

Latitudinal trends of *Crenarchaeota* and *Bacteria* in the meso- and bathypelagic water masses of the Eastern North Atlantic

Marta M. Varela, Hendrik M. van Aken, Eva Sintes and Gerhard J. Herndl

Departments of Biological Oceanography and Physical Oceanography, Royal Netherlands of Sea Research (NIOZ), 1790 AB Den Burg, the Netherlands.

Summary

The distribution and activity of the bulk picoplankton community and, using microautoradiography combined with catalysed reported deposition fluorescence *in situ* hybridization (MICRO-CARD-FISH), of the major prokaryotic groups (*Bacteria*, marine *Crenarchaeota* Group I and marine *Euryarchaeota* Group II) were determined in the water masses of the subtropical North Atlantic. The bacterial contribution to total picoplankton abundance was fairly constant, comprising ~50% of DAPI-stainable cells. Marine *Euryarchaeota* Group II accounted always for <5% of DAPI-stainable cells. The percentage of total picoplankton identified as marine *Crenarchaeota* Group I was ~5% in subsurface waters (100 m depth) and between 10% and 20% in the oxygen minimum layer (250–500 m) and deep waters [North East Atlantic Deep Water (NEADW) and Lower Deep Water (LDW), 2750–4800 m depth]. Single-cell activity, determined via a quantitative MICRO-CARD-FISH approach and taking only substrate-positive cells into account, ranged from 0.05 to 0.5 amol d-aspartic acid (Asp) cell$^{-1}$ day$^{-1}$ and 0.1–2 amol L-Asp cell$^{-1}$ day$^{-1}$, slightly decreasing with depth. In contrast, the D-Asp:L-Asp cell-specific uptake ratio increased with depth. By combining data reported previously using the same method as applied here and data reported here, we found a decreasing relative abundance of marine *Crenarchaeota* Group I throughout the meso- and bathypelagic oceanic realm from 65°N to 5°N in the eastern basin of the North Atlantic. Thus, the relative contribution of marine *Crenarchaeota* Group I to deep-water prokaryotic communities might be more variable than previous studies have suggested. This apparent variability in the contribution of marine *Crenarchaeota* Group I to total picoplankton abundance might be related to successions and ageing of deep-water masses in the large-scale meridional ocean circulation and possibly, the appearance of crenarchaeotal clusters other than the marine *Crenarchaeota* Group I in the (sub)tropical North Atlantic.

Introduction

Over the past decade, the notion emerged that non-thermophilic planktonic *Archaea* constitute a major component of prokaryotic plankton in the ocean (DeLong, 1992; Fuhrman et al., 1992). Quantitative studies with fluorescence *in situ* hybridization (FISH) have revealed the high abundance of *Crenarchaeota* in meso- and bathypelagic waters of the subtropical Pacific Gyre (Karner et al., 2001), the northern North Atlantic (Herndl et al., 2005; Teira et al., 2006a) and Antarctic waters (Church et al., 2003). Also in the Arctic Ocean, a higher contribution of *Crenarchaeota* to total prokaryotic plankton was found in the mesopelagic waters than in surface waters (Kirchman et al., 2007). In contrast, euryarchaeotal abundance tends to be more stable throughout the water column (Karner et al., 2001; Church et al., 2003; Teira et al., 2006a,b).

All these studies indicate that *Archaea* and, particularly, *Crenarchaeota* might be ubiquitously distributed in the deep ocean. However, there are too few quantitative data on the distribution of *Crenarchaeota* in oceanic waters to allow firm conclusions on their global distribution and abundance in the meso- and bathypelagic oceanic realm.

Also, little is known on the metabolic capabilities of *Archaea* in pelagic marine environments. A few recent studies have shown that they are chemosynthetic using inorganic carbon as a carbon source (Herndl et al., 2005; Ingalls et al., 2006; Wuchter et al., 2006). The only non-extremophilic crenarchaeal isolate, *Nitrosopumilus maritimus*, is oxidizing ammonia as an energy source (Könneke et al., 2005). However, this strain does not grow well at temperatures below 10°C (M. Könneke, pers. comm.) indicating that there might be differences in the physiological capabilities of this isolated crenarchaeote and the
Crenarchaeota present in the oceanic deep waters. There are indications that pelagic Crenarchaeota are also heterotrophic or mixotrophs (Hallam et al., 2006) taking up amino acids (Ouverney and Fuhrman, 2000; Herndl et al., 2005; Teira et al., 2006a; Kirchman et al., 2007). While L-antiomeric amino acids present the vast majority of the total amino acid pool in the ocean and are efficiently taken up by the heterotrophic prokaryotic community, D-amino acids are considered refractory. Recently, it has been shown, however, that in meso- and bathypelagic waters of the North Atlantic Crenarchaeota are mainly responsible for the observed increase in the bulk D- and L-aspartic acid (Asp) uptake ratio with depth (Pérez et al., 2003; Teira et al., 2006a).

The goal of this study was to determine the distribution of Archaea and Bacteria in the main water masses of the (sub)tropical North Atlantic (from 35°N to 5°N) throughout the water column. In previous studies, the relative contribution of Bacteria and marine Crenarchaeota Group I and marine Euryarchaeota Group II was determined in the northern North Atlantic (from 65°N to 35°N) following the North East Atlantic Deep Water (NEADW) (Herndl et al., 2005; Teira et al., 2006a,b). The distribution pattern observed in these previous studies are combined with the results from the (sub)tropical North Atlantic to obtain a general distribution pattern of marine Crenarchaeota Group I along the main flow of the NEADW over the different oceanographic regions in the North Atlantic. By following the NEADW, a pronounced latitudinal gradient was found in the distribution of marine Crenarchaeota Group I declining in their relative contribution to total prokaryotic abundance from 65°N towards the equator throughout the water column. Also, the uptake of D- and L-Asp by the bulk prokaryotic community was determined and compared with the D- and L-Asp uptake on a single-cell level using the recently developed quantitative microautoradiography and catalysed reporter deposition fluorescence in situ hybridization (MICRO-CARD-FISH) approach (Sintes and Herndl, 2006).

Results

Meso- and bathypelagic water mass characteristics

Water masses along the subtropical North Atlantic transect (Fig. 1) were identified based on their temperature and salinity characteristics. The vertical distribution of temperature, salinity and oxygen along the cruise transect is shown in Fig. 2. Table 1 summarizes the basic physicochemical characteristics of the main water masses. At 4000 m depth, Lower Deep Water (LDW), characterized by low salinity (34.9) and temperature (2.3–2.6°C), consisted mainly of Antarctic Bottom Water coming from the south mixed with some NEADW. The NEADW, mainly formed by Iceland Scotland Overflow Water and Labrador Sea Water, is characterized by a seawater temperature between 2.8°C and 3.0°C and a higher oxygen content than LDW (Table 1). The core of NEADW was identifiable throughout the transect at around 2750 m depth. Two types of intermediate waters were found between 900 and 1100 m depth. In the subtropical gyre region, the intermediate waters were formed by the saline Mediterranean Sea Outflow Water (MSOW), while in the North Equatorial Counter Current (NEqCC), Antarctic Intermediate Water (AAIW) was present characterized by lower salinity and temperature than MSOW (Fig. 2 and Table 1).
oxygen minimum (<100 μmol kg\(^{-1}\)) was found between 200 and 600 m in the north equatorial part of the transect (from stations (Sts.) 8–25) with oxygen concentrations < 60 μmol kg\(^{-1}\) at Sts. 11 and 23 (Fig. 2).

Picoplankton abundance and activity

Picoplankton abundance decreased exponentially with depth, ranging between 2.2 and 3.9 × 10\(^5\) cells ml\(^{-1}\) at 100 m depth and from 0.1 to 0.8 × 10\(^5\) cells ml\(^{-1}\) in the meso- and bathypelagic waters (Table 2). However, differences in picoplankton abundance between deep-water masses and regional trends were apparent. No significant differences, however, were found in the picoplankton abundance of the subsurface layer (100 m depth) between the subtropical gyre and the NEqCC (Mann–Whitney, \(P > 0.05, n = 42\), Table 2). In the oxygen minimum layer, picoplankton abundance was higher in the NEqCC than in the corresponding water masses of the subtropical gyre (Mann–Whitney, \(P < 0.01, n = 44\), Table 2). Also, in the
AeiW and deep waters (NEADW and LDW) of the NEqCC, picoplankton abundance was higher than in the MSOW and the deep-water masses (NEADW and LDW) of the subtropical gyre (Mann–Whitney, P < 0.01, n = 22, P < 0.001, n = 43, respectively, Table 2).

Leucine incorporation, as a measure of picoplankton activity, decreased with depth by two orders of magnitude (Table 2). Picoplankton activity in the subsurface waters was significantly higher in the subtropical gyre than in the NEqCC (Mann–Whitney, P < 0.01, n = 21). However, in the intermediate waters, picoplankton activity was higher in the AeiW than in the MSOW (Mann–Whitney, P < 0.01, n = 22), as was picoplankton abundance. While picoplankton activity was about twice as high in the NEADW of the NEqCC as in the subtropical gyre, picoplankton activity of the LDW was similar in both regions (Table 2).

Mean bulk L-Asp uptake rates decreased from 4.3 pmol l⁻¹ h⁻¹ at 100 m depth to 0.01 pmol l⁻¹ h⁻¹ in the LDW, while D-Asp decreased from 0.3 pmol l⁻¹ h⁻¹ at 100 m depth to 0.005 pmol l⁻¹ h⁻¹ in the NEADW (Table 2). The D-:L-Asp uptake ratio of the bulk prokaryotic community increased with depth in both the subtropical gyre and the NEqCC (Table 2). The highest D-:L-Asp uptake ratios (> 1) were measured in the LDW of the NEqCC at Sts. 18 and 23. No significant differences were found in the D-:L-Asp uptake ratio between the subtropical gyre and the NEqCC for any of the water masses [Mann–Whitney, P > 0.05, n = 22 for the intermediate waters (MSOW and AAIW), n = 12 for the NEADW and n = 9 for the LDW].

Table 2. Picoplankton abundance (PA) expressed in N × 10⁵ cell ml⁻¹, leucine incorporation rates (Leu) and enantiomeric aspartic acid (Asp) uptake rates in pmol l⁻¹ h⁻¹ and the D-:L-Asp uptake ratio.

<table>
<thead>
<tr>
<th>Zone</th>
<th>Water mass</th>
<th>PA N × 10⁵ cell ml⁻¹</th>
<th>Leu pmol l⁻¹ h⁻¹</th>
<th>D-Asp pmol l⁻¹ h⁻¹</th>
<th>L-Asp pmol l⁻¹ h⁻¹</th>
<th>D-:L-Asp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subtropical gyre</td>
<td>Subsurface</td>
<td>3.24 ± 0.15</td>
<td>4.62 ± 0.68</td>
<td>0.29 ± 0.08</td>
<td>4.28 ± 1.05</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>O₂-minimum</td>
<td>1.00 ± 0.07</td>
<td>0.40 ± 0.09</td>
<td>0.05 ± 0.01</td>
<td>0.55 ± 0.25</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>MSOW</td>
<td>0.44 ± 0.04</td>
<td>0.03 ± 0.05</td>
<td>0.007 ± 0.001</td>
<td>0.07 ± 0.02</td>
<td>0.12 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>NEADW</td>
<td>0.15 ± 0.01</td>
<td>0.009 ± 0.001</td>
<td>0.005 ± 0.001</td>
<td>0.03 ± 0.01</td>
<td>0.22 ± 0.06</td>
</tr>
<tr>
<td></td>
<td>LDW</td>
<td>0.16 ± 0.01</td>
<td>0.01 ± 0.003</td>
<td>0.004 ± 0.002</td>
<td>0.01 ± 0.001</td>
<td>0.30 ± 0.17</td>
</tr>
<tr>
<td>NEqCC</td>
<td>Subsurface</td>
<td>2.80 ± 0.18</td>
<td>2.31 ± 0.52</td>
<td>0.18 ± 0.07</td>
<td>1.86 ± 0.41</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>O₂-minimum</td>
<td>1.37 ± 0.07</td>
<td>0.45 ± 0.15</td>
<td>0.03 ± 0.01</td>
<td>0.37 ± 0.08</td>
<td>0.09 ± 0.01</td>
</tr>
<tr>
<td></td>
<td>AAIW</td>
<td>0.65 ± 0.03</td>
<td>0.06 ± 0.02</td>
<td>0.01 ± 0.003</td>
<td>0.08 ± 0.02</td>
<td>0.13 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>NEADW</td>
<td>0.23 ± 0.01</td>
<td>0.02 ± 0.09</td>
<td>0.005 ± 0.002</td>
<td>0.03 ± 0.008</td>
<td>0.18 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>LDW</td>
<td>0.20 ± 0.01</td>
<td>0.01 ± 0.002</td>
<td>0.009 ± 0.005</td>
<td>0.01 ± 0.003</td>
<td>0.65 ± 0.30</td>
</tr>
</tbody>
</table>

Mean values ± SE are given. Water mass abbreviations as in Table 1.
The mean contributions of Bacteria, marine Crenarchaeota Group I and Euryarchaeota Group II to total picoplankton abundance for the different water masses are given in Fig. 3. Bacteria contributed between 38% and 49% to total picoplankton abundance in the different water masses. Overall, the bacterial contribution to total picoplankton abundance was significantly higher (Mann–Whitney, \(P < 0.01 \), \(n = 78 \)) in the subtropical gyre than in the NEqCC (Fig. 3). This was due to the higher contribution of Bacteria in the deep-water masses (NEADW and LDW) of the subtropical gyre (49% of DAPI-stained cells) than in the NEqCC (42% of DAPI-stained cells). However, in the water masses overlying the NEADW, no significant differences in the bacterial contribution to total picoplankton abundance were found between both regions (Fig. 3).

Marine Crenarchaeota Group I exhibited a more patchy distribution throughout the transect. The percentage of total picoplankton identified as marine Crenarchaeota Group I ranged between ~5% and >15% in the subsurface waters and oxygen minimum layer or LDW respectively (Fig. 3). In general, marine Crenarchaeota Group I were more abundant in the NEqCC than in the subtropical gyre waters and the relative abundance was the highest in the oxygen minimum layer (up to 20% of DAPI-stained cells) and in the LDW (up to 15% of DAPI-stained cells). Marine Euryarchaeota Group II comprised always <5% of DAPI-stainable cells (Fig. 3).

Distribution of D-Asp and L-Asp uptake among Bacteria, marine Crenarchaeota Group I and marine Euryarchaeota Group II in the different water masses

Both Archaea (marine Crenarchaeota Group I and Euryarchaeota Group II) and Bacteria were taking up D-Asp and L-Asp, although the distribution pattern of Bacteria and Archaea taking up D-Asp versus L-Asp revealed differences (Fig. 4). The percentage of Bacteria taking up L-Asp steadily decreased with depth from ~35% in the 100 m layer to about 10% in the LDW. The percentage of marine Crenarchaeota Group I taking up L-Asp did not follow this decreasing trend with depth but was the lowest in the oxygen minimum layer (Fig. 4). The percentage of Bacteria taking up D-Asp ranged from 13% in the surface layer to 5% in the LDW. The percentage of marine Crenarchaeota Group I taking up D-Asp, however, was the highest in the LDW (~8%) of the NEqCC and in the NEADW (~10%) of the subtropical gyre. The fraction of marine Euryarchaeota Group II incorporating either D- or L-Asp was very low (<5%) and Asp-positive cells were only found in subsurface and intermediate waters (Fig. 4).

No significant differences were found in the percentage of cells taking up D-Asp (Mann–Whitney, \(P = 0.336 \), \(n = 58 \)) or L-Asp (Mann–Whitney, \(P = 0.461 \), \(n = 57 \)) between the corresponding water masses of the subtropical gyre and the NEqCC (Fig. 4). Overall, the percentage of cells taking up D-Asp and L-Asp was significantly different between marine Crenarchaeota Group I and Bacteria (Mann–Whitney, \(P < 0.001 \); \(n = 60 \) for D-Asp and \(n = 59 \) for L-Asp). Also, significant differences were found in the fraction of cells taking up D-Asp and L-Asp between the different water masses (Kruskal–Wallis, \(P < 0.05 \); \(n = 60 \) for D-Asp and \(n = 59 \) for L-Asp). The percentage of Bacteria taking up L-Asp was significantly higher than D-Asp uptake in all the water masses (Mann–Whitney, \(P < 0.02 \), \(n = 9 \) for the subsurface; \(P < 0.0001 \), \(n = 19 \) for the oxygen minimum, \(P < 0.02 \), \(n = 9 \) for the intermediate waters (MSOW and AAIW), \(P < 0.001 \), \(n = 19 \) for the deep waters (NEADW and LDW)). However, the percentage of marine Crenarchaeota Group I taking up L-Asp was not significantly different from that taking up D-Asp (Mann–Whitney, \(P > 0.5 \), \(n = 18 \) for the oxygen minimum, \(n = 9 \) for the intermediate waters (MSOW and AAIW), \(n = 19 \) for the deep waters (NEADW))...
and LDW) except in subsurface waters, where marine Crenarchaeota Group I taking up L-Asp prevailed over those taking up D-Asp (Mann–Whitney, \(P < 0.02, n = 9 \)).

Variability in single-cell D- and L-Asp uptake in the different water masses

The average silver grain area of the cells obtained by microautoradiography was linearly correlated with the D- and L-Asp bulk incorporation in the different water masses (Fig. 5). Thus, the silver grain area per cell was used to calculate cell-specific uptake rates of the prokaryotic community. The cell-specific uptake, taking only substrate-positive cells into account, ranged from 0.05 to 0.50 amol D-Asp cell\(^{-1}\) day\(^{-1}\) and 0.10–2.00 amol L-Asp cell\(^{-1}\) day\(^{-1}\) among the different water masses. The ratio of cell-specific D-:L-Asp uptake rates increased from the subsurface layer (cell-specific D-:L-Asp uptake ratio ~0.3) to the deeper layers reaching a ratio > 1 in the LDW (St. 2 in the subtropical gyre and St. 23 in the NEqCC) and in the NEADW at St. 36 in the subtropical gyre (Fig. 6, Table 3).

Cell-specific D-Asp and L-Asp uptake rates were higher at the subtropical gyre stations than in the NEqCC (t-test, \(P < 0.0001, n = 1476 \) for D-Asp and \(P < 0.0001, n = 1967 \) for L-Asp). In the subtropical gyre, cell-specific D-Asp was higher in the subsurface layer and the upper oxygen minimum layer than in the lower oxygen minimum layer, MSOW and LDW, while no significant difference was found between the subsurface and the NEADW (Fig. 6).

Cell-specific L-Asp uptake rates in the subtropical gyre decreased from the subsurface waters towards the deeper water masses (Table 3).

In the NEqCC, cell-specific D-Asp uptake fluctuated only over a rather narrow range from the oxygen minimum layer to the LDW (Table 3). Also, cell-specific L-Asp uptake rates in the NEqCC were higher in the subsurface than in the...
in the lower activity classes (between 0.01 and 0.15 amol L-Asp cell$^{-1}$ day$^{-1}$); however, still ~15% of the cells exhibited activities > 0.60 amol L-Asp cell$^{-1}$ day$^{-1}$.

Discussion

The North Atlantic Deep Water is formed by several water masses originating in the northern-most parts of the North Atlantic (van Aken, 2000a,b; Rhein et al., 2002), and flows to the south in the eastern basin resulting in the NEADW (Smethie and Fine, 2001). Because of mixing with the underlying Antarctic Bottom Water, the properties of the lower parts of the NEADW gradually change towards the equator. The Antarctic Bottom Water enters the eastern North Atlantic Basin through the Romanche Fracture Zone (at the Mid Atlantic Ridge at 5°S) and flows northwards mixing with the deep NEADW to form the LDW (van Aken, 2000a). Overlying the NEADW, the influence of the MSOW increases the salinity signal (> 36.5) in the subtropical gyre region between 35°N and 15°N (van Aken, 2000b). In the southern part of the transect (from 15°N to 5°N), below the North Equatorial Counter Current, a salinity minimum (< 34.7) is found, representing the AAIW brought into the eastern North Atlantic by the North Brazil Undercurrent (van Aken, 2000b). Apparently, the differences in the origin and history of these deep-water masses do not only lead to distinct salinity-temperature and nutrient characteristics of these water masses clearly identifiable over thousands of kilometres in the global ocean circulation but might also be reflected in the prokaryotic community composition and activity. The prokaryotic community composition and activity of these specific deep-water masses are modified by the upper ocean physical and nutrient conditions and associated to these, the biological productivity and export fluxes. As shown here, differences in the upper ocean characteristics of the NEqCC with its generally higher primary productivity than the subtropical gyre propagate into the deep-water masses.

Prokaryotic distribution in the different water masses

A higher picoplankton abundance was found in the mesopelagic waters (representing AAIW) of the NEqCC than in oxygen minimum layer, AAIW, NEADW and LDW (Table 3). In the oxygen minimum layer and AAIW, cell-specific L-Asp uptake rates were significantly higher than in the deep-water masses (NEADW and LDW) (Table 3).

Generally, cell-specific D-Asp uptake rates varied within a more narrow range of the activity spectrum than cell-specific L-Asp uptake rates; however, both cell-specific D-Asp and L-Asp uptake rates were skewed towards the lower activity spectrum (Fig. 7). For instance, in the AAIW of the NEqCC, ~50% of the cells exhibited cell-specific D-Asp uptake rates ranging from 0.01 to 0.07 amol D-Asp cell$^{-1}$ day$^{-1}$ while less than 5% of the cells showed activities > 0.40 amol D-Asp cell$^{-1}$ day$^{-1}$ (Fig. 7). In contrast, ~30% of the cells showed cell-specific L-Asp uptake rates

Table 3.

Average cell-specific uptake rates of D-Asp and L-Asp (amol D- or L-Asp cell$^{-1}$ day$^{-1}$) in the different water masses of the North Atlantic.

<table>
<thead>
<tr>
<th>Water mass</th>
<th>Subtropical gyre</th>
<th>NEqCC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D-Asp</td>
<td>L-Asp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subsurface</td>
<td>0.32 ± 0.08a</td>
<td>1.26 ± 0.29a</td>
</tr>
<tr>
<td>O$_2$-minimum</td>
<td>0.22 ± 0.04a</td>
<td>0.74 ± 0.29a</td>
</tr>
<tr>
<td>MSOW or AAIW</td>
<td>0.12 ± 0.02a</td>
<td>0.57 ± 0.23a</td>
</tr>
<tr>
<td>NEADW</td>
<td>0.31 ± 0.09ab</td>
<td>0.64 ± 0.38a</td>
</tr>
<tr>
<td>LDW</td>
<td>0.12 ± 0.04a</td>
<td>0.24 ± 0.06a</td>
</tr>
</tbody>
</table>

Subtropical gyre from Sts. 2, 30 and 36 and North Equatorial Counter Current (NEqCC) from Sts. 11 and 23. Mean ± SE is given. Superscript letters indicate significant differences between the different water masses (t-test, $P < 0.05$). Water mass abbreviations as in Table 1.
the subtropical gyre (consisting of MSOW). Also, the bathypelagic waters (NEADW and LDW) sustained a higher picoplankton abundance in the NEqCC than in the subtropical gyre (Table 2). This coincides with the higher inorganic nutrient concentrations (data not shown) of the deep waters in the NEqCC than in the subtropical gyre.

While no differences were found in the mean contribution of Bacteria to total picoplankton abundance in the subsurface waters between the subtropical gyre and the NEqCC, the percentage of DAPI-stained cells identified as Bacteria in the deep waters of the subtropical gyre was higher than in the deep waters of the NEqCC (Fig. 3). The contribution

Fig. 6. Average cell-specific D-Asp uptake rates and D-/L-Asp ratio of active prokaryotic cells in the different water masses of the North Atlantic. Subtropical Gyre data are from Sts. 2, 30 and 36 and for the North Equatorial Counter Current (NEqCC) from Sts. 11 and 23.
Fig. 7. Distribution of cell-specific D-/L-Asp uptake rates in the subsurface, intermediate (MSOW and AAIW) and deep waters (NEADW) of the North Atlantic. Subtropical Gyre data are from Sts. 2, 30 and 36 and for the North Equatorial Counter Current (NEqCC) from Sts. 11 and 23. The activity classes were determined according to Freedman and Diaconis (1981).
of \textit{Bacteria} to total picoplankton abundance was higher (between 35% and 62%) in the deep-water masses of the subtropical North Atlantic than further north (24–33%) in the North Atlantic (65°N to 35°N) (Teira \textit{et al.}, 2006a,b). There is one methodological difference between the studies of Teira and colleagues (2006a,b) and this study as we used the oligonucleotide probe mix Eub338I–III (Daims \textit{et al.}, 1999) to enumerate \textit{Bacteria}, whereas Teira and colleagues (2006a,b) used Eub-338 only. It has been shown that the use of Eub-338 is insufficient to detect all \textit{Bacteria} because it does not target members of \textit{Verrucomicrobia} and \textit{Planctomycetes} (Daims \textit{et al.}, 1999).

In this study, the recovery efficiency (sum of \textit{Bacteria}, marine \textit{Crenarchaeota} Group I and marine \textit{Euryarchaeota} Group II as a percentage of DAPI-stained cells) ranged between 41% and 66% and was therefore lower than the 66–77% recovery efficiency reported by Teira and colleagues (2006a) using the same CARD-FISH method and oligonucleotide probes for \textit{Crenarchaeota} and \textit{Euryarchaeota}. Our lower recovery efficiency might be caused by the generally lower overall activity of the prokaryotic community in the southern parts of the meso- and bathypelagic waters of the North Atlantic as compared with the northern parts (our unpublished data and Teira \textit{et al.}, 2006a). A lower overall prokaryotic activity coincides with a lower rRNA content per cell and hence, potentially resulting in a lower hybridization efficiency. The most likely explanation for our lower recovery efficiency is, however, the presence of a specific prokaryotic group not targeted by one of our oligonucleotide probes. Recently, it has been shown that a deep-branching cluster of \textit{Crenarchaeota} related to a hot spring crenarchaeotal group, pSL12, was abundant below the euphotic zone in the North Pacific Subtropical Gyre which was not detected by the general \textit{Crenarchaeota} probe but only with a cluster-specific probe (Mincer \textit{et al.}, 2007). Ongoing cloning and sequencing efforts on the bacterial and archaeal communities of the study site indicate the presence of crenarchaeal sequences in the (sub)tropical North Atlantic not covered by the marine \textit{Crenarchaeota} Group I-specific oligonucleotide probe Cren537 (H. Agogué, unpubl. data). Consequently, we refer in this article exclusively to marine \textit{Crenarchaeota} Group I.

Despite the lower recovery efficiency obtained in this study compared with the studies of Teira and colleagues 2006a,b) further north in the North Atlantic, our results confirm the general distribution pattern of \textit{Crenarchaeota} with depth reported previously (Karner \textit{et al.}, 2001; Herndl \textit{et al.}, 2005; Teira \textit{et al.}, 2006b). The contribution of marine \textit{Crenarchaeota} Group I to total picoplankton abundance is higher in the oxygen minimum layer and bathypelagic waters than in subsurface waters (Fig. 3). We observed a steady increase in the contribution of marine \textit{Crenarchaeota} Group I to the total picoplankton abundance from the subsurface layers down to ~500 m depth. In the present study, the highest contribution of marine \textit{Crenarchaeota} Group I (up to 20% of DAPI-stained cells) was found at Sts. 20 and 22 coinciding with a pronounced oxygen minimum (~80 μmol kg⁻¹). There is growing evidence that \textit{Crenarchaeota} are particularly associated with low oxygen environments such as in the Black Sea or in upwelling areas (Francis \textit{et al.}, 2005; Coolen \textit{et al.}, 2007; Lam \textit{et al.}, 2007). The oxygen minimum zones are also the main sites of ammonia oxidation (Zehr and Ward, 2002) and recently, the first non-thermophilic \textit{Crenarchaeum} isolated (\textit{N. marilimus}) has been shown to oxidize ammonia (Könneke \textit{et al.}, 2005). In the North Atlantic mesopelagic waters, crenarchael amo\textit{A} genes are more abundant than betaproteobacterial amo\textit{A} genes, indicating that \textit{Crenarchaeota} might play a significant role in the nitrification process (Wuchter \textit{et al.}, 2006). Thus, the high contribution of marine \textit{Crenarchaeota} Group I to total picoplankton abundance detected in the oxygen minimum zone of the North Atlantic might reflect their importance as nitrifiers in these mesopelagic waters (Fig. 3). The oxygen minimum zone was also the depth horizon where the lowest number of crenarchaeal cells taking up Asp was found (Fig. 4), supporting the idea that marine \textit{Crenarchaeota} Group I in this layer are utilizing predominately inorganic carbon as a carbon source and oxidize ammonia as an energy source. At 900 m depth, in both the MSOW and AAIW, a decrease in the crenarchaeal contribution to picoplankton abundance was observed, contributing < 5% to the total picoplankton (Fig. 3). The contribution of marine \textit{Crenarchaeota} Group I increased again (~10% of DAPI stained cells) in the NEADW and LDW, characterized by higher oxygen concentrations than in the overlying water masses, despite being substantially older than the overlying intermediate water masses (Table 1).

Combining the data on the contribution of marine \textit{Crenarchaeota} Group I to total picoplankton abundance of Teira and colleagues (2006a) with those obtained in the present study, latitudinal trends become apparent (Fig. 8). Generally, the contribution of marine \textit{Crenarchaeota} Group I decreases from 65°N towards the equator throughout the water column. While the oxygen minimum zone becomes more pronounced towards the south (oxygen concentration < 50 μmol kg⁻¹, Table 1), the contribution of marine \textit{Crenarchaeota} Group I to total picoplankton abundance as well as the ammonia concentrations declines towards the equator (Fig. 8). The similarity in the distribution pattern between the relative abundance of marine \textit{Crenarchaeota} Group I and ammonia throughout the eastern North Atlantic basin (although not significantly correlated) might indicate that ammonia serves, at least partly, as an energy source for \textit{Crenarchaeota}.

Marine \textit{Euryarchaeota} Group II were found to contribute < 5% to the picoplankton abundance in the deep water.
masses below the subtropical gyre waters. Teira and colleagues (2006a,b) reported a higher contribution of marine *Euryarchaeota* Group II, averaging 17% in the Antarctic circumpolar deep waters and 9% in the eastern North Atlantic using the same oligonucleotide probe as used in this study. However, the lower contribution of marine *Euryarchaeota* Group II to the total prokaryotic community reported in this study agrees with studies from similar depth levels in other oceanic basins, reporting a euryarchaeotal contribution < 5–8% of DAPI-stained cells.
in the Pacific and in the Antarctic circumpolar deep waters (DeLong et al., 1999; Karner et al., 2001; Church et al., 2003), and in the mesopelagic western Arctic Ocean (Kirchman et al., 2007).

Relating prokaryotic community structure and activity measured by D- versus L-Asp uptake in the different water masses of the subtropical North Atlantic

Although it is recognized now that Archaea are abundant in the world’s ocean (DeLong, 1992; DeLong et al., 1994; Karner et al., 2001; Teira et al., 2006b; Kirchman et al., 2007) and recently a non-thermophilic marine crenarchaeote was isolated (Könneke et al., 2005), the factors controlling the distribution of the main archaeal groups (Crenarchaeota and Euryarchaeota) are still largely unknown. While some marine Crenarchaeota are putatively oxidizing ammonia, indicated by the presence of the crenarchaeal amoA gene (Francis et al., 2005; Wuchter et al., 2006; Coolen et al., 2007; Mincer et al., 2007), as an energy source and fix inorganic carbon, hence being autotrophic (Herndl et al., 2005; Hallam et al., 2006; Ingalls et al., 2006; Lam et al., 2007), apparently not all marine Archaea are autotrophic (Ouverney and Fuhrman, 2000; Herndl et al., 2005; Teira et al., 2006a).

The obtained D-Asp:L-Asp uptake ratios of the bulk prokaryotic community support previous findings (Pérez et al., 2003) that the D-Asp:L-Asp uptake ratio increases with depth (Table 2). Furthermore, the D-Asp:L-Asp uptake ratio derived from the percentages of total active cells obtained by autoradiography correlates with the D-Asp:L-Asp uptake ratio of the bulk prokaryotic community (Fig. 9). It has also been shown that the increase in the D-Asp:L-Asp uptake ratio from surface to deep waters is largely caused by marine Crenarchaeota Group I taking up D-Asp in the deep North Atlantic (Teira et al., 2006a). Our data further support the notion that Crenarchaeota are efficiently taking up D-Asp in the meso- and bathypelagic waters and extends the geographic region where this pattern is found to the (sub)tropical North Atlantic. While in subsurface waters the percentage of Bacteria taking up D-Asp was higher than the corresponding percentage for marine Crenarchaeota Group I, in the deep-water masses (NEADW and LDW), marine Crenarchaeota Group I exhibited a similar or higher percentage of D-Asp positive cells than Bacteria (Fig. 4).

Thus, our results indicate substantial differences in the utilization of enantiomeric amino acids among the major prokaryotic groups. Moreover, the higher D-:L-Asp ratios measured in the northern part of the North Atlantic (Teira et al., 2006a) compared with those found in this study might also reflect subtle differences in the dissolved organic matter (DOM) pool of the respective water masses. It has been shown that the chromophoric fraction of DOM increases towards the south corresponding to the increasing ventilation age of these deep waters (Nelson et al., 2007). As the NEADW flows southwards and ages, the biological variables also show latitude-related trends.

In this article, we present the first estimates of D- and L-Asp uptake rates on a single-cell level using a quantitative MICRO-CARD-FISH approach (Sintes and Herndl, 2006), taking into account only those cells which are active (Figs 6 and 7). We found that the average cell-specific D-:L-Asp uptake rates are significantly higher in the subtropical gyre (mean 0.22 amol D-Asp and 0.69 amol L-Asp per cell•day⁻¹) than in the NEqCC (mean 0.15 amol D-Asp and 0.40 amol L-Asp per cell•day⁻¹) (Table 3). The subsurface waters exhibited higher cell-specific D-:L-Asp uptake rates than meso- and bathypelagic waters, with the exception of the cell-specific D-Asp uptake rates in NEADW of the subtropical gyre, where similar or even higher cell-specific D-Asp uptake rates were found (Sts. 2, 36) than in subsurface waters (Fig. 6). Cell-specific D-Asp uptake rates dominate the lower end of the activity range, while cell-specific L-Asp uptake rates exhibit a broader activity range (Fig. 7). The most remarkable finding is the marked increase of the cell-specific D-:L-Asp uptake ratio with depth. Cell-specific D-:L-Asp uptake ratios were > 1 in the NEADW in the subtropical gyre and in the LDW of the NEqCC.

The observations we report here demonstrate that the distribution and activity of the major prokaryotic groups is closely linked to the major water masses of the eastern North Atlantic and not just follow depth-related trends. Our data indicate that in the (sub)tropical North Atlantic (from 35°N to 5°N), Bacteria contribute, on average, around 50% to the total picoplankton abundance. Marine Euryarchaeota Group II contribute ~5%, while marine Crenarchaeota Group I are most abundant in the oxygen minimum layer and in the deep waters (NEADW and
Experimental procedures

Sampling area

Sampling of meso- and bathypelagic waters was carried out along a more than 900-km-long transect in the subtropical gyre and the NEqCC of the eastern North Atlantic on board RV Pelagia (November/December 2005). For this study, samples were taken at 25 stations out of a total of 42 stations occupied during the ARCHIMEDES-I cruise from six depths: the subsurface (100 m layer); the oxygen minimum layer (average depth 400 m), the MSOW (average depth 900 m) in the subtropical gyre, the AAIW (average depth 900 m) in the NEqCC, the NEADW (average depth 2750 m) and the LDW (average depth 4000 m).

Samples from the distinct water masses were collected with NOEX bottles (no oxygen exchange, 12 l) mounted on a CTD (conductivity, temperature, depth) frame to determine total picoplankton abundance and leucine incorporation, the relative abundance of Bacteria, marine Crenarchaeota Group I and marine Euryarchaeota Group II, the uptake of D-Asp and L-Asp by the bulk picoplankton community and the group-specific D-Asp and L-Asp uptake by MICRO-CARD-FISH as described below.

Picoplankton abundance determined by flow cytometry

Picoplankton collected from the different depth layers of the water column was enumerated using flow cytometry. Samples (2 ml) were fixed with 1% paraformaldehyde (final concentration), shock-frozen in liquid nitrogen for 5 min and stored at −80°C. Picoplankton cells were stained with SYBR-Green I and enumerated with a FACSCalibur flow cytometer (Becton Dickinson) within 3 months. Immediately before analysis, the thawed picoplankton samples were diluted 5- to 10-fold in TE buffer (10 mM Tris, 1 mM EDTA, pH 8) and stained with SYBR-Green I at room temperature in the dark for 15 min. Fluorescent microspheres (Molecular Probes) with a diameter of 1 μm were added to all samples as an internal standard. Counts were performed with an argon laser at 488 nm wavelength. Picoplankton cells were enumerated according to their right angle scatter and green fluorescence. The counting window of the flow cytometer was set to exclude the occasionally present eukaryotic picoplankton.

Picoplankton production determined by 3H-leucine incorporation

Bulk picoplankton production was measured by incubating 10–40 ml of samples in duplicate and one formaldehyde-killed blank (2% final concentration) with 10 nM [3H]leucine (final concentration, SA 157 Ci mmol⁻¹; Amersham) in the dark at in situ temperature for 4 h (Simon and Azam, 1989). Thereafter, the incubation was terminated by adding formaldehyde (2% final concentration) to the duplicate sample. The fixed samples were filtered through 0.2 μm polycarbonate filters (25 mm filter diameter; Millipore) supported by Millipore HAWP filters. Subsequently, the filters were rinsed three times with 10 ml of 5% ice-cold trichloroacetic acid, dried and placed in scintillation vials. Scintillation cocktail (8 ml Canberra-Packard Filter Count) was added and after 18 h, counted in a liquid scintillation counter (LKB Wallac Model 1212). The disintegrations per minute (DPM) of the formaldehyde-fixed blank were subtracted from the mean DPM of the respective samples and the resulting DPM converted into leucine incorporation rates.

Uptake of D-Asp and L-Asp by the bulk prokaryotic community

To measure the uptake of D-Asp and L-Asp by the bulk prokaryotic community, 20–40 ml of duplicate water samples and one formaldehyde-killed blank (2% final concentration) were spiked with either D-[2,3-3H]-Asp or L-[2,3-3H]-Asp (Amersham, SA: D-Asp, 38 Ci mmol⁻¹; L-Asp, 32 Ci mmol⁻¹) at a final concentration of 1 nM and incubated in the dark at in situ temperature for 12–48 h. After terminating the incubations by adding formaldehyde (2% final concentration), the samples were filtered through 0.2 μm polycarbonate filters (Millipore, GTTP, 25 mm filter diameter) supported by 0.45 μm cellulose nitrate filters (Millipore, HAWP, 25 mm filter diameter) and rinsed twice with 0.2 μm filtered seawater. The radioactivity was determined as described above for leucine incorporation and the DPM converted to D- and L-Asp uptake rates. A final concentration of radiolabelled Asp (1 nM) was used because the concentration of dissolved free Asp in the deep waters is <5 nmol l⁻¹ and according to Pérez et al. (2003), the uptake rates increase from 0.1 to 10 nmol l⁻¹ final concentration of added Asp by a factor of 10. Thus, the 1 nM Asp additions represent a compromise between true trace amount addition and obtaining sufficient radiolabel incorporation well above the blank background.

MICRO-CARD-FISH with D-Asp and L-Asp

Water samples of 20–40 ml were spiked with either D-[2,3-3H]-Asp or L-[2,3-3H]-Asp (Amersham, SA: D-Asp, 38 Ci mmol⁻¹; L-Asp, 32 Ci mmol⁻¹) at a final concentration of 1 nM and incubated in the dark at in situ temperature for 12–48 h. To the controls, 2% paraformaldehyde (final concentration) was added 15 min prior to radiotracer addition. Incubations were terminated with paraformaldehyde (2% final concentration) and subsequently, the samples stored at 4°C in the dark for 12–18 h. Thereafter, the samples were filtered onto a 0.2 μm polycarbonate filter (Millipore, GTTP, 25 mm filter diameter).
diameter) supported by a cellulose nitrate filter (Millipore, HAWP, 0.45 μm), rinsed twice with Milli-Q water, dried and stored in a microfuge vial at –20°C until further processing in the home laboratory.

Filters for CARD-FISH were embedded in low-gelling-point agarose and incubated either with lysozyme for the *Bacteria* probe mix (Eub338, Eub338II and Eub338III) and for the negative control probe (Non338) or with proteinase-K (for the marine *Euryarchaeota* Group II probe Eury 806 and for the marine *Crenarchaeota* Group I probe Cren537) following the method described by Teira et al. (2004). Filters were cut in sections and hybridized with horseradish peroxidase (HRP)-labelled oligonucleotide probes and tyramide-Alexa488 for signal amplification (Teira et al., 2004). Autoradiographic development was conducted by transferring previously hybridized filter sections onto slides coated with photographic emulsion (type NTB-2 melted at 43°C for 1 h). The slides were then placed in a light-tight box containing a drying agent and incubated for exposure at 4°C for 7 days. Finally, the slides were developed and fixed following Kodak's specifications [2 min in Dektol developer (1:1 dilution with Milli-Q water), 10 s in Milli-Q water, 5 min in fixer, and 2 min in Milli-Q water]. Before completely dry, filter sections were removed and cells were counterstained with a DAPI mix [5.5 parts of Citifluor (Citifluor), 1 part of Vectashield (Vector Laboratories) and 0.5 parts of phosphate-buffered saline (PBS) with DAPI (final concentration 5 μg mL⁻¹)].

The slides were examined under a Zeiss Axioplan 2 epifluorescence microscope equipped with a 100 W Hg lamp and appropriate filter sets for DAPI and Alexa488. The presence of silver grains surrounding the cells was checked in the transmission mode of the microscope. In the killed controls, <0.5% of the total DAPI-stained cells were associated with silver grain halos. More than 600 DAPI-stained cells were counted per sample. For each microscope field, four categories were differentiated: (i) total DAPI-stained cells, (ii) cells stained with the specific probe, (iii) DAPI-stained cells with associated silver grain halos and (iv) cells labelled with the specific fluorescent probe and silver grain halos associated with individual cells. Negative control counts (hybridization with HRP-Non338) were always <1% of DAPI-stained cells.

Image analysis of the silver grain area surrounding active cells

For each sample, two different types of images of the picoplankton cells were acquired: one image for picoplankton stained with DAPI in the epifluorescence mode and one image of the silver grain areas by switching to the transmission mode of the microscope (Sintes and Herndl, 2006). The images were acquired with a digital camera (AxioCam MRc5) mounted on the microscope and overlaid to obtain a composite image. Pictures were taken from 20 to 40 microscopic fields. Per sample, images of 400–800 DAPI-stained cells were recorded. Overlapping signals in the images obtained by DAPI and in the transmission mode of the microscope (silver grain halos) indicated cells taking up the specific enantiomeric amino acid (D- and L-Asp). Image analysis was conducted with the KS300 3.0 software (Carl Zeiss).

The total silver grain area for the whole community was calculated and expressed as the halo area per litre (Sintes and Herndl, 2006). To calculate cell-specific activities, the total silver grain area was then related to the bulk D-Asp and L-Asp uptake of the prokaryotic community following the approach of Sintes and Herndl (2006). Cell-specific activities are given only for the total prokaryotic community as the low number of active marine *Crenarchaeota* Group I and *Euryarchaeota* Group II cells in the individual halo area categories precluded an in-depth analysis.

Statistical analysis

To check normality of the individual data sets, the Kolmogorov–Smirnoff test was used. If normality was not attained, the non-parametric Mann–Whitney (for comparison of two independent variables) and the Kruskal–Wallis (for comparison of three or more variables) test were applied. If data followed normal distribution, the Student's *t*-test was used.

Acknowledgements

We thank the captain and crew of the R/V *Pelagia* for their help during work at sea. Special thanks to E. Teira for making part of the prokaryotic abundance data available shown in Fig. 8 and to A. Smit for performing the enantiomeric aspartic acid uptake measurements at sea. This research was supported by a postdoctoral Fellowship of the Spanish Ministry of Science and Technology (EX2005/0102) and a Marie Curie Fellowship of the European Community (MEIF-CT-2005-023729) to M.M.V. and a grant of the Earth and Life Science Division of the Dutch Science Foundation (ARCHIMEDES project, 835.20.023) to G.J.H. The work was carried out within the frame of the ‘Networks of Excellence’ MarBef and EurOceans supported by the 6th Framework Program of the European Union.

References

© 2007 The Authors