in the specific binding to dopamine D1 and D2 receptors in the four brain regions studied (Fig. 2).

4. Discussion

The purpose of the present study was to investigate whether HFP and LFP birds differ in the sensitivity of the DA (receptor) system and whether differences in D1 and D2 receptor densities in the brain are correlated with APO-induced behavioral differences between the lines.

4.1. Behavioral effects of APO

APO treatment was effective in inducing a behavioral change in LFP and HFP birds in an open field environment. The behavior of the APO birds was characterised by an increased locomotor activity, i.e. bouts of inactivity were alternately followed by bouts of hyperactivity (i.e. running behavior). This finding is in agreement with other APO studies in chicks [3,31] and rodents [1,38]. However, in our experiment no stereotypic pecking behavior, like pecking at the wall or pecking its own toes, was observed, as is often reported to occur with APO treatment in chicks [3,25,31]. Possibly, the interaction between APO treatment and the novel environment, is responsible for the absence of stereotypic behavior in both lines. Harkin and his colleagues [13] showed that in mice, APO produced qualitatively different responses under novel conditions when compared to those behaviors elicited in the home cage. In their study APO-induced locomotion was more prominent in the novel exploratory box than in the home cage. The absence of stereotypic pecking may also be an age-related effect. Osuide and Adejoh [31] showed that APO induced more stereotypic pecking in very young chicks than in older birds.

The results of the present study clearly demonstrated a quantitative difference in the behavioral response to acute APO treatment between HFP and LFP birds during the first 15 min after injection, in an open field situation. HFP chicks showed a higher increase in locomotor activity in response to APO than birds of the LFP line, during this period of time. This is in agreement with the previous findings that proactive rodents and proactive pigs show a higher sensitivity to the effects of APO [1,4,6] than their reactive counterparts. Thus, our data are consistent with the concept of coping strategies, confirming our hypothesis that HFP birds display a proactive and LFP birds a reactive coping strategy.

Recently [43], we showed that HFP chicks display a lower level of DA turnover compared to LFP birds. A less active DA system may be accompanied by compensatory upregulation of DA receptors [12]. Therefore, we may have expected higher DA receptor densities in the HFP line compared to the LFP line. However, the present study showed that the different behavioral effects of APO in HFP and LFP birds, cannot be explained from a difference.
in D₁ and D₂ receptor densities between both lines. One explanation may be the fact that binding assays were performed on relatively large chunks of brain tissue. Localized differences in receptors could therefore have been missed due to their dilution in non-differentiated tissue.

However, another explanation may be that other mechanisms account for the more enhanced behavioral effect of HFP chicks to APO treatment compared to LFP chicks. Cools and his colleagues [5] also found that individuals with a functionally high activity of the DA system show a weak response to APO and vice versa. They suggested that APO is poorly effective at high levels of fractional occupancy of the receptors by DA, but strongly effective at low levels of fractional occupancy of the receptors by DA. It can be speculated that, apart from a difference in receptor occupancy, differences in functioning or sensitivity of intracellular signal transduction pathways may also account for the more enhanced behavioral effect of HFP chicks to APO treatment [12]. The exact mechanisms should be examined in future studies.

4.2. Possible (causal) role of DA in feather pecking

Recently, we suggested that feather pecking might be a suitable animal model for OCD [41,42]. Like the 5-HT system, dysfunction of the DA system has been implicated in the pathophysiology of behavioral disorders, like animal stereotypies [7,30,33,35,36] and obsessive compulsive disorders (OCDs) [14,27,40]. Feather pecking has stereotypic as well as compulsive characteristics. Once birds start feather pecking, they tend to do so successively and it is almost impossible to discourage their feather pecking behavior. In two recent experiments we found evidence for a causal role of the 5-HT system in the performance and development of feather pecking. An acute decrease in 5-HT turnover in the forebrain increased feather pecking, while a chronic increase in 5-HT turnover decreased feather pecking in HFP and LFP chicks [41,42].

Feather pecking behavior was not measured in this study. However, we speculate that sensitivity of the DA system is indicative of the development of feather pecking behavior and that the DA system may also play a (causal) role in the development and performance of feather pecking behavior. Biléik [3] found no evidence that differences in DA sensitivity of young chicks (i.e. response to APO injection) can be used for prediction of susceptibility to feather pecking. However, Kjaer et al. [17] showed that acute haloperidol treatment, significantly reduced feather pecking behavior in adult laying hens. Haloperidol, a drug with anti-OCD effects, is a D₂ receptor antagonist which, with acute administration, increases DA-turnover by blocking the presynaptic DA autoreceptor [28]. This suggests that low DA neurotransmission might be involved in the performance of feather pecking behavior. Further research is needed to study this postulation.

4.3. Summary and conclusion

In the present study, we investigated a possible role of the DA system in feather pecking behavior. However, feather pecking behavior of the birds was not measured in this experiment. Therefore, in future experiments direct effects of manipulation of the DA system on feather pecking behavior in HFP and LFP birds should be investigated, by applying DA (ant)agonists like haloperidol. Furthermore, an extensive body of data supports the existence of a functional interaction between central 5-HT and DA. For instance, DA receptor stimulation, with receptor agonists, was found to increase 5-HT efflux in several forebrain regions [29], suggesting a facilitatory DA modulation of 5-HT neurotransmission. The interaction between the DA and the 5-HT system, in relation to feather pecking behavior, should also be examined, in pharmacological studies.

In summary, the present study demonstrated that HFP birds have a higher sensitivity of the DA (receptor) system in the brain, compared to LFP birds, as reflected by a more enhanced behavioral response to APO. This difference in response cannot be explained from a difference in D₁ and D₂ receptor densities between both lines. In the future, more pharmacological experiments, studying the (interacting) role of the 5-HT, DA or other neurobiological systems, are necessary to reveal the exact mechanisms underlying feather pecking behavior.

Acknowledgements

This study was supported by the Dutch Organisation for Scientific Research (NWO) (grant ALW, PPWZ 805-46.051). Furthermore, this research was partly supported by the European Commission, Directorate General for Agriculture, within the framework of the specific RTD program in the field of Agriculture and Fisheries (Contract FAIR-CT97-3576). Part of the study made in Slovakia was supported by the Slovak Grant Agency for Science (VEGA 2/2080/22) and the Agency for the Support of Science and Technology (APVT-20-016502). We would like to thank Hendrix Poultry Breeders (the Netherlands) for providing the animals for this study, Bas Engel and Willem Buist for their assistance with the statistical analysis, and Maaike Fillerup and Ingrid Leushuis for their technical assistance.

References

