




MODELLING

CONDENSED-PHASE SYSTEMS
From quantum chemistry to molecular models



Omslag: Michiel Santman

The study described in this thesis was conducted under supervision of and in close
collaboration with Dr. P. Th. van Duijnen at the Department of Chemistry of the

State University of Groningen, The Netherlands. The research was supported by the
Netherlands Foundation for Chemical Research (SON) with financial aid from the

Netherlands Organisation for Scientific Research (NWO). Several grants for
computing time on various super-computers awarded by the Netherlands National

Computer Facilities (NCF) contributed to the results presented in this thesis.



RIJKSUNIVERSITEIT GRONINGEN

MODELLING CONDENSED-PHASE SYSTEMS

From quantum chemistry to molecular models

Proefschrift

ter verkrijging van het doctoraat in de

WISKUNDE en NATUURWETENSCHAPPEN

aan de Rijksuniversiteit Groningen

op gezag van de

Rector Magnificus Dr. F. van der Woude

in het openbaar te verdedigen op

vrijdag 15 december 1995

des namiddags te 1.15 uur precies

door

Alexander Harold de Vries

geboren op 7 mei 1965

te Roden



Promotor

Prof. Dr. W.C. Nieuwpoort



‘... They won’t make the best of a bad job nowadays. My

private schoolmaster used to say, “If a thing’s worth

doing at all, it’s worth doing well.” My Church has taught

that in different words for several centuries. But these

young people have got hold of another end of the stick,

and for all we know it may be the right one. They say, “If

a thing’s not worth doing well, it’s not worth doing at all.”

It makes everything very difficult for them.’

EVELYN WAUGH

Vile Bodies (1930)





Voorwoord/Preface

Op deze plaats wil ik iedereen die mij het leven prettig heeft gemaakt en daar-
door mee heeft geholpen aan de voltooiing van dit boekje hartelijk bedanken. Het
feit dat je dit boekje in handen hebt gekregen betekent feitelijk dat je tot die groep
behoort. Toch wil ik enkelen er even uitlichten.

Joyce, Esther, Edwin, Peter, Mirjam, Piet en Carla vormen een blijvend plezierige
thuisbasis.

Mijn begeleider Piet van Duijnen en mijn promotor Wim Nieuwpoort hebben mij
vanaf het begin op een geweldige manier in het onderzoek gestimuleerd. Beider
houding ten aanzien van wetenschap als mensenwerk creëert een warme sfeer
waarin kritiek alleen maar opbouwend kan zijn.

Labbewoners uit alle geledingen en door alle jaren heen schiepen een omgeving
waarin altijd gelegenheid was de keiharde wereld van de wetenschap even te ont-
vluchten. Ontmoetingen in wandelgangen, bibliotheek, kantine, sportvelden en
vooral luchtbrug waren voor mij essentieel om de jungle te overleven.

Twee hele bijzondere labbewoners waren Marco en Siewert Jan. Ik vind het een
hele eer dat zij mij ook bij deze academische passage willen bijstaan.

De volleyeurs en volleyeuses van Sportclub Groningen zijn gedurende mijn
promotietijd een unieke plaats gaan innemen in mijn leven. De trainings(?)-
weekeinden, Amelandtoernooien, absurde feesten en vierde, vijfde en zesde sets
onder de douche, in Merleyn en elders zal ik nergens anders vinden. Het greintje
waardering dat ik heb voor het Nederlandse lied is uitsluitend jullie verdienste.

The precious moments spent with all you young quantum chemists out there, be it
at Summerschools, conferences, or at home, have been especially helpful in my
finishing this thesis. I dedicate this work to you, in the hope that we will fight for a
place to be friends in and that society will grant us the pleasure to remain colleagues.

Was gedateerd, december 1995

vii



viii



Inhoudsopgave/Table of contents

Voorwoord/Preface vii

Inhoudsopgave/Table of Contents ix

1 Concepts and Theory

1.1 Chemistry of the Multitudes 14

Introduction 14

Survival of the Commonest 15

1.2 Quantum Chemistry 17

Energy is What We’re Made Of 17

Schrödinger Equations 17

The Electronic Problem 20

Challenging Mr. Pauli 22

Electronic Structure Calculations 23

1.3 From the Quantum World to the Classical World 26

Particles and Space 26

Divide et Impera 27

Making a Gain 28

Interfragment Interactions 31

Collective Behaviour 32

1.4 Meandering the Scales 34

Molecules: Charge Density Representation 34

Molecules: Linear Response Function Representation 36

Bulk Material: Dielectric Continuum Models 37

1.5 A Sensible Model under Scrutiny 39

Spatial Separation of Molecular Subsystems 39

Spatial Separation from the Bulk 40

1.6 Conclusion 43

ix



2 Implementation

2.1 Introduction 46

2.2 Expansion of the Potentials and Fields 49

2.3 Static Potentials and Fields 52

2.4 Response Potentials and Fields 54

2.5 Coupling the Partitions 56

2.6 Formal Reaction Field Interactions and Integrals 61

2.7 Non-equilibrium Reaction Fields 64

2.8 Monte Carlo Sampling 65

2.9 Conclusion 66

2.10 Appendix 67

3 Practice

3.1 Introduction 74

3.2 Interaction Functions 75

Introduction 75

The Water Dimer 79

Comparison to ab initio results

Comparison to experimental results

Complexes of Benzene and its Derivatives 84

The benzene dimer

Dimers of benzene derivatives

Other Solvent Molecules Considered in this Thesis 90

Conclusion 91

3.3 Solvation 92

Theory 92

Solvation Models and the Computation of the Solvation (Free) Energy 94

Dielectric continuum models

Explicit solvent models

Solvation in Water 96

Z–E equilibrium of N-methylacetamide

Various solutes

Explicit solvent models

x



3.3 (Cont.)

Transfer Free Energy of Benzene 103

Conclusion 104

3.4 Solvatochromism 105

Introduction 105

π*←n Transition of Acetone 105

Results

Discussion

Conclusion

3.5 The Nature of Dielectric Behaviour 110

Introduction 110

The Dielectric Function 110

Basic Interaction Components 113

Toward a Dielectric 116

On Modelling ‘Low-Dielectric’ Regions 117

Conclusion 119

3.6 Conclusion 120

3.7 Appendix 121

1. General DRF Force-Field Parameters 121

2. DRF Force-Field Parameters and Computed Molecular Properties

    for Molecules Used in this Thesis 121

3. Special Benzene Model Parameters 125

4. Selected Molecular and Bulk Properties 125

References and Notes 127

Summary 139

Quantumchemie en moleculemodellen

A.1 Inleiding 144

A.2 Grondslagen van de quantumchemie 147

A.3 Moleculemodellen en quantumchemie 151

A.4 Samenvatting en conclusie 155

Bibliography 159

xi





1

Concepts and Theory

All beginnings are obscure. Inasmuch as the mathematician operates with the
conceptions along strict and formal lines, he, above all, must be reminded from time

to time that the origins of things lie in greater depths than those to which his
methods enable him to descend. Beyond the knowledge gained from the individual
sciences, there remains the task of comprehending. In spite of the fact that the views
of philosophy sway from one system to another, we cannot dispense with it unless

we are to convert knowledge into a meaningless chaos.

HERMANN WEYL

Space Time Matter (1921)
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Chemistry of the Multitudes 1.1

Introduction

THE CHEMISTRY discussed in this thesis is the chemistry of solvated
molecules: situations in which a relatively small number of molecules of interest, the
solute molecules, are surrounded by a large number of other (possibly different)
molecules, the solvent. These surroundings undeniably exert some influence on the
solute, but the solute may still be recognized as a more or less uncorrupted chemical
entity. In experiments that are performed to obtain information on the properties
and behaviour of these systems, the total number of molecules present is of the order
of 1023—a number exceeding the estimated number of stars in the universe.1 The
size of such samples is what we call macroscopic, or large scale, and the properties
obtained reflect the average behaviour of the molecules present, because the
detection techniques available cannot discern between specific molecules of the same
sort.

In spite of this knowledge, chemists tend to formulate their ideas about the
properties of even the largest samples in terms of those of single molecules,2 and this
view has indeed been a very powerful one—since long before individual molecules
were actually ‘seen’ through a microscope.3 Apparently, molecules, or even frag-
ments of molecules, possess a strong identity, being only weakly disturbed by their
particular surroundings. This notion of integrity of matter on the chemical scale is
the basis not only of many useful ‘rules of thumb’, connecting concepts such as elec-
tronegativity, electron donor strength, aromaticity, etc. to chemical behaviour as
observed in real life, but also of many approximations used in computational
approaches to chemistry.

Computational chemistry is the branch of chemistry that pursues the computa-
tion of chemical processes from general principles in order to mimic (reproduce),
predict, and explain physical experiments, and beyond that to provide concepts that
help the creative process of finding new applications in the realm of chemistry.
Computational chemistry is therefore a connection between experiment and theory,
using mathematical techniques and computer technology. There are many levels on
which to practice computational chemistry, depending on the questions asked: from
the mixing of chemicals in a reaction vessel to the flow of polymer solutions through
a pipe, to the permeation of molecules through membranes, to the spectrum of an
impurity in a solid, to the collision of atoms and molecules in beams, in order of
increasing spatial detail required to give a pragmatic description. At each level a
number of properties are needed in terms of which to describe the problem. Those
properties usually have their roots in a level below the one of the actual description,
and are the result of a collective or of an average behaviour of smaller entities.4
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In this thesis the lowest level description of the chemical world will be given in
terms of nuclei and electrons, which are thought of as point-like, charged particles
that obey the quantum laws. From a study of the behaviour at this level, properties
can be computed to serve in the description of molecules in solution at the molecular
level, where knowledge of the goings-on of individual nuclei and electrons as such is
no longer needed, but only their collective effect, typically of one to ten nuclei and
one to a hundred electrons, is relevant. Because some of the phenomena computed
require explicit description in terms of nuclei and electrons for part of the system,
both levels are combined to mimic the experimental conditions. A third level is
added and mixed into the description: the collective behaviour of some tens of
thousands of molecules in the presence of an applied electric field, the so-called
dielectric behaviour. In this way, starting from a microscopic description of matter,
the outcome of macroscopic measurements may be computed, at the same time
gaining insight into the factors that influence the properties of molecules in solution
at a microscopic level.

Survival of the Commonest

Microscopic calculations on macroscopic systems can be meaningful because of
the statistical nature of our observations on macroscopic systems. Imagine a box full
of elementary particles. There are a lot of possible ways in which the particles may
occupy the box. Particle 1 may be in the left bottom corner, while particle 2 is on the
right, and number 3 is somewhere in the middle. This arrangement will have certain
properties different from another arrangement, for example one in which all three
particles are close together in a corner of the box. With millions of millions of
millions of particles one can imagine the number of possibilities is unimaginable.

It is precisely this unimaginable number of possibilities that enables us to make
the link between the microscopic and the macroscopic.5 Because of the overwhelm-
ing number of possibilities, the properties of the sample will be dominated by the
properties of the arrangements that are most common, i.e. most probable. For the
molecular description of the condensed phase, the probability pi of arrangement i is
given by the Boltzmann factor, which depends exponentially on the property called
energy Ei of the arrangement:

 pi = 1
Z

 exp - Ei/kT  (1)

where T is the temperature and k the Boltzmann constant. The denominator Z is
called the partition function of the system and sums the negative exponent of the
energy over all possible arrangements:

 Z = exp - Ej/kT ∑
j

 (2)
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It is clear that arrangements with high energy do not contribute significantly to the
partition function. Thus, the low-energy arrangements (or conformations) are the
most important, but becoming less dominant as the temperature rises. All macro-
scopic properties of the system can be related to the partition function and it is there-
fore the most central property in the statistical description of matter. For example,
the average energy U (as a function of temperature) of the system is given by:

 U T  =  Ei pi ∑
i

 = 1
Z

  Ei exp - Ei/kT ∑
i

 = kT2 
∂ ln Z

∂T
 (3)

which shows the power of the partition function if it is known as a function of tem-
perature. Sometimes analytical approximations can be found to Z, for example for
non-interacting particles that are free to move through space independently. For
more complicated systems one has to find methods that pick out the most important
configurations and to leave it at that. In calculations with classically described parti-
cles only, this aspect of chemistry is well developed.6 In quantum-chemical practice
however, the number of conformations considered is usually very small. The tech-
niques developed in the field of molecular simulations on large systems are practi-
cable in quantum chemistry as well, and indeed are gaining importance.7-9

In computing energies of physical and chemical processes, the differences
between two situations are of interest and require separate computation of the two
situations. For example, in this thesis, the energy of solvation is of particular interest.
It is the energy associated with the process of bringing one molecule out of the gas
phase (where it may be assumed to be completely isolated) into a liquid consisting of
a very large number of quite closely packed molecules. To compute the energy of
this process, one must compute the energy of the one molecule in the gas phase, the
energy of the collection of the molecules in the liquid and finally the energy of all
molecules together in the liquid phase. Such a detailed computation is well out of
reach of modern technology, and possibly always will be. It is, however, possible to
ignore some of the details of the interactions and still obtain a valid description of
such macroscopic processes. The remaining sections of this chapter will be devoted
to the machinery of this reduction of complexity, starting from the detail of nuclei
and electrons as constituent particles, emphasizing the conditions under which these
simplifications are justified.
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Quantum Chemistry 1.2

Energy is What We’re Made Of

Great thinkers of this world throughout the ages have given us the notion that
the universe is finally energy, appearing in many forms. A fundamental axiom,
never seen to be violated so far, is that the total amount of energy in a closed system
remains constant.10 Thus, in studying nature, we study the ways in which energy
changes form. The forms to be encountered here are particles (matter) and radiation
(light).

To start with particles: the particles relevant for chemists are nuclei and electrons.
Both are assumed to be point-like, charged particles with a certain mass. The
electrons each carry a single negative charge and the nuclei an integral number of
positive charges. A certain composition of nuclei and electrons will be called a sys-
tem and may be taken to correspond to a sample of matter as one may handle it in
the laboratory, or anywhere else. It will be clear that such a sample will never exist
on its own, but that there is usually a lot of other matter left over: this left-over
matter is called the surroundings. Also, one will never succeed in completely isolat-
ing the system from its surroundings, though one may come a long way.

Radiation is a key form of energy in the study of chemical systems: the light
absorbed and emitted by samples provides a fingerprint by which it is possible to
identify the chemical entities present and to gain insight into the type of interactions
in which they are involved. This strongly characterizing potency of light is due to the
fact that a system is allowed to possess only very definite amounts of energy if the
particles in it are in any way confined. Each amount of energy in the system is
associated with a state of the system. In changing from one such state to another, a
very definite amount of energy is either absorbed or released in the form of radia-
tion, because the total energy of system and radiation in such a change of states must
be constant. As there are many such transitions from state to state, a set of character-
istic energy changes will be possible, and together these form the spectrum of the
system. It is one of the tasks of quantum chemistry to compute the states and con-
comitant energies of a system of interest, and thereby the characteristic spectrum,
taking as building blocks the nuclei and electrons of the system. This is possible
because formulas have been found that give the energy as a function of the mass and
velocity of, and the interactions between, the particles.

Schrödinger Equations

The energy-content, or simply energy, of a system is determined by the energy of
the particles’ movement through space (kinetic energy) and the energy of interaction
between the particles of the system. For our purposes the only relevant interaction
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between the particles is the Coulomb interaction. In classical mechanics,11 which
describes the behaviour of particles derived from observations on macroscopic
amounts of matter, any system with balanced amounts of positive and negative
charge would collapse (with the understanding that the energy released in this
process is lost to the surroundings by radiation). This does not happen in fact, and
the empirical knowledge of this fact has been laid down in a set of rules to which the
building blocks of nature must adhere: the quantum laws, and the Pauli principle.
These laws are referred to as quantum theory, and the practical implementation of
these laws in terms of computable formulae is called quantum mechanics.

Quantum theory as used in this work is built around the concept of a wave func-
tion.12-14 The wave function Ψ is a function of the co-ordinates, or position vectors,
{r} of the particles of interest—in chemistry these are nuclei and electrons—, possibly
of some intrinsic variable of the particles, such as spin, and of time, t, and contains
the information on the motion of the particles through space as a function of time:

 Ψ = Ψ x ; t  (4)

in which {x} collects the position vectors and intrinsic variables of the particles. Once
the wave function is known all properties of the system can be computed as so-
called expectation values, which are integrals of the wave function, normalized to
unity, over an operator O associated with the property of interest:

 O t  = dx1

V

dx2

V

... dxn Ψ*
 x1, x2, ..., xn; t  O  Ψ x1, x2, ..., xn; t

V

 ≡  Ψ  O  Ψ  (5)

where the integration is over all variables of the particles, and the bracket notation is
introduced. The motion of the particles is determined by the initial conditions and
the interactions between the particles. The energies of motion and of the Coulomb
interactions are collected in the Hamiltonian:

 H = - 1
2 m i

 ∇i
2

∑
i = 1

N+n

 + e 2 
z i z j

 rj - r i 
 ∑

j < i

N+n

∑
i = 1

N+n

 (6)

for a system with N nuclei and n electrons. mi and zi are the mass and charge of
particle i, respectively, e is the unit of charge, and  rj - r i  measures the distance
between particles i and j. The first term is the kinetic energy operator, the second is
the electrostatic interaction energy operator. The Hamiltonian is expressed in atomic
units,15 in which the familiar factor 1/4πε0 as well as Planck’s constant equal 1, so
that they do not appear explicitly in the formula. The unit of charge, e, has been left
explicit in these formulas for clarity, to concur with the notation in the next chapter
in which the effect of nuclei and electrons are analysed separately.

The time-evolution of the system may be found by solving the so-called time-
dependent Schrödinger equation. We shall be concerned here only with stationary
states, for which a simpler equation needs to be solved. In stationary states the
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motion of the particles is periodic; the wave function folds back on itself in regular
intervals, and the Hamiltonian and properties are independent of time. The equa-
tions for the co-ordinates are decoupled from those for time, as the wave function is
factored into a time-independent and a time-dependent part  Ψ x ; t  = Ψ x  Θ t  ,
resulting in two separate equations:

 
 H Ψ x  = E Ψ x  

 
 Θ t  = C exp - i E t  

(7)

in which C is a constant, and the top line of eq. (7) is the time-independent
Schrödinger equation. E is the constant of separation and may be identified as the
energy of the stationary state. This is the property of the system we are after, because
the set of possible energy values determines the spectrum and the statistics of the
system. The mathematical construct of decoupling equations will be used a few more
times in this thesis as it is the basis of many simplifications in the solution of the
Schrödinger equation. Bear in mind that the basis of each decoupling procedure is a
fundamental physical observation, valid only in well-defined cases! Here, that is the
observation that many systems maintain the same properties over a longer period of
time. Note that the periodicity is marked by the energy.

Analysing the motions of individual particles, one may discover that some of the
particle periodicities may be much shorter than the overall periodicity. This is often
the case for electrons versus nuclei, for reasons of difference of mass (nuclei are at
least about two thousand times as heavy as electrons). The energy associated with
electronic and nuclear motion may therefore differ several orders, which means that
their motions may be only weakly coupled. As a point of departure, the motions of
nuclei and electrons may be decoupled, leaving the total function as the direct
product of the separate functions:

 Ψ x  = Ψnuc X  ⊗ Ψel x  ; X  (8)

where a change of notation has been made, such that X denotes a nuclear co-ordinate
and x an electronic. This decoupling procedure is called the Born–Oppenheimer (BO)
approximation.16 In applying this approximation one has to be aware that the
separation of energy scales may not be as large as expected and that there may in-
deed be a strong coupling between nuclear and electronic motion, despite their
difference in mass. In studying reaction profiles in conjunction with inter-state
conversions, one may come across many instances of the breakdown of this
approximation.17

With the BO approximation in hand, the decoupled equations of motion for
nuclei and electrons become:

 
 Hel X  Ψel x  ; X  = Eel X  Ψel x  ; X  

 
 Hnuc + Eel X   Ψnuc X  = EΨnuc X  

(9)
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where the parametric dependence of the electronic part of the wave function on the
nuclear co-ordinates is made explicit. Solving the nuclear part of the wave function is
closely related to the problem of solving the equations of motion for a particle in a
potential—in this case, the potential of mean force of the electrons. The standard
procedure for this problem is to perform a series of calculations at various fixed
nuclear configurations, for which the electronic problem is solved. The series of
calculations provides a potential of mean force in which the nuclei move. The equa-
tions of motion for the nuclei may then be solved by further quantum-mechanical or
classical mechanical techniques,18 which are by no means trivial, but we shall con-
centrate here on solving the electronic part of the wave function at a fixed nuclear
configuration. This type of calculation is the most common in quantum chemistry
and is referred to in general as electronic structure calculation.

The energies normally quoted in electronic structure calculations pertain to the
electronic Hamiltonian:19, 20

 Hel
’

 X  = - 1
2

 ∇i
2

∑
i = 1

n

 - e2 ZK

 RK - ri 
 ∑

K = 1

N

∑
i = 1

n

 + e2 1
 rj - ri 

 ∑
j < i

n

∑
i = 1

n

 + Enuc X  (10)

where ZK is the charge of nucleus K in atomic units. Although strictly speaking not
appropriate, the electronic Hamiltonian is seen to include the electrostatic interaction
between the nuclei [Enuc X , which is included in Hnuc in eq. (9)]. Adding this
energy, however, delivers the BO potential energy referred to earlier, which is
convenient in handling, because it complies with the classical notion of a potential
energy surface.

The Electronic Problem

Before further developing practical methods for solving the electronic structure
problem, the consequence of the identical nature of electrons must be considered.
Because electrons are indistinguishable, the order in which their variables appear in
the wave function should be immaterial to the value of the observables of the
system. For the probability density of a two-particle system, given by:

 ρ x1, x2  = Ψ* x1, x2  Ψ x1, x2  = Φ* x2, x1  Φ x2, x1  (11)

this condition implies either Φ x2, x1  = Ψ x1, x2  or Φ x2, x1  = - Ψ x1, x2 . It has been
found that for electrons the wave function should be antisymmetric with respect to
particle interchange, i.e. the second relation holds. This requirement on the wave
function is called the Pauli principle and adds significantly to the computational
effort in solving the Schrödinger equation. The consequence of the Pauli principle is
that two identical particles may not occupy the same part of space at the same time.
Discussion of the theoretical background of the Pauli principle is not within the
scope of this thesis,21 but the idea behind it is nicely visualized in Erewhonian theol-
ogy discovered in the previous century:22
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Thus they have a law that two pieces of matter may not occupy the same space at the
same moment, which law is presided over and administered by the gods of time and
space jointly, so that if a flying stone and a man’s head attempt to outrage these gods,
by ‘arrogating a right which they do not possess’ (for so it is written in their books),
and to occupy the same space simultaneously, a severe punishment, sometimes even
death itself, is sure to follow, without any regard to whether the stone knew that the
man’s head was there, or the head the stone; this at least is their view of the common
accidents of life. Moreover, they hold their deities to be quite regardless of motives.
With them it is the thing done which is everything, and the motive goes for nothing.

The implementation of the Pauli principle has taken the form of taking the sepa-
ration of variables to an extreme by starting off from a wave function that is the
product function of an independent wave function for each particle:

 Ψind. part. 
 x  = ψ1 x1  × ψ2 x2  × ψ3 x3  × ... × ψn xn  (12)

Of course this independent-particle wave function does not obey the antisymme-
try requirement for interchanging labels, but the missing terms can easily be gener-
ated by performing all possible single, double, triple, etc. interchanges and adding
them with the correct sign, at the same time keeping the wave function normalized.
This procedure defines the action of the antisymmetrizer:

 An = 1
n!

 (-1)P P ∑
P

 = 1
n!

 1 - ∑
i = 1

n

 Pij ∑
j > i

 + ∑
i = 1

n

∑
j > i

∑
k = 1

n

 Pij Pkl ∑
l > k
l > j

 - ...  (13)

where Pij denotes the interchange of labels i and j. For n electrons the antisym-
metrizer generates n! terms. Instead of writing all these many terms out, a shorthand
notation has been found by recognizing that both number and sign of the n-particle
functions are correctly given by the determinant of a matrix having one-particle
function and particle label as indices. Such a determinant is called a Slater determi-
nant and is usually denoted by listing the diagonal terms of the matrix:

 ΨSlater
 x  = 1

n!
 

ψ1 x1 ψ2 x1 . . . ψn x1
ψ1 x2 ψ2 x2 . . . ψn x2

. . . . . . . . . . . .
ψ1 xn ψ2 xn . . . ψn xn

 =  ψ1 x1  ψ2 x2  ... ψn xn   (14)

in which Ψ is normalized to unity. It is now clear that the wave function will vanish
if two identical electrons have the same wave function, or if there is any linear
dependency between the one-particle functions: in either case, the Slater determinant
will be zero. With antisymmetrizing the independent-particle wave function Pauli
correlation has been brought into the electronic wave function, and the wave function
obeys the Pauli principle for identical particles. Electrons may be in either of two
spin states, called α and β, respectively, between which may be distinguished.
Electrons in different spin states are therefore not Pauli correlated, since they are not
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identical. This reduces the effort required in the calculations somewhat, but working
with the Slater determinant is still a formidable task.

At this point, a closer look at the actual computation of the properties of the
system is in order. For the independent-particle wave function [eq. (12)], the
expectation values over one- and two-particle operators required in quantum chem-
istry are simple products of easy one- and two-particle integrals, due to the
separation of variables. For the Slater determinant a long sum of those products is
required because of all the interchanges. The number of integrals to be computed
formally grows at the rate of n2 for one-particle and n4 for two-particle integrals,
where n is the number of one-particle functions, and becomes a true bottleneck in
both CPU and storage demands for quantum-chemical methods. A lot of effort is put
into somehow reducing the amount of integrals to be computed, be it through
applying numerical cut-offs, exploiting spatial symmetry, simplifying integrals by
semi-empirical parameterization, or recognizing Pauli-independent groups of par-
ticles. This latter course shall be the one pursued here.

Challenging Mr. Pauli

It is possible to only partly antisymmetrize the independent-particle wave func-
tion [eq. (12)].23 We shall call the independent-particle functions which depend on
both spatial co-ordinates and spin spin-orbitals. For example, let both spin-orbitals 1
through m be antisymmetrized among each other and spin-orbitals m+1 through n
be antisymmetrized among each other, but let the antisymmetrization between spin-
orbitals 1 through m on the one hand and m+1 through n on the other hand be
excluded:

 Ψtrial
 x  = Am An-m  Ψind. part. 

 x  =  ψ1 x1 ...ψm xm   ×  ψm+1  xm+1 ...ψn xn   (15)

This wave function does not obey the Pauli principle throughout, but only in parts.
Spin-orbitals 1 through m are Pauli correlated, as are spin-orbitals m+1 through n,
but these two groups of spin-orbitals are not Pauli correlated to each other. The
consequence of partial antisymmetrization is the disappearance of a lot of terms in
the electronic energy expression. The terms that disappear contain overlap, one- or
two-particle integrals between one-particle functions belonging to different groups,
or combinations thereof. Thus, if the integrals between the one-particle functions
belonging to different groups are small, the contribution of the neglected terms to
the energy is safely ignored, although the description of the system as a whole does
not strictly obey the laws of quantum mechanics.

The smallness of integrals may have two causes. The first is due to integration
over spin. If the spin-orbitals have different spin components (α vs. β), integration
over spin will render the integral zero, and it need not be considered a priori. The
second cause of smallness of integrals is due to separation in space of the spatial part
of the spin-orbitals. Just as the time-dependent wave function can be factored into
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components of co-ordinates and time only, the independent-particle functions ψ can
be factored into a spatial and a spin component. The spatial components are called
orbitals. If orbitals are spatially separated, integrals due to implementation of the
Pauli principle do not contribute to the properties of the system.

The computational gain of the separation into groups is clear: the number of two-
electron integrals to be computed is reduced from n4 to {m4 + (n-m)4}. Nothing is
gained, however, if the groups can be defined or recognized a posteriori only, since
then a full calculation is required anyway to be able to make the separation at all.
Theory shows that with increasing spatial separation of the one-particle functions
the magnitude of the integrals associated with inter-group electrostatic interactions
decreases exponentially.23 This observation can be taken as the basis for an a priori
separation of groups. The neglect of Pauli correlation between molecular fragments
is defensible to separations up to the van der Waals distance.24-27 Application of this
technique—and its extension to be discussed later—in condensed phase models is
therefore stretching the limit, so one has to be on guard for the breakdown of this
approximation.

Electronic Structure Calculations

Having defined the system under study (with or without partitioning the elec-
trons into Pauli-uncorrelated groups), and having chosen the Born–Oppenheimer
approximation as our point of departure, the task of computing the one-electron
functions and the energy remains. The requirement for the wave function is that it is
an eigenfunction of the Hamiltonian, the eigenvalue being the energy [eq. (7)].
Linear algebra provides the tools needed for the solution of such a problem. To this
end, a basis set of functions in which to express the wave function is needed, to-
gether with the overlap, one- and two-electron integrals over the basis-set functions.
One may discern several levels of sophistication of the wave function, depending on
its form and the extent of the basis set. Practical molecular quantum chemistry is a
matter of expansions within expansions. Usually, one is interested in a limited num-
ber of eigenfunctions, notably the one with lowest energy, the ground state. It often
happens, or it is supposed to happen, that one or a limited number of terms in the
expansions dominate the particular state of interest, reducing the computational
demands. As with the a priori separation of electrons into groups to circumvent the
calculation of a large number of complicated integrals, the truncation of certain
expansions must be based on previous experience, and requires careful con-
sideration afterwards.

The most general electronic wave function obeying the Pauli principle is a sum
over Slater determinants:

 Ψi x  =  ΨI
Slater 

x  CIi ∑
I

 (16)
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for which the weights CIi  of the Slater determinants are found by solving a so-called
secular equation:

  H - S Ei  Ci  = 0  (17)

in which H and S are matrices containing the Hamilton and overlap matrix elements
between the Slater determinants in the expansion, and Ei is the energy of the i’th
state. A description such as eq. (16) is called a multi-configuration wave function.
For any but the smallest systems, the expansion eq. (16) has to be truncated to keep
the computation feasible. The quality of the multi-configuration wave function
depends on the length of the expansion and whether the one-particle functions are
optimized, either for each Slater determinant or for the wave function as a whole.

One-particle functions for the multi-configuration wave functions may be gener-
ated from solving an effective one-particle Schrödinger equation. The orbitals {φ} are
expanded in a further basis set of simple spatial functions {χ}:

 φk r  =  χµ r  cµk∑
µ

 (18)

The optimal coefficients ck for each φk are computed analogously to the optimal
configuration weights in eq. (17):

  F  - S εi  ci  = 0  (19)

in which F is the Fock matrix, and S the overlap matrix in the basis functions {χ}. The
ε are the eigenvalues of the problem, which is a pseudo-eigenvalue problem, since
the Fock matrix depends on the actual coefficients c. The form of the Fock matrix is
determined by restrictions put on the occupation by α- and β-electrons of the or-
bitals. One very common wave function is the Restricted closed shell Hartree-Fock
(RHF) wave function, in which each spatial orbital is occupied by both an α- and a β-
electron, a procedure endorsed by experiment which shows that the chemical ele-
ments are built up in this way. For such a wave function the Fock matrix is given by:

 Fµν =  χµ 1   h1  χν 1   + 2 cκi
*  cλi∑

i∈ occ

  χµ 1  χκ 2   g12 1 - 1
2

 P12   χν 1  χλ 2  ∑
κ,λ

 (20)

where the index i denotes all occupied orbitals. The bracketed expression with the
sum over the occupied orbitals is the κλ’th element of the density matrix, which
plays a central role in the evaluation of the properties of the system. The operators
appearing in the Fock matrix elements correspond to the one- and two-electron
operators of the electronic Hamiltonian [eq. (10)]:

 h i = - 1
2

 ∇i
2
 - e 2 ZK

 RK  - ri 
 ∑

K = 1

N

;  gij = e 2

 rj - r i 
 (21)
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The appearance of the extra term with the permutation operator in the two-electron
part of the Fock matrix is due to the implementation of the Pauli principle and the
restriction of α- and β-electrons pairing up into spatial one-electron functions. The
procedure to find the optimal orbitals is now clear: from a certain start, calculate the
density matrix and the actual Fock matrix; solve the secular problem eq. (19), which
gives a new density matrix, etc., until the density matrix doesn’t change to within a
certain threshold. This procedure is called the self-consistent field (SCF) approxima-
tion. Each electron feels the average field of all other electrons, which is the main
feature of the HF wave function. The multi-configuration approaches serve to repair
the deficiencies of the average field description. Nevertheless, the HF wave function
often gives very useful information on especially the density of the system.
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From the Quantum World to the Classical World 1.3

Particles and Space

THE MOST CENTRAL OBSERVABLE in making the link between the quantum and
classical worlds is the (charge) density of a system. The density of a system is the
amount of matter present in a small region of space around a given position as a
function of the position in space. The density may serve to describe transport
phenomena; mechanical, such as liquid flow through a tube, or electrical, as formu-
lated in Maxwell’s laws. These theories are classical and conceptually strongly
spatial. The quantum world is particle-oriented. The wave function contains infor-
mation about the behaviour of the particles that build up matter. The wave function
itself has no meaning, but for being a mathematical construct. The square of the
wave function, however, gives the probability of finding particle 1 at position x,
particle 2 at position y, etc. The charge distribution at a position s is obtained by col-
lecting these probabilities per small region of space and multiplying by the appro-
priate charge of the particles, summing over all particles:

 ρ s  =  Ψ x   e δ s   Ψ x   = dr1

V

 dr2

V

 ... drn Ψ*
r  e δ s  Ψ r  

V

(22)

where ê is the charge operator (-e for electrons), and δ(s) is the Dirac delta function.
In the last part of eq. (22) integration over spin, which yields unity, has been
performed to connect to the charge-density expression for classical particles which
does not contain spin.

Now consider a macroscopic volume described on the quantum-chemical level.
The properties of the system follow from the wave function Ψ of the system [eq. (5)],
a function of the co-ordinates of all particles, and time, defining a state of the system.
In the case of stationary states, time enters only as a phase factor. The wave function
can then be found by solving the time-independent Schrödinger equation H Ψ = E Ψ,
where the Hamiltonian H contains the kinetic and interaction operators of all
particles.

In pursuing detailed computations on large systems, one must look for a reduc-
tion of the computational effort wherever one can. The effort needed for the integra-
tion involved in taking an expectation value can be reduced enormously if Ψ van-
ishes for certain co-ordinates in large parts of space. One then deals with localized
particles. If a group of particles is localized in the same region in space, say S, the
integration may be carried out separately over the particles of this group and is
confined to the selected volume S in space. If no other particle outside the group has
a contribution inside the volume, the part of the wave function describing the parti-
cles of the group, ΨS, may be factored out of the total wave function, leaving ΨA for
the rest of the particles.
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 Ψ = ΨA⊗ΨS (23)

Because of the indistinguishability of electrons writing Ψ as in eq. (23) can never
be done in principle, but no error—apart from failing to obey the Pauli requirement
throughout—is made if the component functions ‘do not overlap’, i.e. are spatially
separated. The idea of using localized descriptions for explaining chemical be-
haviour crucially depends on the fulfilment of this requirement. Detailed quantum-
chemical studies on the extent of overlap and the effects of neglecting small overlaps
between molecular fragments have been carried out.25, 26 It is perhaps surprising
that even at interfragment distances comparable to molecular sizes, the assumption
of writing the wave function as a product of fragment functions, ignoring anti-
symmetry requirements, holds well for both properties and interaction energies. This
observation then gives one confidence to exploit the separability of fragments, which
leads to a host of possibilities for dealing with larger systems, at a level that is
computationally feasible for all-electron quantum-chemical descriptions.

Divide et Impera

In solving the Schrödinger equation, the property of interest is the energy, with
its associated Hamilton operator H. One may always partition H into a part contain-
ing only operations on particles belonging to a group A, HA

0
, and a part containing

only operations on the particles belonging to a group S, HS
0
, and the interaction be-

tween particles of groups A and S, VAS:

 H = HA
0

 + HS
0
 + VAS ;            VAS = ∑

a∈A

za zs
 ra  - rs 

∑
s∈S

 (24)

In calculating the energy E as the expectation value of H, one may see the advantage
of the separation of the particles of A and S into different regions of space:

 E = Ψ H Ψ  = ΨA  HA
0

 ΨA  
A

+ ΨS  HS
0
 ΨS  

S
+ ∆Eint 

 (25)

Here, the A and S parts of the Hamiltonian may be evaluated separately over their
respective parts of space (indicated by the italic capitals A and S), greatly reducing
the dimensionality of the problem. The interaction energy ∆Eint, however, requires a
double integration, since both fragments contribute to it. This integration may be
done in two steps, with a pleasant result at the halfway stage: integration of the A-S
interaction part of the Hamiltonian over region S gives the operator ΦS, which yields
the potential due to the particles constituting group S in space:

 ∆Eint = ΨA  za∑
a∈A

 ΨS   zs
 ra - rs 

∑
s∈S

 ΨS  
S

 ΨA  
A

 = ΨA  za∑
a∈A

 ΦS (ra)  ΨA  
A

 (26)



28 MODELLING CONDENSED-PHASE SYSTEMS
                                                                                                                                                        

Solving the Schrödinger equation (SE) for the whole system can now be parti-
tioned into smaller problems, for which the SE is to be solved in an external poten-
tial. The procedure sketched here is a simplified version of the group function
approach advocated by McWeeny,28 which is in fact the basis for any approximate
embedding scheme.29-31 The energy E is minimized in an iterative scheme: starting
from some trial functions for subsystems A and S, the potential in A due to S is
calculated as in eq. (26); the energy of A in this potential:

 EA = ΨA  HA
0
 + za∑

a∈A

 ΦS (ra)  ΨA  
A

 (27)

is minimized, giving a new wave function ΨA; next, the potential due to A in S is
calculated and in turn ΨS is optimized in that potential; a new potential due to S in A
is found and applied, etc., until self-consistency is reached.

Making a Gain

The potential just derived deserves closer attention, as it plays a central role in
the reduction of the computational effort in condensed matter calculations. An anal-
ysis is best made using perturbation theory.32 In a perturbation formalism the start-
ing function for ΨS

 

is the vacuum (ground) state function ΨS
0
 of the subsystem S. The

optimized function is expanded in the orthogonal set of solutions to the vacuum
problem HS

0
 ΨS

m
 = ES

m ΨS
m

 for subsystem S. The original state is altered by the mixing
in of excited states as a result of a perturbation, i.e. an external influence. The
weights of the mixed-in excited states depend on the strength of the perturbation
and the energy difference between ground and excited states.

In this formalism it is easily seen that the potential due to S, ΦS, can be split into
two contributions, resulting from the vacuum charge density of S on the one hand,
and the density change of S induced by subsystem A on the other. The former is
called the static potential and the latter the response potential:

 ΦS (ra) = ΨS  φS (ra) ΨS  
S

 = ΨS
0
  φS (ra) ΨS

0
  
S

 
 

 + 2  ck∑
k≠0

 ΨS
0
  φS (ra) ΨS

k
  
S

  + ck ∑
k,m ≠0

 ΨS
k
  φS (ra) ΨS

m
  
S

 cm  

 

= ΦS
0

 (ra) + ΦS
response 

(ra)

(28)

in which the coefficients ck and wave functions are taken to be real.

The static potential may be written in terms of the charge density of fragment S,
cf. eq. (22):
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 ΦS
0
(ra) = ΨS

0
   zs

 ra - rs 
∑
s∈S

   ΨS
0
 
S

  =  drs’ 
ρS

0(rs’)

 ra - rs’ V

 = V ρS
0; ra  (29)

A significant reduction in computational effort may now be made if one could
simplify the representation of the charge density. Remember the wave function is
expanded in many basis functions, and evaluation of the potential requires the eval-
uation of many integrals over these basis functions of the type:

 Jµν ra  = - e  drs’  χµ
*  rs’   1

 ra - rs’  
 χν rs’  

V

 (30)

Instead of the representation in terms of basis functions, a charge distribution may
be represented in a simplified way, by making a multipole expansion. In a multipo-
lar representation of a charge distribution, the potential operator 1/|ra - r’s| in eqs.
(29) and (30) is first Taylor expanded around a representative point rs

0 in the charge
distribution:

 1
 ra - rs 

  =  1
 ra - rs

0 
  -  

ra - rs
0 †

 ra - rs
0 3

 rs’ - rs
0  

 

- 1
2!

 rs’ - rs
0

†
 I3

 ra - rs
0 3

 - 
3 ra - rs

0  ra - rs
0 †

 ra - rs
0 5

 rs’ - rs
0  + ... 

(31)

in which I3 denotes the 3-dimensional unit matrix. Inserting eq. (31) in eq. (29), the
so-called multipole moment integrals of the charge distribution may be recognized:

 ΦS
0
 ra  = V ρS

0; ra  =  1
 ra - rs

0 
 drs’ ρS

0 rs’  
V

 - 
ra - rs

0 †

 ra - rs
0 3

 drs’ ρS
0 rs’  rs’ - rs

0  
V

 + ...  (32)

The bracketed expressions in eq. (32) are the zeroth moment, i.e. the total charge, and
the first, or dipole moment of the charge distribution, respectively. It is clear that
they can be evaluated independently of the measurement point ra, for which reason
the multipole integrals are a lot easier to calculate than the potential integrals [eq.
(30)]. It thus seems highly advantageous to make use of this expansion. However,
before doing so, one must look into the convergence of the expansion.

The series in eq. (32) converges for measurement points ra outside the charge
distribution. A real (quantum-mechanical) charge distribution, however, extends
over all space, making the use of any such expansion rather tricky.24 Also, from the
expansion it is seen that the contribution of a higher moment decreases with distance
more strongly than that of a lower moment, so that at larger distances the series will
converge faster than at shorter distances. A more detailed discussion of the
possibilities and choices for devising multipolar charge representations is given in
the next section. In the same way as multipoles were defined for the complete charge
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distribution, multipoles of the basis charge distributions (µν) [cf. eq(30)] may be
defined. We shall use those in section 2.2, where the potentials and fields due to and
at a quantum-mechanically described system are expanded in order to calculate the
interaction between the quantum system and other parts of the system that are
described at the classical level.

To gain insight into the response part of the potential in eq. (28), the Taylor
expansion of the potential operator φS around a representative point rs

0 in S is made
once more, so that the weights ck can be written as:

 ck =  

ΨS
k
  zs

 ra’  - rs 
∑
s∈S

 ΨS
0
 
S

 

E0 - Ek
  = -  

ra’  - rs
0

 ra’  - rs
0 

3
 × 

ΨS
k
  zs rs’ - rs

0∑
s∈S

 ΨS
0
 
S

 

E0 - Ek
 + ... (33)

where the orthogonality of the zeroth order functions has been used to get rid of the
first term in the expansion. The factor on the left in eq. (33) is the field operator of
subsystem A at the representative point in S, whereas in the factor on the right the
dipole operator of subsystem S with respect to the representative point again makes
its appearance. Inserting eq. (33) in the second term of eq. (28) and making the same
expansion for the potential operator, truncating at the dipole term, the second order
perturbation expression for the dipole polarizability of subsystem S emerges, thus
showing the connection of the second term in eq. (28) to the linear response
functions of subsystem S:

2  ΨS
0
  φS ra  ΨS

k
  
S

 ck∑
k≠0

 = 2  ΨS
0
  φS ra  ΨS

k
  
S

 × 
ΨS

k
  φS ra’  ΨS

0
  S  

E0 - Ek
 ∑

k≠0

 = 

 

- 
ra - rs

0

 ra - rs
0 3

 × 2 

ΨS
0
  zs rs’ - rs

0∑
s∈S

 ΨS
k
  ΨS

k
  zs rs’ - rs

0∑
s∈S

 ΨS
0
  
S

  

E0 - Ek
∑
k≠0

 × - 
ra’  - rs

0

 ra’  - rs
0 

3
 + ...

 

 = Ea rs
0   α S rs

0   Ea’  rs
0  + ... 

 (34)

Reading this formula from right to left, its meaning is evident: the field at rs
0, due to a

particle in A, induces a dipole proportional to the polarizability αS at rs
0, which in

turn gives rise to a (response) potential at a particle in subsystem A. These terms are
called induction terms, as the change in charge density of subsystem S is induced by
the charge density of subsystem A. Higher order responses follow similarly from the
continued expansion of the second term, and from the third term in eq. (28), connect-
ing to the quadratic response functions of S.

A second type of property of the subsystem S has now been identified: the
multipole polarizabilities. Whereas the multipole moments properties are connected
to the charge distribution, the polarizabilities are seen to be linked to the spectrum of
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the system. In the dipole polarizability the transition dipoles play a crucial role, as
made evident in eq. (34). Again, the transition moments have a classical analogue in
the oscillator strengths, measuring the intensity of dipolar transitions.

Interfragment Interactions

The interaction between subsystems A and S [eq. (26)] has now been partly
unravelled. The expansion of the wave function for subsystem S into vacuum
ground and excited state functions showed that the interaction with the charge
distribution of subsystem A could be written as a static plus a response contribution
[eq. (28)]. A fuller analysis may be obtained from making the same expansion for
subsystem A. To second order in the perturbation (SOP), the interaction then
contains the following terms: (1) the electrostatic interaction between the charge
densities of A and S as they were in isolation, (2) the interaction of the charge density
of A and the change in charge density of S, and vice versa, and (3) the interaction
between instantaneous changes in charge density of both A and S.33 This last term is
called the dispersion interaction and has not been encountered before:

 ∆ESOP
disp 

 = 1
 ra

0 - rs
0 6

 1 + 
3  ra

0 - rs
0   ra

0 - rs
0 †

 ra
0 - rs

0 2
 × 

ΨA
0

  µA ΨA
k

 
2
 ΨS

0
  µS ΨS

m
 

2

EA,0 - EA,k + ES,0 - ES,m  
∑

k,m ≠0

 (35)

where µA and µS are the dipole operators of subsystems A and S, respectively [cf. eq.
(32), second term]. The dispersion interaction can be expressed in terms of the polar-
izabilities of the subsystems by invoking the Unsöld approximation that enables a
splitting of the denominator:

1
EA,0 - EA,k + ES,0 - ES,m

 = UA US

UA + U S
 -1

EA,0 - EA,k  ES,0 - ES,m
 1 + ∆km  ;

 

∆km  = 

1
UA

 - 1
EA,0 - EA,k

 + 1
US

 - 1
ES,0 - ES,m

EA,0 - EA,k
-1 + ES,0 - ES,m

-1

(36)

in which UA and US are chosen to minimize the overall error. Inserting eq. (36) into
eq. (35), the polarizabilities of A and S are recognized—just as the polarizability of S
was recognized in eq. (34)—leading to the approximate dispersion interaction
expression:

 ∆ESOP
disp 

 ≈ - 1
 ra

0 - rs
0 6

 × UA US

UA + U S
 ×  1

2
 αA 1 + 

3  ra
0 - rs

0   ra
0 - rs

0 †

 ra
0 - rs

0 2
 1
2

 αS (37)

The dispersion interaction between two systems is always attractive, and always
present, in contrast to the electrostatic and induction interactions, which depend on
the presence of permanent electrostatic moments in either of the subsystems. In
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deriving these interaction formulas, we made the assumption that the total wave
function is the direct product of the wave functions for A and S, thus ignoring the
Pauli principle. When the subsystems come closer, this assumption is not valid, and
one should apply symmetry-adapted perturbation theory (SAPT),27 which accounts
for the effect of antisymmetrization of the subsystem wave functions. Each term
encountered in the SOP interaction expression is then found to have a counterpart in
the SAPT expressions. The effect of the antisymmetrization is to remove favourable
interactions that were included through overlap but violate the Pauli principle.
These become dominant when the systems get close and taking them out generates a
strong repulsion between the systems because the more unfavourable interactions
remain. This effect is quite difficult to treat in the same way as the electrostatic and
dispersion interactions, and is usually modelled by an ad hoc potential of polynomial
or exponential form.

Collective Behaviour

Apart from smartly dividing up the volume of integration, and excluding a large
number of electron-electron correlations through ignoring the Pauli requirement, no
real progress has been made in the development so far to reduce the dimensionality
of the system. The complete system is still treated at the quantum-mechanical level.
A real reduction of computational effort should come from reducing the number of
degrees of freedom. Let us concentrate on subsystem S for a while, leaving A for
what it is. In order to reduce the number of degrees of freedom of the system, the
static and response potentials due to S should be mapped on some functional form
containing far less parameters than the original number of particles in S. The reduc-
tion is achieved by truncating the expansions in the Taylor series of the operators
and the order of response theory. In practice, the Taylor series are often truncated at
the dipole level and the responses at second order in the perturbation, i.e. linear
response only, as shown here. Apart from these truncations, the size of the subsys-
tems of which the properties are determined is also reflected in the sophistication of
the mapping on classical models.

The great advantage of the treatment outlined above is that both the permanent
moments and the response functions are defined entirely in terms of the subsystem
S, and can be obtained from explicit calculation at any level, or from experiment. The
permanent moments and the response functions may be regarded as parameters
describing the collective properties of the particles comprising subsystem S. The
progress made by using the collective properties described becomes only really
meaningful if the parameters describing the static and response moments prove to
be transferable between systems of different nature, but composed of the same
building blocks. For example, the parameters for a water molecule should be useful
in any system containing a water molecule, whatever type of material is present
otherwise. If this was not the case, one would have to go through the whole exercise
of deriving the parameters for the new situation.
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At this stage, one may anticipate that any set of parameters describing collective
properties will have its limits of applicability. The limits are, however, quite well
defined, and follow directly from the assumptions made in the derivation of the
collective properties. In our case, close scrutiny must be paid to the validity of ignor-
ing the Pauli principle, and the order to which the Taylor expansions are taken into
account. The practical implications of the theoretical development made in this
section will be discussed in the next, together with the limits of applicability. Only
by realizing these limits during a computational investigation a sensible approach
will result.
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Meandering the Scales 1.4

THE COLLECTIVE PROPERTIES of molecules typically reflect one to twenty nuclei
and one to a hundred or so electrons in a volume of tens to hundreds of cubic Bohr.
Accurate computation of the electrostatic and response properties of such volumes is
well within the current possibilities of ab initio quantum chemistry techniques. Thus
one has access to the static potential [eq. (29)], as well as the multipole [eq. (32)] and
response [eq. (34)] moments. Remains the task of reducing the number of degrees of
freedom in the representation of those properties. Because the number of degrees of
freedom is reduced, a choice can be made and the best choice may vary according to
the system under consideration.

Molecules: Charge Density Representation

The only simplified charge density representation to have a direct counterpart in
experiment is the multipole representation, because the multipoles of molecules are
experimentally accessible: they are observables.34-36 (The charge density itself is also
accessible, e.g. through X-ray diffraction, but a representation of similar resolution
would require another basis set type approach without the drastic computational
reduction achieved through truncated multipole representations.) The disadvantage
of this first charge-density representation is that it may converge quite slowly,
especially close to the molecule and for larger molecules, necessitating complicated
prefactors [eqs. (31) and (32)].35

In the end, it is the potential of the molecule that is of interest. A second
approach is the direct storage of the computed potential [eq. (29)], the reduction in
computational effort arising from choosing a grid on which to calculate the potential.
A suitable interpolation for the potential between the grid points completes this
procedure. This is still very costly: it requires a large number of integrals of the type
of eq. (30), and there are problems with the transferability (the grid should move
along with the molecule if it changes orientation). It is possible, however, in a fitting
procedure, to derive a number of charges located somewhere in the molecule that
reproduce the computed potential as well as possible.37, 38  These so-called potential
derived charges (PDCs) are transferable, although the choice of number and position
of the grid points determine the quality of the representation.39

The PDCs are an example of a distributed monopole representation of the charge
distribution. The PDCs are only indirectly derived from the charge density. The last
type of charge representations to be discussed here is directly derived from the
charge density itself. In quantum-chemical calculations, the wave function is ex-
panded in terms of basis functions [eq. (18)], and the total charge density [eq. (22)] is
expressed in terms of delta functions for the nuclear part and overlap distributions
of the basis functions for the electronic part:
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 ρ s  = e  ZN  δ s - RN∑
N∈nuc

 - e  Dµν χµ
*  s  χν s  ∑

µ,ν
 (38)

The density matrix Dµν expressed in the simple basis {χ}, and the configuration basis
{ΨSlater}, has the general form:

 Dµν = CK
*  CL δη Ki,η Lj∑

i,j∈ occ

 cµi
*  cνj ∑

K,L

 (39)

in which ηKi is the spin part of spin-orbital ψi in configuration K, and CK and cµi are
the expansion coefficients for the configurations ΨK and simple basis functions χµ,
respectively.

A distributed multipole representation is based on calculating the multipole
moments of the charge distributions and assigning a position in space to them. The
various approaches differ in the truncation of the multipole expansion and the
assignment of the contributions to expansion centres. As the basis functions them-
selves are usually located on the nuclei, most distributed multipole representations
take the nuclei as sole expansion centres. The simplest scheme in this family is the
Mulliken analysis,40 a distributed monopole representation, which simply assigns
half of the contribution of any overlap distribution to each centre of its constituent
basis functions. The distributed multipole analysis of Stone41, 42 may keep all multi-
pole moments of overlap distributions, or truncates after the quadrupole, and
assigns them to the centre closest to it. Extra centres, such as the midpoints of the
nuclei, may be added to gain accuracy. These representations all suffer from the fact
that they do not in general preserve the overall multipole moments of the molecule
(this is a consequence of shifting the contributions to the expansion centres without
correcting for the moments induced by the shift), and thus generate an inaccurate
potential at larger distances. Usually, these methods already fail to reproduce the
overall dipole moment.

The so-called dipole preserving charges (DPCs) by Thole and van Duijnen43

constitute a distributed monopole representation that is the result of a Mulliken-
based population analysis that preserves the overall dipole moment. Starting with
the Mulliken charges, charges that rebuild the Mulliken dipoles are added on the
charge centres, such that the calculated overall dipole moment is preserved. Because
a weighting function ensures the nearest centres to get the largest contributions in
the rebuilding procedure, the DPCs have the additional property of maximum
preservation of local dipole moments.

The problem of defining charges for large molecules (for which ab initio calcula-
tions are out of the question, and measurements of multipole moments are insuffi-
cient for a microscopically accurate representation) is a source of continuing research
within the development of atom-based force fields.44 Rullmann has addressed this
problem by joining overlapping fragments, for which calculations are possible,45 e.g.
amino acids joined to a protein.46 In most atom-based force fields, charge represen-
tations are the result of optimizing start values (usually from a Mulliken analysis) by
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fitting to computed macroscopic properties,47, 48 such as the second virial coefficient.
These charges are usually not widely transferable between different chemical
systems and between force fields because there are many more parameters involved
that are also allowed to be optimized and, more importantly, these force fields lack
an explicit polarizability representation.

One should not employ the distributed multipole representations within the
volume of the charge density from which they were derived, because the representa-
tion is not valid inside the charge density. In practice one may, however come across
situations in which two charge densities are in close vicinity, and the full Coulomb
potential of a point charge is then unrealistically large. An option is then to account
for the fact that the source of the potential is a charge density, rather than a collection
of point charges, by assuming a model shape for the charge density. Several choices
are available for this shape function. We have employed a conical and an exponen-
tial shape, the width of which depends on the polarizability of the atom. The shape
functions that result from this assumption are fairly simple and were shown to be
effective in the treatment of interacting polarizabilities by Thole.49 Note that the
smearing out of the charge always has the effect of reducing the potential, for which
reason the shape function is also called the screening function.

Molecules: Linear Response Function Representation

Honesty demands to add to the claim that the computation of molecular
response moments is well within reach of ab initio quantum chemistry that the effort
needed for obtaining accurate response moments is much larger than for the static
properties.36 The cause of this is that the density is not quite as sensitive to the
length of both basis set and configuration expansions as the spectrum and the transi-
tion moments required for the response properties [eq. (34)] are. It is therefore
advantageous to investigate response function models based on experimental
results. In this work only linear response is considered; for molecules that is the
(dipole) polarizability: the extent to which the charge density distorts to form an
additional dipole moment as the result of an applied permanent electric field.

Analogous to the static moments, the polarizability of a molecule may be repre-
sented by one tensor located at the centre of the molecule, or in a distributed fashion,
e.g. by interacting atomic polarizabilities located on the nuclei. Stone50 and
Karlström51 have developed distributed polarizability representations on the basis of
ab initio wave functions along the same lines as for the representation of the charge
distribution. The polarizability representation used in this work is an empirical
distributed atomic polarizability representation developed by Thole.49 A single
polarizability for the elements H, C, N and O, in whatever molecule they participate,
together with a screening function described above, suffices to reproduce experi-
mental molecular polarizabilities. The fitting was done on circa twenty molecules,
and testing for a number of other molecules always proved to reproduce the exper-
imental polarizability to within 10%.
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Bulk Material: Dielectric Continuum Models

The collective properties of bulk material typically reflect the collective
behaviour of tens of thousands of molecules in a volume of at least 107 cubic Bohr.52

Accurate computation of the electrostatic and response properties of such volumes is
well outside the current possibilities of ab initio quantum chemistry techniques, and
probably will be for a long time. Thus one has to resort to experimental information
on the behaviour of such volumes. Such bulk volumes have no permanent electro-
static moments: the individual molecules take on all sorts of orientations so that on
average the potential vanishes. When an electric field is applied across such a bulk
volume, the average moments do not vanish, but there will be a preference of indi-
vidual molecules to align their permanent and response moments with the electric
field. The extent to which this preference is present in the bulk is reflected by its
dielectric constant.53 The dielectric constant is measured by reduction of the attrac-
tive force between two oppositely charged plates when the bulk material is intro-
duced between them. The dielectric constant measures the linear response, for which
the applied field strength should not exceed 104 V/cm, or 2 10-6 a.u., as departures
from linearity are observed at higher field strengths.

On the scale on which the dielectric constant is defined, all molecular detail has
been lost: the dielectric constant describes a homogeneous, isotropic medium, or
continuum of matter. Molecular effects are, however, present in the dielectric con-
stant, but only in an average sense. It is therefore dangerous to attribute effects seen
in microscopic models embedded in a dielectric to specific interactions, such as H-
bonding. Although all structure has been lost, different contributions to the dielectric
constant may be discerned, on the basis of molecular models and frequency depen-
dency of the response of bulk volumes. Instead of applying a permanent electric
field across the plates of a condensor, one may apply an oscillating field and monitor
the response.

At low frequencies the response will not differ from the response when switch-
ing on a permanent field, only its direction will change with the change of direction
of the applied field. As the frequency is enlarged, however, sharp drops in the res-
ponse will be noticeable at certain frequencies. These can be identified as typical fre-
quencies of molecular and atomic motion. For molecules with a permanent electro-
static moment, the change in orientation of the molecule contributes to the dielectric
response. As the field changes direction, the molecules tend to align their permanent
moments and reorient. In this they are hampered by their neighbours through inter-
action, and so it takes time to adopt to the new direction of the applied field. If the
field has changed direction before the new orientation has been reached, reorien-
tation no longer occurs, thus giving a drop in the response. The component asso-
ciated with the reorientation of the molecules is called the orientational response.

A minor contribution to the dielectric constant vanishes at higher frequencies
and can be associated with the vibrational motions within the molecule. Usually this
component is so small that it is ignored altogether. The remaining component is that
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of the electronic response. This component is assumed to be able to follow any
change in the applied field instantaneously, and is present in materials whether or
not the molecules carry permanent moments. In fact, it may be considered to result
from the interacting molecular polarizabilities encountered above.
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A Sensible Model Under Scrutiny 1.5

A SKETCH of our condensed phase model combining three levels of spatial detail
is given in Figure 1. In applications of this model, a partitioning of the system into
the appropriate levels is to be made. In this section the physical basis for making the
partition is given. In Chapter 3 different partitioning schemes will be tested numeri-
cally, as we investigate several applications of the model.

Spatial Separation of Molecular Subsystems

The theoretical development so far required fragment separation for more or less
formal reasons, and linear response of bulk material for practical reasons, but the
separation of two or more systems and the (non-)linearity of their mutual interac-
tions are of course strongly connected. For example, the interactions between the
three atoms within a single water molecule are highly non-linear because their
charge distributions overlap strongly and the electric potentials and fields are too
large to expect linear response. As far as the energy is concerned, the only way to
deal with this problem is to describe the system in terms of electrons and (effective)
nuclei, and solve a set of coupled equations which contain all of the non-linear
problems. One of the properties of the resulting molecule is its (dipole) polarizability
describing the linear response of this collection of atoms.

In the water dimer at its optimal geometry, the largest overlap between two
molecular orbitals is about 0.05.54 Whether or not this is a ‘large’ overlap depends on
the context in which the overlap criterion is used. One may wonder if the electro-
static interaction between the molecules can be described with a linear response

ρ
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αm

A  i
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quantum system

discrete
classical
system

continuum
ε, κ-1
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Figure 1. General condensed phase model.
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model at this distance, or, more generally, up to what distance this model is accept-
able. One possible answer comes from simple electrostatics, and was given by
Thole.49 Consider two isotropic interacting polarizabilities αi and αj at distance r. The
effective polarizability along the axis is:

α// = 
αi + αj + 4 αiα j / r3

1 - 4 α iαj / r6
(40)

When r approaches (4 αi αj)
1/6, α// tends to infinity, caused by the co-operative inter-

action between the two induced dipoles along the axis. The trouble starts when the
polarizability volumes—i.e. spheres with radius α1/3—start overlapping. Such a
situation should be avoided, or one must in some way account for the non-linear-
ities, e.g. by screening the interactions. In our model for reaction potentials we have
adopted Thole’s method for defining an effective ‘many-body’ polarizability, in
which dij = 1.662 (αi αj)

1/6 is the minimum distance for two interacting polarizabili-
ties without screening function, where the factor 1.662 and the polarizabilities are
model parameters fitted to (experimental or calculated) molecular dipole polarizabil-
ities. If the polarizabilities come closer, the fields of the induced dipoles are damped
to account for the overlap of the electronic densities connected to the polarizabilities.
In the water dimer we may put the monomer electronic polarizabilities of 10 Bohr3

on the oxygen atoms, which are in the equilibrium geometry about 6 Bohr apart.
Thole’s criterion shows that already at this distance the mutual induction effects may
be treated completely classically,55 provided the inducing fields correspond to
charge distributions which are correct up to at least the dipole term. Apparently both
the separation and the linearity requirements are satisfied in this situation.

Spatial Separation from the Bulk

In employing continuum models for solvation it is necessary to define a cavity in
the dielectric to contain the solute (and some solvent molecules). The solute’s
response potential is found by solving Poisson’s equation, which is practicable only
if no higher order than linear response is allowed. In practice, two methods for
solving the Poisson equation are in use: one based on 3-dimensional integration (on
some grid),56 the other based on 2-dimensional integration on the surface envelop-
ing the solute (usually built from small adjacent polygons).57, 58  The surface defines
the boundary between the solute cavity and the solvent bulk. For the second method
analytic forms exist but these are applicable only to spherical and elliptical
cavities.59, 60 This makes them less useful for general purposes.

The necessity of defining a cavity around the solute immediately poses the
problem of where to put its boundary. Because the reaction potential is very sensi-
tive to the solute–boundary distance, getting ‘physically plausible results’ strongly
depends on the careful definition of the boundary. The surfaces employed in most
models resemble a Connolly surface,61 which is defined by rolling a probe sphere
with the size of a solvent molecule over a set of overlapping spheres centred on the
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solute’s atomic sites (see also Figure 3.6). If the atomic spheres are given the atomic
van der Waals radii, Connolly’s ‘van der Waals surface’ is defined by the ‘contact
points’ between probe and atomic spheres. The surface traced by the centre of the
probe is usually called the ‘solvent accessible’ surface.

We want the boundary first to be consistent with the non-overlap requirement,
meaning that no significant part of the solute’s (electronic) charge is to be found
outside the cavity. Obeying this criterion Miertus̆ et al. claim that this leads to
‘unrealistically small’ reaction potentials.62 With a nearby boundary, constructed
with the standard van der Waals radii, they obtained a ‘realistic’ reaction potential,
but a sizeable amount of electronic density (for water about 1%) was found to extend
over the boundary. This means that the overlap of 0.05, mentioned above, is too
large for solute–dielectric interaction. To remedy this effect, they made a correction
for the ‘charge leakage’, at the same time scaling up the atomic radii by 20% to
reduce the charge distribution outside the cavity to less than 0.5%. The analytic
methods employ a cavity with a volume derived from the density of the solute,
which leads to a cavity of approximately the same size as defined by the Connolly
van der Waals radii, so they may suffer from the same defect. Choices published so
far are all of the type ‘van der Waals plus something’ or ‘van der Waals times
something’ to arrive at ‘realistic’ solvation energies.

At this point we conclude that the van der Waals surfaces are too close to the
solute to be consistent with the non-overlap criterion, and we suggest to increase the
‘atomic spheres’ by adding at least one solvent radius. In case of a water solute in
bulk water, this means that the boundary is located 7.3 Bohr from the centre of mass
of the solute. Already here we note that by this procedure the experimental hydra-
tion energy cannot be reproduced (which will be demonstrated in Chapter 3).

Next we look into the combined overlap/non-linearity problem. Obviously, no
source charge or (induced) dipole may ever be positioned precisely on the boundary,
because its reaction potential will then be infinitely large. A measure for the minimal
distance can be obtained—at least for a neutral, polarizable solute—by repeating
Thole’s reasoning for two polarizabilities: the dielectric constant of the bulk is, via
the dielectric susceptibility, χe  = ε - 1 /4π, connected to the polarizability density
which includes, apart from the electronic polarisation, vibrational and rotational
contributions. For polar solvents the rotational contribution, i.e. the effect of the
permanent dipoles orienting themselves along the applied field, dominates. By
simply multiplying the dielectric susceptibility by the volume of one solvent
molecule (assuming that the dielectric is homogeneous to a microscopic limit) one
gets an effective molecular polarizability. Again taking water as an example, we
obtain (from the density and susceptibility at 298K) an effective polarizability of 1240
Bohr3 per molecule. Applying Thole’s criterion for the interacting polarizabilities of
the central water (10 Bohr3) and an effective neighbouring bulk molecule, the mini-
mum distance should be 8.0 Bohr, which is slightly larger than that derived from the
first overlap criterion. This second criterion is not always the strongest. For benzene
in benzene, the first criterion (no overlap) would put the boundary at 12.4 Bohr from
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Figure 2. Typical solvent radial distribution function.

the centre of mass, while the interacting polarizabilities criterion would put it at only
7.2 Bohr.

The last possible test regards the linearity of the response per se. If the solute’s
field-strength is too large, non-linear effects will give rise to an enhanced or reduced
polarization of the bulk, depending on the type of effect.53 For polar solvents, the
main non-linear effect is saturation: the molecular dipoles become more or less fixed
in space with respect to the solute, strongly reducing the orientational contribution
to the local polarizability. At the macroscopic level this can be remedied quite satis-
factorily by introducing a correction function to the dielectric constant proportional
to the square of the field strength, but at the microscopic level the dielectric model
breaks down and at least the first solvent layer should be included in a more detailed
way in the description. From experiment it is known that non-linear effects show up
at field strengths of about 2 10-6 au (104 V/cm), which is for example generated by a
unit dipole (2.54 D) at 100 Bohr in vacuo! Considering again water in water, with a
solute dipole moment equal 1.85 D, the previous criteria look pallid. If the boundary
would be put at the required distance (73 Bohr), many layers of solvent water would
have to be included to make the model still look like a condensed phase.

In practice, one can probably do with a smaller number of solvent layers, because
the collective field of solute and solvent layers will fall off faster than the field of the
solute alone. Insight in the minimum number of solvent layers to be included can be
gained from the radial distribution functions of the solvent. A typical radial distri-
bution for bulk water after Narten et al.63 is schematically shown in Figure 2. It is
clear that at least the first two layers should be considered in detail, since the
requirement of homogeneity is not fulfilled.
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Conclusion 1.6

THE METHOD  outlined in this chapter for relating the nature of microscopically
small particles to measurements on macroscopic substances consisting of unimagin-
ably large numbers of those particles appears, in retrospect, too good to be true. It
seems almost unbelievable that such a relatively simple scheme could result in
accurate and reliable predictions of macroscopic behaviour under strongly varying
conditions.

Scepticism is in order—up to a point. Much depends on the process and the
properties that are being studied: the conditions must fit the assumptions along
which the development of theoretical and computational frames were made. For
example, very high-pressure substances cannot be treated in the fashion used in the
remainder of this thesis, simply because the Pauli correlation between the molecules
will play a crucial role; predictions concerning strictly dynamical processes, such as
reaction rates, will not be possible either, unless the properties pursued can be
related to nuclear arrangements that fit the Born–Oppenheimer regime. However, by
going back to the assumptions the way to proceed in such cases will always be clear.
Repairs can be made at the appropriate places, the feasibility being determined by
the current (computer) technological state-of-affairs and very often to a large extent
by the patience of the computational chemist.

The solvated systems studied in this thesis are on the borderline of the validity of
the approach. The molecules do keep their integrity to a large extent, but the density
is such that they are always in close vicinity to their neighbours. Special care has to
be taken to avoid artefacts caused by the simplified description of the charge distri-
bution and response properties.

It may not always be necessary to go to the lengths described in this book to get
accurate and reliable computational results for certain very important and interest-
ing properties. The example of the solvation energy in water will be elaborated on in
Chapter 3. It is nevertheless worthwhile to pursue the more detailed description
because it provides a better understanding of the nature of the processes that deter-
mine the effects of solvation which may be stimulating to further experimental and
computational research. It also provides insight into the failure of simple models,
reminding us of the saying that only the sun rises free of charge.
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Introduction 2.1

THE CONCEPTS and theory of the mixed quantum-mechanical–classical
approach discussed in Chapter 1 are to be elaborated in a computational scheme in
order to enable numerical testing of the ideas on microscopic condensed-phase
modelling. If not for the explicit treatment of molecular polarizability, a chapter on
the implementation would hardly be wanted, since the literature yields an ample
supply of solvation models: for molecular mechanics type mixing;64-73 for analytic
and numerical dielectric continuum-only reaction fields;56, 57, 62, 74-92 and for alter-
native treatments of molecular polarizability.93-97 Especially the self-consistent
coupling of the molecular polarizabilities and the continuum warrant the special
attention given to implementation in this chapter. As so often in computational
chemistry practice, the scheme doesn’t originate with the present author, but has
evolved over many years, being added to by various people, as particular interests
were being pursued.29, 98-100 Thus, this chapter presents a transient state-of-the-art.

The quantum chemistry computer code that underlies the work presented in this
thesis is the HONDO8.1 suite of programs.101 Occasionally, specific reference to the
way in which this program handles the quantum partition will be made, but the
description of the implementation is aimed to be as general as possible; in fact, the
present method is currently being implemented in various other (semi-empirical)
quantum chemistry codes.

The development of this chapter parallels that of section 1.4. The (electro)static
environment potential is treated first, followed by the response, or reaction, potential
and field. (The terms reaction potential and reaction field are sometimes somewhat
injudiciously used synonymously to indicate the idea of the environment
responding to an applied electrostatic influence on it.) The coupling between the
responses of the different partitions to each other’s influence is treated in some
detail. Expressions are given for the different contributions to the total energy. Such
an analysis is useful to gain more insight into processes in the condensed phase.

The reaction-field contribution can be coupled to the quantum partition in two
ways. One may first determine a charge density of the quantum partition, calculate
its reaction field, and couple this back to the quantum partition to determine a new
charge density, etc. Alternatively, a reaction-field operator may be defined and
included in the Hamiltonian. The former is the Average Reaction Field (ARF)
approach, because the electrons in the quantum partition experience the reaction
field of the charge distribution as a whole, whereas in the latter approach each elec-
tron feels the reaction field of itself and the other electrons instantaneously, and is
therefore called the Direct Reaction Field (DRF) approach. For single-configuration
wave functions, both approaches are possible, but only the ARF approach can be
applied to multi-configuration wave functions in a way that is both conceptually and
technically unambiguous. The DRF approach has the advantage that an estimate of
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the dispersion interaction between quantum and classical partitions can be coupled
self-consistently to the quantum system by noting a similarity between two-electron
reaction-field integrals and the Unsöld approximation to the SOP expression for
dispersion.55, 102 This feature will be explained and used in section 3.2.

Two features within the present mixed quantum-mechanical–classical approach
that have not been described before reflect on two aspects of the phenomena of
interest: the time-scale and the thermodynamics. Regarding time-scale, different
response components can be distinguished according to the frequency associated
with the motions that cause the response (section 1.4).52, 53  The highest frequencies
belong to the electronic motions, modelled by the discrete polarizabilities and the
optical dielectric constant ε∞, which can be derived from the refractive index at high
frequency. Next, the shift of equilibrium distances of vibrational motions contributes
a fairly high frequency component which is usually not taken into account because it
is small. The slower translational and rotational motions of molecules with a perma-
nent dipole moment constitute the origin of the orientation polarization, which is the
low-frequency component, and the most important one for polar solvents. It is this
component that is unable to directly follow the fast motions or processes in the
quantum partition and must therefore be treated with care.103-105

For example, if an excitation process is so fast as to prevent the orientation polar-
ization component to ‘catch up’, the product state experiences the orientational
polarization belonging to the ground state. This component is not in equilibrium
with the charge distribution of the excited state, and in coupling the reaction field to
the excited state it should remain static, while only the electronic component of the
response should be allowed to adapt to the excited state charge density.

Conducting experiments at ambient temperatures allows for thermal motion of
the system, which can be quite large in weakly bonded systems, like most solutions.
Thus the properties of the system are an average over a large number of conforma-
tions with approximately the same energy. In calculations with classically described
particles only, this aspect of chemistry is well developed.6 In quantum-chemical
practice however, the number of conformations considered is usually very small.
The techniques developed in the field of molecular simulations on large systems are
practicable in quantum chemistry as well, and indeed are gaining importance.7-9

With the model presented here a Monte Carlo sampling of the discrete classical
degrees of freedom is fairly trivial, albeit time-consuming. The challenge is mainly in
the development of interaction functions that fit into the framework outlined in
Chapter 1, for which the reader is referred to Chapter 3.

Before closing this section, a word on the partitioning of the system into different
regions is in order. In solvation studies a natural choice for the partitions is to treat
the solute molecule quantum mechanically, and a number of solvent molecules
classically, as groups. A surface around this discrete collection may then serve to
separate it from the bulk solvent, treated as a dielectric. The minimum number of
explicit solvent layers to be included in the discrete partition may be estimated from
(experimental) radial distribution functions. Boundary effects should be minimized
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by going beyond the minimum requirement,106-109 and by carefully considering the
distance between the outer molecules and the surface boundary.110

In macromolecular problems, such as enzymes, or the cluster approach to the
solid state, bonds shall have to be broken between partitions. None of the currently
practised solutions to this problem is really satisfactory,111-116 although saturation
with e.g. H-atoms,117-120 omitting nearest-neighbour interactions have at least
provided practicable models. In all instances the employed partitioning should be
tested against the properties of interest, especially regarding the degree of localiza-
tion within the quantum partition.
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Expansion of the Potentials and Fields 2.2

WE DEFINE the potential, field, and field-gradient operators, due to a unit point
charge at s, measured at x:52

 V (s; x) = 1
 x - s 

 (1)

 E (s; x) = - ∇x V (s; x) = ∇s V ( s; x) = 
x - s

 x - s  3
 (2)

 T  (s; x) = ∇x  E (s; x) = - ∇s E (s; x) = 1
 x - s  3

 I  3 - 
3 x - s  x - s † 

 x - s  2
 (3)

where I3 denotes the 3-dimensional unit matrix. All vectors are defined as column
vectors, and set in bold type. Two-dimensional matrices are outlined. A dagger (†)
denotes the transpose of a tensor. Atomic units are used throughout.15

In the present implementation, the potentials and fields coupling the quantum
partition to the classical partitions are not evaluated exactly, but expanded around a
number of expansion centres. This greatly simplifies the evaluation of (reaction) field
integrals over basis functions and has been shown to retain almost the accuracy of
the exact approach for a discrete classical environment.121 This is due to the slow
variation of the reaction field over molecular dimensions, validating an expansion to
first order only. If the expansion to first order should not appear to suffice, one could
of course consider going to higher order. However, increasing the number of
expansion centres might improve the convergence more quickly.

The expansion centres are usually taken to be the nuclei of the quantum parti-
tion. However, especially in cases of high symmetry, one or more extra expansion
centres (notably the centre of nuclear charge) may be required to avoid symmetry
breaking of the wave function. The problem of this type of symmetry breaking orig-
inates in assigning the charge distributions to expansion centres. For every charge
distribution an expansion centre may be defined by:121

 cij = Mij
’ / Sij

’ (4)

where Mij
’ is the dipole moment integral of the ij’th distribution, taken relative to the

centre of nuclear charge, and Sij
’ is the overlap integral of the same distribution, by

treating the orbitals as s-type functions. This definition is rigorous only for s-type
basis functions, but we use it for any type. (A similar, but more precise, definition of
overlap distribution centres for use in a population analysis has been given by
Huzinaga et al.122) The charge distribution is then assigned to the expansion centre
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closest to the computed centre [eq. (4)]. However, one has to be aware of two issues
with this scheme:

(i) the computed centre may be equally distant from two or more expansion centres.
If the symmetry of the nuclear framework is not imposed on the assignation of the
charge distributions, symmetry breaking may occur due to the search algorithm, or
due to numerical errors. This may be remedied by defining an extra expansion
centre at the computed centre, or assigning all problematic distributions to the centre
of nuclear charge.

(ii) Sij
’ may be very small, whereby cij is ill defined. The occurrence of small radial

overlap usually involves centres that are quite distant from each other. In general,
these overlap distributions have a small dipole moment as well as a small overlap,
and therefore often give a negligible contribution to the (reaction) potential. The
exact location of their expansion centres will not be very critical, and their contribu-
tion may even be discarded altogether. In the case described, we have chosen to
define the centre of the overlap distribution as the midpoint of the connecting line
between the atoms bearing the basis functions involved, and then to follow the
regular procedure.

Other schemes are possible, e.g. just to assign every one-centre overlap distribu-
tion to that centre and all two-centre distributions to the centre of nuclear charge.
This scheme serves quite well for small molecules, as may be expected if the static
and reaction fields vary slowly over molecular dimensions. More elaborate schemes,
e.g. with weighting functions according to the distance from an expansion centre can
be conceived, but we have not pursued these, as the present schemes are satisfactory.

The potential and field operators due to a unit charge at s can be expanded
around expansion centre s0. The potential and field measured at x are, to first order:

V (s; x) ≈ V ( s0; x) + ∇s0 V ( s0; x) s - s0  = V (s0; x) - E (s0; x)•s0 + E (s0; x)•s  (5)

E (s; x) ≈  E (s0; x) + ∇s0 E (s0; x) s - s0  = E (s0; x) + T  (s0; x)•s0 - T  (s0; x)•s  (6)

The potential and field operators due to a unit charge at s measured at x, expanded
around centre x0 are, again to first order:

V (s; x) ≈ V ( s; x0) + ∇x0 V (s; x0) x - x0  = V (s; x0) + E (s; x0)•x0 - E (s; x0)•x  (7)

E (s; x) ≈  E (s; x0) + ∇x0 E (s; x0) x - x0  = E (s; x0) - T  (s; x0)•x0 + T  (s; x0)•x (8)

The use of these expansions enables very simple evaluation of one- and two-elec-
tron integrals, requiring only overlap, first, and second moment integrals of the
charge distributions, e.g. for the potential due to the ij’th electronic charge distribu-
tion, assigned to s0, at x:
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 V ij x  = - e    i  V (s0; x) - E (s0; x)•s0 + E (s0; x)•s  j  
 

= - e     V (s0; x) - E (s0; x)•s0  S ij + E (s0; x)•Mij  

(9)

where S ij =  i  j   and Mij =  i  r  j   are the overlap and dipole moment integrals of
the ij’th distribution, and e is the unit positive charge.

In the following sections, explicit formulas will be given for the different contri-
butions to the static and reaction potentials and fields, along with brief discussions
of theoretical and practical considerations to the use of these expressions. In the
following, we shall denote a general co-ordinate by x, discrete classical charge
and/or polarizability co-ordinates by rp and rq, representative surface boundary
points by rI and rJ, nuclear co-ordinates by RN and RM, and expansion centres in the
quantum partition by ra and rb.
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Static Potentials and Fields 2.3

THE STATIC POTENTIALS and fields due to the discrete classical partition are
mediated through a distributed monopole representation of this partition. Usually,
the positioning of charges only at the nuclei suffices to provide a fairly accurate
potential and field, provided the charges are suitably chosen, but more and other
charge centres may be necessary, depending on the accuracy required. (For a discus-
sion on charge representations, refer to section 1.4.) The static potential and field at x,
due to the discrete classical partition take the form:

Vq
dcl  (x) = fV  x - rp , αp, αx  qp V (rp; x)∑

p ≠ G(x)

 (10)

 Eq
dcl  (x) = fE  x - rp , αp, αx  qp E (rp; x)∑

p ≠ G(x )

 (11)

in which G(x) denotes the members of the group in which x is positioned, and qp is
the charge at centre p. The exclusion of intra-group interactions between charges is
the consequence of the analyses made in sections 1.4 and 1.5, where it was argued
that the electrostatic multipoles can be represented by a set of charges, but that the
potential is only valid outside the volume of integration, and that intra-group inter-
actions represented by atomic building blocks are highly non-linear and therefore of
a form different from Coulomb’s law. The analysis also called for a screening func-
tion for short-range inter-group interactions.49 For a conical charge distribution the
shape functions fV, fE are:

fV  x - rp , αp, αx  = 
v 4 - 2v3 - 2v ;  x - rp  ≤  1.662 αp αx  1/6

1;  x - rp  > 1.662 αp αx  1/6
  (12)

fE  x - rp , αp, αx  = 
-3v 4 + 4v 3 ;  x - rp  ≤ 1.662 αp αx 1/6

1;  x - rp  > 1.662 αp αx  1/6
  (13)

where v =   x - rp  /1.662 αp αx  1/6 , and αp and αx are formal polarizability vol-
umes on the centres p and x, associated with the width of the charge distribution.
The factor 1.662 is a parameter, obtained from fitting computed molecular polariz-
abilities from interacting atomic polarizabilities to experimental molecular polariz-
abilities. The shape function was found to be not very critical to the value of the
atomic polarizabilities, so Thole’s optimized values for H, C, N and O are used, and
Hartree–Fock values123 for other elements. Another possible choice of the shape
function is an exponential one, given by:49

fV  x - rp , αp, αx  = 1 - 1
2

 a v - 1  exp - a v  (14)
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fE  x - rp , αp, αx  = 1 - 1
2

 a v 2 + a v + 1  exp - a v  (15)

where v =   x - rp  / αp αx 1/6 , and a is a fitting parameter with the optimized value
of 2.089.

The continuum partition has no static potential, as is evident from the assump-
tion that it is homogeneous and isotropic.

As far as the quantum partition is concerned, the nuclear charges generate a
static potential and field that are treated completely analogous to those of the
discrete classical system (except for the effect on the electrons, which remains to be
treated exactly). The expressions are:

 VN
qm 

 (x) = fV  x - RN , αN , αx  ZN V (RN; x)∑
N

 (16)

 EN
qm 

 (x) = fE  x - RN , αN , αx  ZN E (RN ; x)∑
N

 (17)

where ZN is the charge of the N’th nucleus.

The static and response components of potential and field due to the electronic
part of the quantum partition are not treated separately, but are implicitly handled
through the electronic density (the nuclei have a static contribution only). Because of
the expansion procedure, the evaluation of the potential and field due to the elec-
tronic part of the quantum partition is a simple contraction of the density with the
potential and field due to unit occupation of the charge distributions at the
expansion centres:

 Vel
qm 

 (x) = - e  dij   S ij  fV V (ra ; x) - fE E (ra ; x)•ra   + fE Mij•E (ra ; x)  ∑
ij

 (18)

 Eel
qm 

 (x) = - e  dij   S ij  fE E (ra ; x) + fT T  (ra ; x)•ra   - fT T  (ra ; x)•Mij  ∑
ij

(19)

where a denotes the expansion centre to which the ij’th charge distribution has been
assigned, and dij is the one-particle density matrix element of the ij’th charge distri-
bution. The screening function fT for a conical charge distribution is defined as:

 fT = fT  x - ra  , αa , αx  = 
-v 4 + 4v 3 δβγ ;  x - ra   ≤  1.662 αa  αx 1/6

1;  x - ra   > 1.662 αa  αx 1/6
  (20)

where the subscripts β and γ denote x,y,z. For an exponential charge distribution fT

is defined as:

 fT  x - ra  , αa , αx  = 3 + δβγ  fE - 1
2

 a v 3 exp - a v  (21)
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Response Potentials and Fields 2.4

THE RESPONSE POTENTIALS and fields from the discrete classical partition are
mediated through dipoles that are induced in the partition. An induced dipole is the
result of the action of an electric field due to the rest of the system at the position of a
dipole polarizability. The polarizability of the discrete classical partition as a whole
is represented by distributed dipole polarizabilities, analogous to the distributed
monopole representation for the static potential. Note that the charge density and
the polarizability are two independent properties of a system, so that the construc-
tion of charge and polarizability representations are independent problems. (For a
discussion of the polarizability representation, refer to section 1.4.) The response
potential and field at x, due to the discrete classical partition take the form:

Vµ
dcl  (x) = fE  x - rp , αp, αx  p•E (rp; x)∑

p ≠ G(x)

 (22)

Eµ
dcl  (x) = - fT  x - rp , αp, αx   T  (rp; x)• p∑

p ≠ G(x)

 (23)

where p is the induced dipole at p. Note that p may or may not coincide with a
discrete classical charge position.

The continuum contribution to the response potential is mediated through dipole
and charge densities (the latter only with a finite ionic strength) on the boundary
surface separating the discrete and continuum partitions. Because the surface is of
arbitrary shape, analytic expressions59, 60  for the induced densities do not exist, and
one must resort to numerical recipes for representing the surface densities.56-58 We
use the so-called constant element representation, where the surface densities are
assumed to be constant over a certain area of the surface. The total surface is built
from a number of these areas, assumed to be planar, now to be called boundary ele-
ments (BEs). The dipole (and charge) densities are then reduced to discrete dipoles
(and charges) located at representative points on the BEs.

The accuracy of the continuum contribution depends on the number of BEs. An
optimum number of BEs has to be found, trading accuracy and numerical stability
for computational effort. It is important for numerical accuracy in the matrix inver-
sion (next section) that the surface is smooth and that the BEs have approximately
the same size. This is best achieved with the use of Connolly’s solvent accessible
surface,61 which is defined by the trace of the centre of a probe sphere that is rolled
over (overlapping) spheres centred on the atoms (see also section 3.3). The formatted
output of this program can be used directly. Other methods for manufacturing the
surface are available;56, 57 of these, the triangulation method by Juffer et al.58 has
been implemented in the present version of HONDO8.1. Further options provide for
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the definition of a triangulated sphere, or a cube (for simple test systems) around the
quantum and discrete classical partitions.

The expressions for the potential and field due to the induced surface dipoles ω
and charges ζ are:

 Vcont  (x) =   K (ε, κ , n I, r I; x) ωI + L (κ,  r I; x) ζI  SI ∑
I

(24)

 Econt  (x) =   - ∇xK (ε, κ, n I, rI; x) ωI - ∇xL (κ , rI; x) ζI  S I ∑
I

(25)

with K and L kernels dependent on the continuum parameters ε (the dielectric
constant) and κ (inverse Debye screening length):

 K (ε, κ, n I, rI; x) = ε 1 + κ  x - rI   exp - κ  x - rI  - 1  E rI; x  • n I  (26)

 ∇xK (ε, κ, n I, rI; x) = ε 1 + κ  x - rI   exp - κ  x - rI  - 1  T  r I; x  • n I
 

 - ε κ2  exp - κ   x - rI  E rI; x  • n I  x - rI 
(27)

 L (κ, rI; x) = 1 - exp - κ  x - rI   V  rI; x   (28)

 ∇xL (κ, rI; x) =  1 + κ  x - rI   exp - κ  x - rI  - 1  E rI; x   (29)

SI, rI and nI are the area, the representative point and the outward normal vector of
the I’th boundary element, respectively. Note that the surface dipoles are oriented
along the outward normal vector of the BEs, and that ω gives their scalar value.
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Coupling the Partitions 2.5

THE COUPLING between the different partitions of the system is quite straight-
forward once the expressions for the induced discrete classical dipoles and surface
dipoles and charges are known. The induced discrete classical dipoles are the result
of the linear response to the actual field at the location of the polarizabilities:

 p = α p •  EN
qm 

 rp  + Eel
qm 

 rp  + Eq
dcl  rp   +  Eµ

dcl  rp  + Econt  rp    (30)

In the same way, the induced surface dipoles ω and charges ζ depend on the poten-
tial and field, respectively, at the representative BE points:

 ωI = 1
2π 1+ε

   VN
qm 

 r I  + V el
qm 

 r I  + V q
dcl  rI   +  Vµ

dcl  rI  +  Vcont  r I    (31)

(where it is understood that the I’th element itself does not contribute to Vcont);

 ζI =  ε
2π  1+ε

  
 - EN

qm 
 rI  +  Eel

qm 
 rI  +  Eq

dcl  rI   • nI - Eµ
dcl  rI  • n I 

 
+ M κ, n I, nJ, r J; rI  ωJ + N ε, κ , nI, r J; rI  ζJ  S J∑

J ≠ I

  
(32)

where the kernels M and N are defined by:

 M (κ, n I, nJ, r J; rI) = 
 1 + κ  rI - r J   exp - κ   rI - r J  - 1  T  rJ; rI  • n J  

 
 -  κ2  exp - κ   rI - r J   E r J; rI  • nJ   r I - rJ  

 • n I (33)

 N (ε, κ, n I, rJ; rI) = 1
ε
  1 + κ  rI - r J   exp - κ  rI - r J  - 1  E r J; rI  • nI (34)

At this point, note that a self-consistent solution of the induced classical dipoles
and surface dipoles and charges may be calculated, given any input potential and
field [in eq. (31): V0 = VNqm + Velqm + Vqdcl ], by solving a set of coupled linear
equations, that may be cast into matrix form:120, 124

α p
-1 + Tqp’ ∇p K Ip SI ∇p LIp SI

-1
2π 1+ε

 EpI 1 - 
KJI

’  SJ

2π 1+ε
 - 

LJI
’  SJ

2π 1+ε

-ε
2π 1+ε

 TpI•NI  - 
ε MJI

’  SJ

2π 1+ε
1 - 

ε N JI
’  SJ

2π 1+ε

 

M
 

 

 
 

 = 

Ep
0

1
2π 1+ε

 VI
0

-ε
2π 1+ε

 EI
0•NI

 (35)
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or Ri=s0. Subscripts have been added for clarity. The primes denote exclusion of the
elements with identical subscripts, and the source potentials and fields have been
labelled by a superscript 0. NI is the super-vector containing all BE outward normal
vectors. By inverting the coupling matrix R, usually called relay matrix, the induced
moments may be found: i=R-1 s0. In practice, the solution of the linear coupling
equations is achieved in two steps through the LU-decomposition scheme.125 This
procedure has a great advantage over an iterative procedure,62 in which the induced
moments due to the input field are calculated first, followed by the response field
due to the induced moments elsewhere in the system, which results in an updated
field and updated moments, etc. In the LU-decomposition scheme the relay matrix
needs to be built and decomposed only once for a given geometry, ε, and κ, after
which it can be used to get the self-consistent induced moments in the classical parti-
tions for any source field. Of course, for very large problems (the order of the relay
matrix is maximally 3×Npol + 2×NBE, where Npol is the number of polarizabilities
and NBE the number of boundary elements) it may be cumbersome (or even impos-
sible) to store and LU-decompose the large relay matrix. For this reason, we intend
to also implement the iterative procedure, which requires a minimum amount of
memory.

The formulation of the coupling given here for the continuum contribution is the
linearized version of the Poisson–Boltzmann equations. If κ=0, one may choose
between surface dipoles and surface charges for the representation of the continuum
contribution to the reaction field. The representations are equivalent, only numerical
accuracy is much better for the surface dipole representation, because the inhomo-
geneity over the BEs of the inducing potential is smaller.58 Therefore we have chosen
to use the surface dipoles when κ=0. In that case the relay matrix is reduced to the
top-left blocks. In the absence of a continuum, only the (α-1 + T’)-block of the relay
matrix is retained. Alternatively, in the absence of a discrete classical part the relay
matrix consists only of the (1 - KS)-block (if κ=0).

In the present model three types of source fields may be distinguished: those
from the nuclei, those from the electrons, and those from the external charges, as is
made explicit in eqs. (30)-(32). Because of the linearity, the source fields may be
treated either separately or summed. By treating them separately, different energy
contributions may be identified. As an example, consider the nuclear interaction
energy, which is given by:

 ∆Unuc  = ZM   1
2

 VN
qm 

 RM  +  vR RM
†  R -1 v N

S,qm  ∑
M

 (36)

vS and vR are super-vectors containing the source fields and reaction potentials,
respectively. In this case vN

S,qm  contains the source fields due to all nuclei at the
polarizabilities and BEs, and vR(RM) the reaction potential at nucleus M, due to unit
induced moments at the polarizabilities and/or BEs:
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vN
S,qm  = 

EN
qm 

 rp

1
2π 1 + ε

 V N
qm 

 rI

-ε
2π 1 + ε

 EN
qm 

 rI  • n I

 ;      vR RM  = 

E rp; RM

K r I; RM

L rI; RM

  (37)

Thus vR(x)† R-1 vS in eq. (36) is the sum of the response potentials vR(x) at the given
point in space x from the self-consistent solution of the induced moments i=R-1 vS,
due to the given source field vS. Note the implicit double summation over all polar-
izabilities and BEs in this notation. The factor 1/2 in the first term of eq. (36)
accounts for the double counting. The second term is the interaction of the nuclei
through the polarizable environment. Its effect is to weaken the repulsion between
the nuclei, and is therefore often called the screening of the nuclear repulsion. In eq.
(36), the cost to make the induced dipoles (the polarization energy) has not yet been
accounted for. When the system is at equilibrium, this cost equals exactly half the
stabilization energy, i.e. the energy gained by the interaction with the polarizable
environment.52 Expressions for all energy contributions are given in the Appendix
(section 2.10).

Finally, let us turn to the electronic density, which is determined by the Fock
equations, accounting for the nuclear, electronic, and external static and response
potentials. For a closed-shell RHF wave function, the Fock matrix is, in the atomic
basis [cf. eq. (1.20)]:

Fij =  i  h0 + hStat  + hR  j  +  dkl  ij  g0 + gR  kl ∑
kl

 (38)

where  dkl = ∑ i∈occ 2 cki
*  cli

   is the kl’th density matrix element. The regular expres-
sions for h0 and g0 are evaluated exactly (using the standard code):

h0 = - 1
2

 ∇2
 - e  VN

qm 
 r  (39)

g0 = 1 - 1
2

 P12  e 2

r12
 (40)

whereas the external and reaction field integrals are all expanded. Below we give the
expanded operators, and explain each term. The electronic charge has been left
explicit in these formulas for reasons of clarity.

The expanded static external potential operator is given by:

 hStat  = - e   Vq
dcl  ra  + Eq

dcl  ra  •ra  - Eq
dcl  ra  •r  (41)
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and describes the effect of the external charges on the electronic density. It is under-
stood that ra is the expansion centre to which the ij’th charge distribution is assigned.
The one-electron response terms may be distinguished according to their origin:

 hR = hdcl
R  + h N

R  + h el 
R  (42)

The first term describes the effect of the induced moments due to the discrete classi-
cal charges’ source field:

 hdcl
R  = - e   vR ra  + e R ra  •ra  - e R ra  •r †  R -1 vq

S,dcl   (43)

where eR(ra) = -∇rav
R(ra) is the super-matrix containing the vector derivatives of the

response potentials [eq. (37)] at expansion centre ra. This term may be seen as a static
contribution as well, as it originates from the interaction between the classical parti-
tions only, before any interaction with the quantum-mechanical partition. The
second term originates from the response potential due to the nuclear source field:

 hN
R  = - e   vR ra  + e R ra  •ra  - e R ra  •r †  R -1 vN

S,qm   (44)

The third term contains the response due to the electronic density at the classical
charges and the nuclei, as well as at the electrons themselves:

 hel 
R  = hel 

R,dcl
 + h el 

R,N
 + γ hel 

R,self 
 (45)

where γ is a scaling parameter to be discussed shortly.

 hel 
R,dcl

 = - e  q p vR rp  ∑
p

 
†
  R-1   v a

S - ea
S •ra + ea

S •r  (46)

 hel 
R,N

 = - e  ZN vR RN  ∑
N

 
†
  R-1   v a

S - ea
S •ra + ea

S •r  (47)

 hel 
R,self 

 = e
2

2
  v R ra  + eR ra  •ra - eR ra  •r’ 

†
 R -1  v a

S - e a
S •ra + e a

S •r  (48)

where eS is defined as -∇rav
S. Note that va

S is the super-vector for the source fields
due to a unit charge at expansion centre ra, and ea

S similarly for a dipole. In eq. (48)
the factor 1/2 accounts for the polarization energy cost included in this term. There
can be no non-equilibrium contribution for this term (as it is coupled to the elec-
tronic response only). Eqs. (46) and (47) are the reverse terms of eqs. (43) and (44),
respectively.

Finally, the two-electron reaction field operator gR for a closed-shell RHF wave
function is given by:

gR = e2  1 - 
γ
2

 P12  ×  v R ra  + eR ra  •ra - eR ra  •r(1) † R-1  v b
S - eb

S •rb + eb
S •r(2) (49)
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Note that now, in contrast to eq. (48), there are two expansion centres: in the first
term ra for the ij’th charge distribution and rb for the kl’th; in the second ra for the
ik’th charge distribution and rb for the jl’th, respectively. The scaling parameter γ is
the same as in eq. (45). It serves to switch between the average (γ=0) and direct
(0<γ≤1) reaction-field approaches. As was discussed in the introduction, in the ARF
approach the reaction field is induced by the average field of the quantum partition
(meaning the electronic part of it), whereas in the DRF approach the reaction-field
operators are included in the Hamiltonian, so the electrons ‘feel’ their reaction fields
instantaneously. The latter has the advantages that the total energy can be expressed
as the expectation value of the Hamiltonian,29 and that an estimate of the dispersion
interaction between quantum and classical partition may be given.29, 55, 102 In the
DRF approach, γ serves as a scaling parameter which can be derived from comparing
the second order perturbation expression for the dispersion energy to the self and
exchange RF contributions [eqs. (48) and (49, second term)—see also section 3.2]. It is
connected to the excitation energies of the quantum and classical partitions (γ=0.5 if
the spectra of the quantum and classical partitions are identical).

The static and response potentials may be added to the Hamiltonian at will,
generating a variety of approaches: the static potential may be treated self-consis-
tently allowing the electronic density to adapt, later adding the RF contributions as a
perturbation; or the RF may be treated self-consistently as well, by including it in the
Hamiltonian, whether average or direct. The expressions for RF operators are the
same for the UHF wave function. However, the Fock matrix is different, because of
the separate treatment of α- and β-spin orbitals. For ROHF and GVB wave functions
coupling coefficients should be inserted into the two-electron terms according to the
state of interest; otherwise, the given RF operators apply. If the RF contributions are
put into the two-electron integrals prior to the SCF procedure (see below), the
program handles the coupling automatically.

For post-HF calculations (CI, MCSCF), only the ARF option can be applied easily,
because it needs the density only,30, 74, 83 and it has been implemented in the present
code. The screening of the self-interactions cannot be calculated straightforwardly,
nor can the RF interactions be put into the Hamiltonian, as for the HF wave
functions.
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Formal Reaction Field Interactions and Integrals 2.6

BECAUSE THE SOURCE AND REACTION FIELDS due to and at the quantum partition
are expanded, it suffices to solve the coupling equations [eq. (35)] only a limited
number of times, namely for unit charges and dipoles located at the expansion
centres, and once for the collection of external charges. The potentials and fields of
the induced moments are coupled back to charges and dipoles at the expansion
centres, to give unit RF interactions between expansion centres. These formal inter-
actions may then be contracted with the zeroth, first, and (if γ≠0) second moment
integrals to get the RF Fock matrix elements, and consequently with the density to
obtain the actual RF contributions to the energy. The formal RF interactions between
expansion centres are collected in the super-matrix Ω:

 Ωba  = 
 - eR rb  

 v R rb  + e R rb  •rb  

†

 R -1 
 e a

S 

 va
S  - ea

S  •ra  
 (50)

where Ωba is a 4×4 matrix containing the RF contributions of a unit dipole and
charge source at ra, at a unit dipole and charge at rb. The dimension of Ω is thus
4Nexp×4Nexp, with Nexp the number of expansion centres. Ω may be augmented by
two rows and columns, containing the formal RF interaction of a unit dipole and
charge at the expansion centres with all external charges and nuclei, respectively.
Consider e.g. the RF contribution to the nuclear attraction energy (also called the
screening of the nuclear attraction):

 ∆U
snua

 = - e dij   
 Mij 

 Sij 

†

 Ωan  ZN MN
1

 + ZN MN
1

†
 Ωna  

 Mij 

 Sij 
 ∑

N

 ∑
ij

(51)

with n denoting the expansion centre at which the N’th nucleus is located, and MN is
the dipole vector of the N’th nucleus w.r.t. the origin. The summation over the nuclei
may be carried out first, using a limited part of Ω only (because of the zeros),
producing a column and row vector, which may be added to Ω.

 aN  =  Ωan  ZN MN
1∑

N

 ;      Na
†

 =  ZN MN
1

†
 Ωna  ∑

N

(52)

and eq. (51) simplifies to:

 ∆U
snua 

 = - e dij  
 Mij 

 Sij 

†

 aN   + Na
†

 
 Mij 

 Sij 
  ∑

ij

(53)

Because the bracketed expression can be evaluated before entering the SCF proce-
dure, it may be included in the one-electron Fock matrix elements. In practice, aN
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and Na† are calculated by first summing the source fields and reaction potentials
[eq. (37)], respectively, before solving the coupling equations:

 aN  = 
- eR ra

vR ra  + e R ra  •ra

†

 R -1 v N
S, qm  (54)

 Na
†

 = vN
R, qm †

 R-1 
 ea

S 

 va
S - ea

S •ra 
 = ZM vR RM∑

M

†
 R-1 

 ea
S 

 va
S - ea

S •ra 
 (55)

The same is done for the discrete classical charges, constructing vqR,dcl, aQ and
Qa†. This procedure is advantageous because of the great reduction in the number

of times the coupling equations need to be solved and is achievable because of the
linearity of the coupling problem. Furthermore, the number of input-field super-
vectors vS and reaction-field super-vectors vR (to be stored for later use) is greatly
reduced. Expressions similar to eq. (53) can be obtained for the other one-electron
reaction-field contributions, and they are given in the Appendix. The screening of
the electronic self-interaction is also a one-electron term, but is a little bit different
from the ones discussed so far:

 ∆Uel
self  

 = 
γe 2

2
 dij  M ij

†
αβ Ω aa αβ∑

α,β =1

4

 ∑
ij

 ; M ij = 
Qij Mij

Mij
†

Sij

 (56)

where Q ij is a 3×3 matrix, containing the second moment integrals of the ij’th charge
distribution: Qij αβ =  i  r r†  j αβ, where α,β ∈ {x,y,z}. Again, the bracketed expres-
sion may be evaluated prior to the SCF procedure.

The two-electron RF terms in eq. (38) may be calculated on the fly in each itera-
tion, or be included in the two-electron integrals prior to the SCF in a similar fashion
as the one-electron RF terms can be included in the Fock matrix. Consider the J- and
K-like RF integrals:

 Jijkl 
R  = e2  

 Mij 

 Sij 

†

 Ωab   Mkl 
 Skl 

 +  Mkl 
 Skl 

†
 Ωba  

 Mij 

 Sij 
  ; 

 

 Kijkl 
R  = γ e2   Mik 

 Sik 

†
 Ωcd  

 Mjl 

 S jl 
 + 

 Mjl 

 S jl 

†

 Ωdc   Mik 
 Sik 

 

(57)

where c and d denote the expansion centres to which the ik’th and jl’th overlap
distributions are assigned, respectively. If γ=1, KRijkl=JRikjl, as for the vacuum J- and
K-integrals,101 and the two-electron RF contributions may be added to the vacuum
integrals because all two-electron integrals to be computed are of the form:

  ij  kl ’  =  ij  kl  + e2  
 Mij 

 Sij 

†

 Ωab   Mkl 
 Skl 

 +  Mkl 
 Skl 

†
 Ωba  

 Mij 

 Sij 
  (58)
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enabling the scaling according to the coincidences among the two-electron integral
indices applied in HONDO. If γ≠1, however, this formalism may not be employed,
since the relation KRijkl=JRikjl no longer holds. However, the super-matrix formalism
can be employed with any value of γ, as can be seen from the form of its elements:

 Pijkl 
’   =  ij  kl  + e2  

Mij

Sij

†

 Ωab  Mkl
Skl

 + Mkl
Skl

†
 Ωba  

Mij

Sij
  

 

 - 1
4

 

 ik  jl  + γ e2  Mik
Sik

†
 Ωcd  

Mjl

Sjl
 + 

Mjl

Sjl

†

 Ωdc  Mik
Sik

  +

 

 il  kj  + γ e2  Mil
Sil

†
 Ωef  

Mkj

Skj
 + 

Mkj

Skj

†

 Ω fe  Mil
Sil

  

(59)

Similarly, for open shell problems, the K’ijkl combination to be stored separately
equals the second part of the expression given for P’ijkl, so that RHF, UHF, ROHF
and GVB wave functions can be treated with all RF options. If the RF is treated as a
perturbation, and the ARF option is used, Ω is not constructed, since then the source
field of the total electron density is used, and the coupling equations need only be
solved three times (instead of 4×Nexp+2): once for the external charges, once for the
nuclei and once for the collected electrons.
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Non-equilibrium Reaction Fields 2.7

THE NON-EQUILIBRIUM REACTION FIELDS are either mediated through the
induced moments in equilibrium with another microstate (whether electronic or
conformational) of the system, or coupled directly. In the former case, the induced
moments are being stored, along with the polarization energy cost to induce these
moments. The polarization energy equals half the stabilization energy if the system
is at equilibrium with the polarization.53 This option requires the geometry of the
classical partitions to be the same for all quantum partition microstates. Alterna-
tively, the equilibrium reaction potential at the expansion centres is stored, requiring
the expansion centres to be appropriate for all quantum partition microstates to be
considered.

The induced moments generate an external potential, which may be included in
the one-electron terms of the Hamiltonian (in expanded form):

 hneq 
R  = - e   vR ra  + e R ra  •ra  - e R ra  •r † 

neq 

 (60)

For the calculation of excited electronic states it may be important to distinguish
between electronic and orientational (static) response contributions of the contin-
uum.103-105 These responses are associated with different time-scales. The responses
due to the electronic and orientational motions in the dielectric are not additive; to
separate them one has to perform two calculations: one with the total dielectric
constant ε0, and one with the optical dielectric component ε∞ only. The static
response is defined as the difference between these two responses:

hneq 
R, stat  = hneq 

R, ε 0  - hneq 
R, ε∞  (61)

It will be clear that two sets of induced moments need to be stored in this case.
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Monte Carlo Sampling 2.8

THE DEFINITION of groups in the discrete classical partition enables an easy and
efficient way of generating an ensemble average over certain degrees of freedom in
that partition, thus making a step in the direction of an integrated approach to
thermodynamic properties within the framework of the combined quantum-
mechanical–classical approach. Eventually, the scheme—which is the logical contin-
uation of the work initiated by Rullmann and van Duijnen98, 99—may lead to a
Molecular Dynamics type of program, combining quantum chemistry with all classi-
cally described reaction field options discussed in this paper. The combination of
quantum and molecular mechanically treated subsystems has been the subject of a
number of studies already.64-69, 72, 73 The major task will be the development of a
consistent force field, with a smooth transition between quantum-mechanically and
classically described interactions, which is especially tasking for the short-range
interactions. We have used a modified parameterization of the repulsive 12-term
from CHARMM126 between quantum and classical atoms, to avoid the quantum
partition moving into the classical partition in geometry optimizations (see also
section 3.2). The problem with this model potential is that the electrons do not ‘feel’
it, so the Pauli principle may be violated.

The sampling over the rotational and translational degrees of freedom of the
discrete classical groups follows the standard Monte Carlo (MC) scheme: in each
step, a group is selected, rotated around its centre of polarizability over a randomly
chosen angle (within bounds), followed by a random translation along the Cartesian
co-ordinates; the energy of the configuration is evaluated and compared to that of
the previous step; if the energy is lower, the configuration is accepted; if not, it is ac-
cepted with such a probability as to ensure Boltzmann statistics over the ensemble.6

In practice, in each Monte Carlo step, V q
dcl [eq. (10)] and vq

S,dcl [cf. eq. (37)] are up-
dated according to the move of the selected group. As far as the relay matrix is con-
cerned, the diagonal 3×3 block, containing α-1 of the rotated group requires updat-
ing, since the groups are rotated around the position of the group polarizability.
Only that particular polarizability tensor changes with the rotation. If translation of
the groups is allowed the coupling matrix elements along the rows and columns
belonging to the updated group, and V µ

dcl [eq. (22)] need updating as well. With the
updated static and response fields, the energy of the system is recomputed, using an
updated Ω matrix if required, and the acceptance test is applied. If the new con-
figuration is accepted, the updated fields and relay matrix replace those of the
previous configuration.
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Conclusion 2.9

BASED ON THE THEORETICAL DEVELOPMENT of partitioning the elementary
particles in a dense medium into groups, a practicable computational scheme has
been developed to numerically test the consequences of the theory, make useful
conceptual analyses, and predict properties of new systems. The sheer number of
particles considered in studying condensed phases implies the occurrence of an
enormous amount of interactions between them. A computational study of such
systems therefore requires the most advanced computational resources: the latest
computer systems allow exploration of hitherto unattainable accuracy and detail, but
are never quite up to the mark.

Nevertheless, sensible computational chemistry is not restricted to the ‘super’-
computers of our day: the (conceptually) simple models of Chapter 1 warrant mean-
ingful computations even on personal computers. However, one should not only be
interested in obtaining ‘the right number’. The more detailed models and computa-
tions have provided, and must continue to provide, a justification and validation of
the simpler representations and serve to find the answer to the question most
prominent in every computational researcher’s mind: did we ‘get the right number
for the right reason’?
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Appendix 2.10

Formulas for the Static and Reaction Field Energy Contributions

For any (i.e. RHF, UHF, ROHF and GVB) wave function, the total energy expres-
sion may be analysed as:

 ∆Utot  = ∆Uclas  + ∆Uqm + ∆U int + ∆Upol + ∆Uneq  + ∆Udisp (A.1)

The classical energy is:

 ∆Uclas = ∆Uelst
dcl

 + ∆Uint
scee

 + ∆Udisp 
S-K 

 + ∆Urep
CHARMM 

 (A.2)

The first two terms are the classical electrostatic energy:

∆Uelst 
dcl 

 = 1
2

  qp Vq
dcl  rp∑

p
 (A.3)

and the screening of the classical electrostatic energy, i.e. the interaction of the
discrete classical charges with the polarizable environment:

 ∆Uint
scee 

 = vq 
R, dcl  †

 R -1 vq 
S, dcl  (A.4)

where vq 
R, dcl  is defined analogous to vN 

R, qm   [eq. (55)]. The third term in eq. (A.2) is
the dispersion interaction, as estimated by the Slater–Kirkwood formula,127 employ-
ing either isotropic or anisotropic group polarizabilities, or distributed atomic polar-
izabilities. The last term is a reparameterized version of the pairwise additive, atom-
based, 12-type model repulsion taken from the CHARMM force field.126 Paramters
may be found in Appendix 1 to Chapter 3 (section 3.7).

The second term in eq. (A.1):

 ∆Uqm  = ∆Unuc + ∆Uel  + ∆Unua (A.5)

is the energy of the quantum partition in vacuo, with the SCF density. The terms are
well known:

∆Unuc = 1
2

  ZM V N
qm 

 RM∑
M

 (A.6)

is the nuclear repulsion energy; for a closed-shell RHF function,

 ∆Uel = ∆Uel
kin

 + e
2

2
  dij dkl   ij  kl  - 1

2
  ik  jl  ∑

ij,kl

(A.7)
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is the vacuum electronic energy; and the nuclear attraction energy is:

 ∆Unua = - e   dij   i  VN
qm 

 r   j  ∑
ij

(A.8)

The interaction energy [the third term in eq. (A.1)] can be split into a static, an
ambiguous and a response term:

 ∆Uint  = ∆Uelst
int

 + ∆Uamb
int

 + ∆Uresp
int

 (A.9)

The electrostatic terms are clearly:

 ∆Uelst
int

 = ∆Uelst
N -dcl 

 + ∆Uelst
el -dcl 

 (A.10)

where the electrostatic interaction between nuclei and external charges is:

∆Uelst 
N -dcl 

 =   qp VN
qm 

 rp∑
p

 =  ZM  Vq
dcl  RM∑

M

 (A.11)

and the electrostatic interaction between electrons and external charges is:

 ∆Uelst 
el -dcl  

 = - e  dij  Sij  V q
dcl  ra  + Eq

dcl  ra  •ra  - Mij •Eq
dcl  ra  ∑

ij

 (A.12)

The ambiguous term arises from the (reaction) field induced by the discrete clas-
sical charges, if the classical partition is itself split up into interacting fragments. If
the reference state is one in which this interaction is already accounted for before
interaction with the quantum partition is allowed, this induced field can be regarded
a static field with respect to the quantum system, and could by rights be added to
the electrostatic term in the analysis. However, if the reference state is one where all
partitions are non-interacting, this field is a true response component and could be
added to the response term in the analysis. It is given by:

 ∆Uamb
int 

  = ∆Uamb
class -N 

 +  ∆Uamb
class -el 

   (A.13)

where

 ∆Uamb 
class -N

 = vN 
R, qm  †

 R -1 vq 
S, dcl  (A.14)

[vN 
R, qm   has been defined in eq. (55)] and

∆Uamb
class -el 

 = - e dij  
 Mij 

 Sij 

†

 aQ   ∑
ij

;      aQ  = 
- eR ra

vR ra  + eR ra  •ra

†

 R-1 vq
S, dcl (A.15)
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The response term is given by:

 ∆Uresp
int 

 = ∆URF
N -class 

 + ∆URF
el -class 

 + ∆U
snr 

 + ∆Uel
self 

 + ∆U
ste 

 + ∆U
snua 

 (A.16)

with

 ∆URF
N -class

 =  vq 
R, dcl  †

 R -1 vN 
S, qm   (A.17)

 ∆URF
el -class 

 = - e dij   Qa
†

 
 Mij 

 Sij 
 ;      Qa

†
 = vq

R, dcl †
 R-1  

 ea
S 

 va
S - ea

S •ra 
 ∑

ij

(A.18)

the interaction of the discrete classical partition with the RF induced by the nuclei
and electrons, respectively. Furthermore,

 ∆U
snr 

 = vN 
R, qm  †

 R -1 vN 
S, qm  (A.19)

is the screening of the nuclear repulsion,

 ∆Uel
self  

 = 
γ e 2

2
 dij  Mij

†
αβ Ωaa αβ∑

α,β =1

4

 ∑
ij

 ; Mij = 
Qij Mij

Mij
†

Sij

  (A.20)

the screening of the electronic self energy,

 ∆U
ste 

 =  ∆Ucoul 
ste 

 - ∆Uexch 
ste 

 (A.21)

 ∆Ucoul 
ste 

 = e2 dij dkl  
Mij

Sij

†

 Ωab  Mkl
Skl

 + Mkl
Skl

†
 Ωba  

Mij

Sij
∑
ij≤kl

 (A.22)

 ∆Uexch 
ste 

 = 
γ e 2

4
 dij dkl  

Mik
Sik

†
 Ωcd  

Mjl

S jl
 + 

Mjl

S jl

†

 Ωdc  Mik
Sik

∑
ij≤kl

 (A.23)

the screening of the two-electron Coulomb and exchange interactions, where the
factor 1/4 in eq. (A.23) is composed of a factor 1/2 for double counting, and a factor
1/2 for the inherent polarization energy cost, which is also present in the screening
of the self energy [eq. (A.20)], recall the discussion of eq. (48). Finally:

 ∆U
snua

 = - e dij  
 Mij 

 Sij 

†

 aN   + Na
†

 
 Mij 

 Sij 
  ∑

ij

(A.24)

is the screening of the nuclear attraction energy.
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In addition to these interaction terms, the same model repulsion term that acts
between the discrete classical groups may be added. This repulsion is not felt by the
electrons, and thus the Pauli principle may be violated. Effective potentials that are
in some way felt by the electrons are much more elaborate—a good description will
require the computation of at least overlap integrals with some (temporary) basis set
on the classical partition.114, 116, 128 It will be worthwhile to pursue this line of
research in the development of a more consistent combined quantum–classical force
field.

The polarization energy is the cost to make the induced moments. It is calculated
from the equilibrium response interactions for the source fields. For equilibrium
response, it can be shown that the polarization energy equals exactly half the stabi-
lization energy.

 ∆Upol =  ∆Upol
clas 

  + ∆Upol
qm 

 (A.25)

 ∆Upol
clas

 = - 1
2

 ∆U int
scee 

 (A.26)

 ∆Upol
qm

 = - 1
2

 ∆Ustab
eq

 = - 1
2

 ∆U
snr

 + ∆Ucoul 
ste

  (A.27)

It has been mentioned that the nuclear, electronic, and discrete classical source fields
may be added before contracting with the relay matrix (section 2.5). In that case, the
analysis [eqs. (A.26) and (A.27)] for the polarization energy cannot be made.
However, the polarization energy is still half the total stabilization energy from the
reaction field, and is calculated as such.

The interaction with the non-equilibrium RF is (elaborated for the case in which
the static component of the dielectric response is not in equilibrium, and the induced
moments carry the non-equilibrium response):

 ∆Uneq  = ∆Udcl
neq

 + ∆UN
neq

 + ∆Uel
neq

 (A.28)

 ∆Udcl
neq

 =  vq,0
R,dcl  †

 

neq 

ε0

 -  v
q,∞
R,dcl  †

 

neq 

ε∞

 (A.29)
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ε∞

 (A.30)
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 ∆Ue l
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ij
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†
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 (A.31)

where the total dielectric is denoted by 0 and the optic (fast) component by ∞.

The dispersion energy between quantum partition and surroundings may be
estimated in our RF formalism, owing to the separate evaluation of the screening of
the self [eq. (A.20)] and exchange [eq. (A.23)] interactions.29, 55 Here, γ serves to
correct for the error made in the prefactor of the DRF-expression in comparison to
that of the Unsöld approximation to the second order perturbation expression [eq.
(1.35)] for the dispersion interaction. This prefactor should be UA US/(UA + US),
whereas it actually is UA, where UA and US denote the mean excitation energies of
the quantum and classical partitions, respectively. Thus:

 γ = US

UA + U S
 (A.32)

implying that if the spectra of the classical and quantum partitions are identical,
γ=1/2. The estimate of the dispersion energy is given by:

 ∆Udisp =  ∆Uel 
self 

 - ∆Uexch 
ste 

 (A.33)

If a dielectric continuum is present, the dispersion is calculated with the optic
component of the dielectric response only, because it is that component that reflects
the electronic response of the bulk. The configuration of the discrete classical parti-
tion may strongly influence the magnitude of the dispersion estimate, as has been
shown by Thole and van Duijnen for the water dimer.55 A more reliable estimate
may then be obtained by recalculating the dispersion estimate with quantum and
classical partitions interchanged, and averaging over the two constellations.
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3

Practice

Mother Nature is a bitch.

TENTH COROLLARY TO MURPHY’S LAW

Murphy’s Law (1981)
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Introduction 3.1

THE PROOF of the pudding is in the eating. The practical models derived on
the basis of theoretical arguments must now be put to the test. We address a number
of questions concerning our model. First of all the internal consistency of the classi-
cal description as being derived from quantum-chemical calculations is investigated.
The interaction energy of the water dimer is calculated fully quantum chemically, in
a mixed quantum-chemical–classical description, and fully classically. The interac-
tion energies should come out quite comparable between these three approaches, not
only in total, but in their components as well, and indeed they do. The confidence in
the approach gained by the water-dimer experience is subsequently confirmed in the
calculation of the interaction energy between entirely different molec-ules, viz.
benzene and substituted benzenes.

Solvated systems consist of an unimaginably large number of molecules. The
molecular models that perform well for dimers need not be suitable when many are
thrown in together. Conversely, the detail provided by the molecular model may not
be required in condensed-phase calculations. The explicit versus continuum
approach is studied for the solvation of a number of solutes in water. In some
instances the dielectric continuum model may be used to calculate solvation (free)
energies reliably, but we find it is severely limited. A more serious problem with the
continuum model is its lack of generality with respect to application to solvents
other than water.

The explicit solvent model is generally applicable to all solvents, but it is much
more costly in terms of computational effort. Nevertheless, the solvatochromism—
i.e. the change of electronic spectra on change of solvent—of acetone in water,
acetonitrile, and tetrachloromethane, could only be reproduced both qualitatively
and quantitatively with the explicit model, demonstrating once more that the lack of
molecular detail in the continuum model must not be taken lightly.

Finally an analysis of dielectric behaviour is given. In spite of the fact that the
dielectric model was conceived for macroscopic systems, it has found application in
microscopic calculations, e.g. in screening factors for electrostatic interactions in
atomic force fields. By breaking the dielectric down to microscopic dimensions it is
explicitly shown that true dielectric behaviour is not scaleable to the microscopic
dimensions at which computational chemistry operates.
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Interaction Functions 3.2

Introduction

THE DIRECT REACTION FIELD (DRF) APPROACH to the description of the
condensed phase as presented in Chapter 1 provides a consistent route from a
quantum-chemical to an all-classical force-field calculation of intermolecular inter-
actions. This transition is based on the perturbation-theoretical analysis of the inter-
action energy in terms of molecular electrostatic and response properties. The
attraction of modelling molecular properties in this setting is twofold. First, the
description may be systematically improved according to the required accuracy by
increasing the number of expansion centres for charge and polarizability represen-
tations. The approach shares this aspect with ab initio quantum chemistry which
allows larger basis-set and configuration state function expansions with eventual
convergence to exact results. Second, the theoretical analysis provides a check on the
validity of the classical model, which makes it easy to pinpoint those parts of the
force field that need reparation if things go wrong, without rendering other parts of the
parameterization obsolete.

The molecular properties of interest for the calculation of intermolecular interac-
tions (section 1.3) are the electrostatic multipole (charge, dipole, quadrupole, etc.)
and response moments (dipole polarizability and higher-order response moments).
These may be modelled in various ways and to certain degrees of sophistication. The
choices—it is important to stress these are choices!—made in this work for
distributed representations of both static and response moments, and for stopping at
the exact representation of the overall dipole moment and at linear response have
been amply described in section 1.4. Here we test the model both against internal
consistency as we go from a fully quantum-chemical through a mixed to a fully
classical description of molecular dimers and against experimental data. The latter is
important for estimating the reliability of interaction energies of molecular com-
plexes predicted by the classical force field.

The interaction energy between two molecules is analysed in the following
terms, be it for quantum-chemical, mixed, or classical descriptions:

 ∆Uint = ∆Uelst
int  + ∆ Urep

int  + ∆ Uresp
int  + ∆ Udisp

int  (1)

or electrostatic, repulsion, response, and dispersion. This analysis is straightforward
for the classical and mixed descriptions, but contains elements of arbitrariness at
small intermolecular distances for the quantum-chemical approach because of the
inseparability of the total wave function into fragment functions (cf. the discussion in
section 1.3). At larger intermolecular distances there is no problem; the fragments are
recognizable and non-overlapping.
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As soon as the fragment wave functions start overlapping the integrity of the
fragments is violated and analysis becomes cumbersome.23, 27, 129 Straightforward
analysis starts with calculation of the total energy—in the Hartree–Fock approxima-
tion, accounting for basis-set extension errors by the counterpoise method130, 131—of
the molecular complex by superimposing the fragment densities, UA+S

HF . The energy
difference of UA+S

HF  with the sum of the isolated fragment energies is the electrostatic
interaction energy if the fragments are non-overlapping. If the fragment wave func-
tions do overlap, the superimposed state is unphysical, however,  because it then
violates the Pauli principle. The first physically meaningful interaction energy can be
defined only after this principle has been implemented by orthogonalizing the frag-
ment wave functions, ‘contributing’ ∆Uorth

HF . Thus, in a fully quantum-chemical
treatment, the electrostatic and repulsion terms are best collected, and denoted ∆U0:

 ∆U0 = UA+S
HF  - UA

HF  + U S
HF  + ∆ Uorth

HF  ≅ ∆Uelst
  + ∆ Urep (2)

At large intermolecular distances the orthogonalization has no effect, so that it is
meaningful to use the superimposed state to define the electrostatic interaction
energy.

From the orthogonalized state the fragment wave functions may be allowed to
relax to accommodate their mutual influence. The energy difference between the
fully relaxed state and the orthogonalized state is the response contribution to the
interaction energy. At smaller intermolecular distances the relaxation of the wave
function may aggravate the problem of dealing in terms of recognizable fragments as
chemical bonding starts to become important. One may still attempt to analyse the
contributions in terms of fragments by localizing the orbitals as much as possible,
ascribing each orbital to a fragment according to its character. The resulting energy
analysis is somewhat arbitrary because there are many different localization
schemes. Good localization is even more important for the calculation of the disper-
sion interaction. This interaction is not included at the Hartree–Fock level, which
lacks the instantaneous electron–electron interactions that define the dispersion.
Calculation at a correlated level includes the dispersion interaction which may,
however, only be analysed as such if properly localized occupied as well as virtual
fragment orbitals are available. Again, this requirement is easily fulfilled at large
intermolecular distances, but no longer as the fragments start overlapping. For
weakly interacting systems (including the water dimer) the dependence on the local-
ization was found to have little effect on the analysis, though.132

The most fruitful and physically viable approach is then to maintain the long-
range analysis as much as possible, bearing in mind the invalidity of the transition
from quantum-chemical to mixed and classical descriptions as the intermolecular
separation becomes small. It is allowable, however, to stretch the classical model a
bit by accounting for overlap effects. At intermediate intermolecular separations
quantum-chemical results may yield good models for damping functions which
account for the spatial extent of the fragment electronic density within a classical
description. The advantage of the classical representation of the charge density lies
in the drastic reduction of detail by using just a small number of charge-points
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instead of the large number of basis functions covering large parts of space used in
quantum-chemical methods. The neglect of the spatial extent of the charge distribu-
tion by the charge-point representation may be repaired without too much compu-
tational effort by assuming the charge to be distributed in simple volumes, instead of
being concentrated in one point in space. Thole has investigated several of these
volumes with their shape-functions and found them to be useful even at typical
intramolecular interatomic distances.49

Having constructed a molecular force field based on the long-range interaction
energy analysis, and maintaining it with plausible damping functions at intermedi-
ate distances, the task of avoiding flagrant violation of the Pauli principle by some ad
hoc repulsive interaction function remains. Ideally, one would like a functional form
that puts a high penalty on the penetration of the electrons treated explicitly into the
regions of space that are already claimed by the electrons that underlie classically
modelled molecules. Such functional forms do exist, but are computationally highly
demanding because they are almost at the level of the original quantum-chemical
description itself.111, 112, 114-116 (To add to the complexity of this task, the effective
potentials should not neglect the give-and-take character of the antisymmetrization
in the valence region.) Indeed it is hardly to be expected that such a far-reaching
requirement as the antisymmetry due to the Pauli principle can be modelled by a
simple functional form. For the molecular systems of interest in this thesis such an
elaborate procedure would miss its mark, because the basic assumption for using the
molecular model is the non-, or low-overlap of the molecular fragments. If, however,
bonds are to be cut in the separation of quantum and classical fragments the devel-
opment of effective fragment potentials is essential.

The ad hoc repulsive potential chosen here is taken from the existing CHARMM
force field,126 be it with slightly different values of the parameters in order to con-
verge on the other parts of the DRF force field. The CHARMM-repulsion has the
form:

 ∆Urep
CHARMM  = 3

4
 

αi αj ri + r j
6

 αi/ni  + αj/nj 
 rij

-12∑
i<j

 (3)

in which αi, ni, and ri are the isotropic polarizability, number of valence electrons,
and radius of atomic centre i, respectively, and rij is the distance between centres i
and j. We use the integral number of valence electrons of an atom, and the same
atomic polarizabilities that go into the electrostatic (for the damping function),
response, and dispersion terms, leaving only the atomic radii as independent param-
eters to be optimized. By noting that the radius of an atom may be related to its
polarizability—classically, the polarizability of a conducting sphere of radius r is r3—
the number of parameters can be reduced further. Note also that we use one set of
parameters for each atom, independent of its chemical functionality.

Theoretically, the repulsion term should have exponential distance depen-
dence,23 and the 12-type repulsion model is known to be too steeply repulsive at
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shorter contacts. We note again that the repulsion serves to avoid situations that can
only be described properly by a fully quantum-chemical treatment.

The calculation of the electrostatic and response interaction energies in the mixed
and fully classical descriptions have been amply discussed in Chapter 2, with formu-
las given in the Appendix. An elaboration on the dispersion interaction is in order at
this point as it has been hinted at being connected to the second order perturbation
(SOP) expression but not explicitly shown to be so. We wish to make amends for that
at this point. The estimate of the dispersion interaction between a quantum-
chemically described molecule A and a classically described molecule S emerges
from the comparison of the (SOP) expression in the Unsöld approximation to the
two-electron reaction-field contributions to the total energy.29, 55, 102 Recall the SOP
expression for the dispersion interaction [eq. (1.35)] and the Unsöld approximation
for the energy-denominator [eq. (1.36)]. Insertion of the Unsöld approximation in the
SOP expression and rewriting the interaction operator in its original form leads to:
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in which µA is the dipole operator of subsystem A and Eµ s; a  is the operator that
gives the field at ra
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In eq. (4) the polarizability of S is inserted, but the sum-over-states expression for A
is retained. Addition and subtraction of the k=0 term to eq. (4) yields a fluctuation
formula for the dispersion:
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 (6)

Both terms within the rightmost brackets in eq. (6) are computed within the DRF
approach [eqs. (2.A.20) and (2.A.23)], but note that the DRF operator is not restricted
to the dipole term only. This leaves the prefactor as a scaling between the SOP esti-
mate and the computed DRF value. In most applications the ionization energies of
the molecules A and S have been used to calculate the prefactor. If A and S are
identical the prefactor, called γ, equals 0.5.

To complete the journey from fully quantum-chemical through the mixed to the
fully classical description, the dispersion between classically described molecules is
given by the Slater–Kirkwood version of the SOP expression,127 expressing the pre-
factor in terms of the polarizability (again!) and number of valence electrons, rather
than excitation energies, as in the mixed [eq. (6)] and classical London dispersion
formulas:
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 ∆Udisp
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 =  1
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Tr α i Eµij

2
 α j  

 αi/ni  + αj/nj 
 ∑

i<j

 (7)

The summation may be over atomic or group polarizabilities, which may be treated
as isotropic or anisotropic, according to the polarizability representation of choice.

The Water Dimer

The water dimer fulfils the role for force fields that the hydrogen molecule fulfils
for the representation of the chemical bond and the helium dimer for the accurate
calculation of intermolecular interactions. The literature abounds with water–water
potentials to varying degrees of accuracy, derived from quantum-chemical computa-
tions and from experimental data and from mixtures.99, 133-143 Aspects of the water
model presented here have been discussed before.55, 99  Here, the exposition aims at
demonstrating the derivation of the classical force field from quantum-chemical
calculations. The extensive quantum-chemical studies of the water-dimer Potential
Energy Surface (PES) of Jeziorski and van Hemert (I),144 Vos et al. (II),132 and
Szalewicz et al. (III)145 serve as our reference, together with the accurate calculation
of the well-depth at the minimum-energy conformation of van Duijneveldt-van de
Rijdt and van Duijneveldt (IV).146 A comprehensive review of the water–water
interaction by ab initio methods was published by Scheiner.147 The molecular elec-
trostatic properties of water in our model are derived from the LCAO–RHF wave
function with a basis set of double-ζ quality in the valence shell plus a polarization
function (DZP).148 The comparison is therefore with literature results of similar
quality. Finally we proceed to comparison to experimental results149 in order to test
the model for its potential to predict binding energies of molecular complexes.

Comparison to ab initio results

The computed water dipole and quadrupole moments and dipole polarizability
are collected in Table 1, together with the values of these properties given by the
classical model. The classical model consists of three point charges and three atomic
polarizabilities, located at the nuclei. The point charges are the Dipole Preserving
Charges (DPCs) discussed in section 1.4.43 The atomic polarizabilities were chosen to
reproduce the computed polarizability within Thole’s model.49 (The standard polar-
izabilities in Thole’s model reproduce experimental molecular polarizabilities, a
standard computations at the DZP-level cannot attain.) Two shape-functions were
studied, corresponding to a linearly (LIN) and an exponentially (EXP) decaying
volume for the charge, respectively. It is not yet our aim to reproduce experimental
values, so the values in Table 1 serve to illustrate the correspondence between
quantum-chemical and classical model properties.
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Table 1. Water propertiesa from ab initio calculations and classical models.

Model µx Θxx Θyy Θzz αxx αyy αzz

DZP (CHF)b .878 -.08 1.82 -1.74 5.42 7.18 3.03

DZP (SOP)c 5.50 6.65 3.53

LINd,e .878 -.06 1.26 -1.19 4.95 6.97 3.66

EXPd,f .878 -.06 1.26 -1.19 5.12 6.31 4.28

exp.g .728 -.10 1.96 -1.86 9.5 9.7 9.2
a All values in atomic units. The tensor components not given all equal zero in the geometry studied.
b Polarizability from Coupled Hartree–Fock calculation. c Polarizability from second-order perturba-
tion calculation with non-empirical Unsöld correction for finite basis-set size (ref. 150). d Atomic
charges: O: -.796; H: +.398. e Atomic polarizabilities: O: 2.417; H: 1.442, damping parameter a=1.662
with conical charge-volume (ref. 49). f Atomic polarizabilities: O: 2.666; H: 1.448, damping parameter
a=2.089 with exponentially decaying charge-volume (ref. 49). g Experimental water properties. Dipole
from ref. 151; quadrupole from ref. 152; semi-empirical polarizability from ref. 153.

The interaction components of the water dimer were studied in the orientation of
the experimental water-dimer minimum-energy conformation,149 shown in Figure 1.
The quantum-mechanical (QM) water was treated both as H-bond donor and as H-
bond acceptor in order to investigate the orientation dependence of the mixed
description. The comparisons of the zeroth-order, relaxation, and dispersion compo-
nents of the interaction energy of the water dimer as a function of O–O distance are
shown pictorially in Figure 2.

Only the results for the exponential damping function are shown here. At O–O
distances above 6 Bohr, the results for the linear damping function are virtually
identical to those obtained with the exponential damping function. As the monomers
close in, the linear damping function does not behave as smoothly as the exponential
one. Instead, it results in a deeper and narrower potential well. Bearing in mind that
at room temperature RT corresponds to 2.5 kJ/mol, Figure 2 shows that the
interaction-energy components in the mixed and classical descriptions start
deviating seriously from the ab initio results only at intermolecular distances shorter
than 5.5 Bohr, where the relaxation and dispersion energies differ notably from the
fully QM results, pointing to an over-damping of the classical model.

θ a

θ d

OH
H

O

H

H

Figure 1. Experimental water-dimer orientation. d=51°; a=57°.
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Figure 2. Comparison of the interaction-energy components of the water
dimer in various descriptions, as a function of O–O distance (see Figure 1).
Top: figure 2a: zeroth-order interaction, eq. (2); middle: figure 2b: relaxation
energy interaction; bottom: figure 2c: dispersion interaction. Legend: : fully

QM description (for the dispersion component this is QM I); : fully QM
description II (curves fit with a cubic spline); : mixed description with QM

water as H-bond donor; : mixed description with QM water as H-bond
acceptor; : fully classical description.
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This over-damping can be repaired, but in the mixed model this might lead to
the polarization catastrophe discussed in section 1.5 for the linear damping model.
Furthermore, one should not expect the classical model to be satisfactory well inside
the overlap region, where typically quantum-chemical effects due to the operation of
the Pauli principle govern the distribution of the electrons.

Another feature worth some attention is the orientation dependence of the inter-
action components in the mixed description. This was already noted by Thole and
van Duijnen,55 and reflects an imbalance in the distributed charge and polarizability
representations used. The problem is mainly due to the short H–O distance due to
hydrogen bonding. Hence, the relaxation energy of the QM H-bond donor is larger
than that of the QM H-bond acceptor because the donor molecule ‘sees’ a large
charge on O quite nearby, whereas the acceptor ‘sees’ a small charge on H, to which
the vacuum densities respond accordingly. On the other hand, the dispersion inter-
action is larger for the QM H-bond acceptor because there are some eight electrons
‘seeing’ a H-polarizability, compared to about one electron ‘seeing‘ an O-polarizabil-
ity, which is not even twice that of H. The imbalance vanishes as the distance
between the molecules increase, as it should when local effects disappear.

The imbalance can be repaired for the dispersion interaction by using a group-
polarizability representation. The group polarizability will be located quite near the
O-atom, hardly changing things for the QM H-bond donor, but causing a drop in the
dispersion interaction for the QM H-bond acceptor because of the increased distance
of the polarizability to the acceptor O.

Finally, suffice it to conclude that the fully quantum-chemical, mixed, and fully
classical models are compatible at long and intermediate intermolecular distances.
The fact that even the H-bonded water dimer is accommodated quite well within
this model demonstrates its scope. Thus we expect to be able to predict van der
Waals minima of ab initio quality with the classical model for molecular complexes of
molecules other than water. This may not be good enough, however, for practical
purposes which are geared to the prediction of experimental interaction energies.
The improvements required for attaining experimental standards are the subject of
the next section.

Comparison to experimental results

The DZP-derived classical model polarizability of water is rather small compared
to experiment (see Table 1), resulting in an underestimation of the induction and
dispersion interaction energies compared to accurate calculations. If the model is to
be used to yield interaction energies comparable to experimental values, the
polarizability is the prime candidate for improvement. Of course correlated large
basis-set calculations36 could be invoked to calculate molecular polarizabilities that
can then be reproduced by Thole’s model. The standard atomic polarizabilities of
Thole’s model do, however, yield molecular ground-state polarizabilities of experi-
mental quality for molecules outside the learning set, disposing of the immediate
need to perform costly ab initio calculations. (For excited states there is a call for such
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Figure 3. Comparison of the total interaction energy of the water dimer in
various descriptions, as a function of O–O distance (see Figure 1). : fully
QM description I; : fully QM description II; : estimated ab initio limit

(QM IV); : mixed description with QM water as H-bond donor; : mixed
description with QM water as H-bond acceptor; : fully classical description.

calculations154 because of the limited availability of experimentally determined
polarizabilities.154, 155) For instance, water was not in Thole’s learning-set but its
experimental polarizability is reproduced quite well by the model (parameters are
given in Appendix 1). With the group polarizability thus obtained, the total interac-
tion energy curve of the water dimer was recalculated in the mixed and classical
descriptions, and is shown in Figure 3.

The agreement between the standard DRF force-field and high-quality ab initio
calculations for both mixed and fully classical descriptions is excellent at the mini-
mum. In this discussion it must be borne in mind that the minimum energy by van
Duijneveldt-van de Rijdt and van Duijneveldt (IV) should be regarded as the best
available value, comparing very well to experiment after thermodynamic correc-
tions. The deeper wells obtained earlier (I and III) are mostly due to the dispersion
contribution which was shown to be sensitive to the exponent of the polarization
function.146 The short-range interaction is too repulsive, in accord with the exagger-
ated steepness of the 12-type repulsion term. Reparation of the dipole polarizability
of the water monomers provides the major correction to the DZP-level results.
Further sophistication of the description of the monomer properties is not deemed
necessary for the purposes pursued in this thesis. For calculation of e.g. rotation–
vibration spectra the DRF scheme is too crude. The small splittings encountered
there require accurate description of higher-order molecular properties.156 We
conclude that the transition from (accurate) ab initio QM descriptions through mixed
to the fully classical DRF force field is very satisfactory for the calculation of inter-
molecular interaction energies as long as we keep in mind that the approach is
bound to break down at intermolecular distances that enter the region of covalency.
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Figure 4. Substituted-benzene dimer conformations. I: parallel–displaced; II: anti-parallel–
displaced; III: head-on perpendicular; IV: side-on perpendicular.

Complexes of Benzene and its Derivatives

The benzene dimer has been regarded as a prototype for the study of π–π-inter-
actions in (macro)molecular complexes and in proteins.157, 158  The observed prefer-
ence for parallel–displaced (I, II) and perpendicular (III, IV) (see Figure 4) over paral-
lel–stacked orientations in these compounds has been ascribed to the electrostatic
interaction between the π-systems. The repulsion of the electron charge-clouds above
and below the molecular plane of π-systems dominates in the parallel orientation,
whereas in the perpendicular and displaced orientations the overall electrostatic
interaction is favourable. The main contribution to the binding energy of the benzene
dimer is however not from the electrostatic, but from the dispersion interaction. The
dispersion is claimed to be hardly orientation dependent157, 159 and thus not to
prefer a particular intermolecular structure.

The leading electrostatic moment of benzene is the quadrupole. In proteins
phenyl rings are always attached to the back-bone, introducing a possibly large
dipole moment which may dominate the electrostatic interaction with the surround-
ings. If the phenyl rings are further substituted with e.g. hydroxyl groups the dipole
moment becomes even more prominent. The study of benzene derivatives, such as
toluene, xylene, and fluorobenzene, is expected to shed light on the consequences of
the substitution of phenyl rings on interaction energy and conformation. Molecular
beam experiments on clustering have been performed on some benzene derivatives,
both of the pure substance and of mixtures.160 For the interpretation of these exper-
iments a number of parameters are required that are not all that easy to determine
independently, one of them being the binding energy. The experimental determina-
tion of the binding energy is quite difficult161-163 and accurate calculation is there-
fore warranted as a check on the experiments.159, 164

Accurate computation of dispersion interactions requires excellent description of
the molecular electronic spectrum, which can only be done by using both large one-
electron and large configuration basis-set expansions in current ab initio methods.
Only very few such studies have been published. The problem with the arenes is that
they are planar but an important portion of their electron density resides outside the
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plane. Standard one-electron basis-set expansions tie their basis functions to the
nuclei, and provide insufficient opportunity for the electrons to distribute
themselves in the regions above and below the molecular plane. This deficiency may
be repaired only at great costs as the computational effort formally grows with the
sixth power of the number of basis functions. Reliable (semi-) empirical models for
the computation of the dispersion interaction in molecular complexes are therefore
very valuable to supplement state-of-the-art quantum chemistry.

The DRF force field provides a fairly good estimate of the dispersion interaction
because experimental molecular polarizabilities are represented very well by Thole’s
model. Although the interaction energy gained by going beyond the Hartree–Fock
level in ab initio treatments includes more than just the dispersion connected to the
dipole polarizabilities, the major contribution is captured by the DRF model for the
water dimer. Here we investigate a number of molecular arene complexes, starting
with the benzene dimer. The standard all-classical DRF force field is shown to agree
on the binding energy and preferred orientation with the best ab initio study
published for this dimer.

The benzene dimer

The benzene dimer potential has been studied extensively.159, 165-168 Accurate ab
initio calculations are sparse, the best published by Hobza et al.,159 who find a paral-
lel–displaced conformation (I) to be slightly more stable than a head-on perpendicu-
lar one (III). From experimental determination of the principal moments of inertia,
the preferred orientation of the benzene molecules was found to be slightly tilted
away from being perpendicular.169, 170 The experiment reflects the thermodynamic
average of all possible conformations, and it is to be expected that perpendicular
conformations are more numerous than parallel–displaced ones, outweighing them
in the thermodynamic average.

The minimum-energy conformations found by Hobza et al. were studied with
our all-classical DRF force field. DP charges (DPCs) located at the nuclei only were
derived from a HF-level calculation in a basis of STO4-31G quality. These do not
fully reproduce the experimental quadrupole moment (but are better than those
obtained from a DZP-quality HF wave function), as can be seen from Table 2 in
which computed and experimental molecular properties are collected.

Two other sets of charges that do reproduce the quadrupole moment were inves-
tigated as well. The first set is obtained by simply scaling the DP charges (SDPC), the
second set by adding extra charge-points 1.0 Å above and below the C-atoms and
constructing the quadrupole moment by shifting the appropriate amount of charge
from the C-atoms to the extra charge-points (EDPC). For the molecular polarizability
three representations were studied as well. The first is Thole’s standard model (P):
atomic polarizabilities on the nuclei only. These yield a molecular polarizability that
is more than 10% below the experimental value (see Table 2). Interestingly, the
shortcoming of the polarizability in Thole’s model is almost entirely due to the
falling short of the out-of-plane component, which indicates that benzene is a special



86 MODELLING CONDENSED-PHASE SYSTEMS
                                                                                                                                                        

Table 2. Computed and experimental molecular properties of benzene.a

Model -θzzb αxxc αzz <α>d

DZPe 7.10 71.8 27.1 56.9

DPCf from DZP 2.82

DPCf from STO4-31G 4.66

Pg 74.2 36.3 61.6

SPh 84.6 40.2 69.8

EPi 76.4 53.4 69.8

Hobza et al., DZ+2Pj 7.38 73.0 33.5 59.8

Hobza et al., bestk 7.08 79.2 44.5 67.7

Experimentall 7.4 ± .5 69.6
a All properties in atomic units. b Buckingham quadrupole, ref. 35. Note that θxx=θyy=-θzz/2 because
of the molecular symmetry. c αyy=αxx. d Isotropic molecular polarizability. e Expectation values from
DZP-level HF for quadrupole and Coupled HF for polarizabilities. f DPCs at the nuclei from HF wave
function. g Standard Thole model polarizabilities at the nuclei, exponential damping function.
h Scaled polarizabilities at the nuclei. i Added polarizabilities 1 Å above and below the molecular
plane. j Taken from Hobza et al.; basis set used for calculation of binding energy. k Hobza’s best
values; basis set includes 2 polarization functions on C and H, extra valence functions on C and H,
and f-functions on C. l Refs. 171 and 172.

molecule and gives the same problems to Thole’s model as it does to ab initio calcu-
lation of the polarizability. The failure of Thole’s model can be repaired by scaling
the polarizabilities (SP), or by adding polarizabilities above and below the plane
(EP). For the latter we chose the same points as for the EDPCs. Parameters are given
in Appendices 2 and 3. The computed binding energies with their interaction com-
ponents are collected in Table 3.

The results presented in Table 3 deserve close inspection because they give
insight into some of the particulars of the DRF force field. Consider the electrostatic
interaction. First note the error in the analysis of Hobza et al., who report an attrac-
tive quadrupole–quadrupole interaction in the parallel–displaced dimer. Using the
quadrupole tensors and interaction expression given by Buckingham,35 displacing a
parallel benzene can indeed give electrostatic attraction, but the displacement should
be quite a bit more than the 1.6 Å of the present minimum-energy conformation, in
which the electrostatic interaction is definitely repulsive. The electrostatic interaction
is reproduced qualitatively by the standard DPCs, but because they recover only
60% of the overall quadrupole moment they yield electrostatic interaction energies
that are smaller than they should be. The scaled DPCs do not quite reproduce the
quadrupole–quadrupole interaction either, but this is not to be expected due to local
effects and the operation of the damping function. This is better seen from the
EDPCs, which are supposed to model the electronic clouds above and below the
molecular plane by extra charge-points. With these charges the electrostatic
attraction and repulsion diminish with respect to the scaled DPCs. The spreading of
the charge from the C-atoms causes the major contributions to be dipole–dipole,
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Table 3. Computed total and component binding energies of the benzene dimer.a

Model/Orientation Perpendicular (III) Parallel–displaced (I)
∆Uelstb ∆Udispc ∆Utotd ∆Uelstb ∆Udispc ∆Utotd

DPC–P -2.0 -11.7 -7.8 +3.3 -17.3 -9.0

SDPC–P -4.9 -11.7 -10.9 +8.0 -17.3 -5.1

EDPC–P -3.7 -11.7 -9.9 +7.6 -17.3 -6.6

SDPC–SP -4.9 -13.6 -12.8 +8.0 -20.5 -8.4

EDPC–EP -3.7 -24.6 -15.8 +7.6 -48.2 -13.3

Hobza et al.e -5.7 -3.4 -8.8 -6.2 -16.1 -9.5

QQ–Londonf -5.7 -4.8 +11.3 -22.9
a All energies in kJ/mol. The head-on perpendicular (R=5.0 Å) and parallel–displaced (R1=3.5 Å;
R2=1.6 Å) geometries are structures a and e taken from Hobza et al. b Electrostatic interaction energy.
c Dispersion contribution to interaction energy by eq. (7) with distributed polarizabilities. d Total
binding energy. e Hobza’s analysis (ref. 159), made in terms of computed overall quadrupole
moments and polarizabilities. f Overall quadrupole–quadrupole interaction and London dispersion
interaction from experimental polarizability and ionization energy.

rather than charge–charge interactions, leaving the electrostatic interactions less
pronounced. In addition to the local effects, the damping function further reduces
the interactions as it compensates for overlap effects.

The distributed polarizability representation strongly affects the dispersion
energy for the perpendicular geometry, giving larger interactions than obtained
from the London formula with isotropic molecular polarizabilities.33 For the paral-
lel–displaced geometry the DRF dispersion interactions are smaller, except for the
EP-representation which seems to overestimate the interaction, perhaps because the
extra polarizabilities are too far from the molecular plane. The anisotropy of the
distributed representation is essential for a balanced description of the correlation
interaction, though. The ratio between the DRF dispersion energies for parallel–
displaced and perpendicular geometries (1.5-2) is much closer to that from the
∆EMP2-values given by Hobza et al. (2.3, not shown) than that from the London
dispersion energies (4.8). With anisotropic molecular polarizabilities the ratio is
about 2.6, emphasizing the inadequacy of the isotropic polarizability representation.
The anisotropy of the benzene polarizability tensor is quite large, and the observa-
tion that the dispersion interaction is less orientation dependent than the electrostatic
interaction157, 159 is not valid for the benzene dimer.

The question of the relative stabilities of perpendicular and parallel–displaced
geometries is unresolved by the DRF force field. Only the standard (DPC–P) DRF
force field agrees with the best ab initio results available in giving preference to the
parallel–displaced geometry. Any improvement of the description of molecular
properties results in the perpendicular geometry being the more stable, however. We
conjecture this corroborates better with experiments, noting that Hobza’s best results
are obtained with a basis set that underestimates the out-of-plane molecular
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Figure 5. Benzene dimer interaction energy as a function of intermolecular
distance. Left: parallel–displaced orientation; right: perpendicular orientation.

: DPC–P parameters;  : SDPC–SP parameters; : Hobza et al.

polarizability, thereby putting the perpendicular geometry at a disadvantage with
respect to the parallel–displaced one. As for the binding energy of the benzene
dimer, a value of 10-12 kJ/mol seems to be the limit, which is somewhat larger than
the experimental value of 7±1 kJ/mol. Correction for zero-point energy lifts the
experimental value to 9±1 kJ/mol, however.162 As a final check on the DRF force
field binding energy and structure a potential energy surface (PES) scan was
performed with the DPC–P and SDPC–SP parameter sets. The results are shown in
Figure 5.

The conclusions that may be drawn from the minimum-energy search and PES-
scan presented in Figure 5 are that the standard parameterization corresponds to the
present ab initio results, whereas the extended parameterization points to possible
improvements, corroborating with experimental results on structure, suggesting too
small a value of the experimental binding energy.

Dimers of benzene derivatives

The dimers of toluene, o-xylene, and fluorobenzene, along with some mixed
dimers were investigated by the standard DRF force field. Controlled PES scans
along the intermolecular vector (R1) were performed starting at perpendicular and
parallel(–displaced) orientations. Starting from the minimum-energy structures
found in the PES scan, a modest Monte Carlo search was performed to find even
lower-energy conformations. Geometry and charge parameters of the monomers
may be found in Appendix 2. The results of these calculations have been collected in
Table 4.
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Table 4. Minimum energiesa and corresponding structuresb of molecular
complexes between benzene derivatives.

Complexc ∆Umind ∆Uelst ∆Udisp Structure ∆UMCe Lit.f

B–B -9.0 +3.3 -17.3 Parallel–displaced (I);
R1=6.4; R2=2.9 Bohr

-9.8 -7±1;

-9.6

B–T -11.9 -0.2 -18.6 Parallel–displaced (I);
R1=6.1; R2=5.2 Bohr

-14.0 -13±2

T–T -14.3 +2.8 -26.8 Anti-parallel–displaced (II);
R1=6.7; R2=0.4 Bohr

-15.0 -15±2

T–X -16.8 +2.1 -32.1 Anti-parallel–displaced (II);
R1=6.6; R2=-0.3 Bohr

-17.5 -17±3

X–X -19.9 +0.6 -35.2 Anti-parallel–displaced (II);
R1=6.7; R2=0.3 Bohr

-20.3 -21±3

F–F -15.2 -1.8 -24.8 Anti-parallel–displaced (II);
R1=6.4; R2=1.0 Bohr

-15.3

a All energies in kJ/mol. The parameter sets used were the standard DPCs and Thole’s polarizabilities
with the exponential damping function. b For general features of the structures see Figure 4.
c Abbreviations used: B: benzene (X=Y=H); T: toluene (X=CH3, Y=H); X: o-xylene (X=Y=CH3);
F: fluorobenzene (X=F, Y=H). d Binding energy at minimum-energy conformation in controlled PES
scan. e Binding energy at minimum-energy conformation in a Monte Carlo sampling run at 100 K,
starting from controlled PES-scan minimum. f Literature experimental (ref. 163) and computed
binding energies. Italicized numbers are computational results. B–B from Hobza et al.

The preferred orientation of the aromatic rings is parallel in all minimum-energy
structures. This preference for parallel structures may be explained by the domi-
nance of the dispersion contribution to the binding energy. A parallel orientation of
the aromatic rings allows a much closer contact than a perpendicular arrangement,
resulting in a larger dispersion interaction. The unfavourable electrostatic quadru-
pole–quadrupole interaction is a price worth paying. In the substituted benzenes
some of the electrostatic repulsion between the quadrupoles may be made good by
favourable dipole–dipole interactions. This explains the preference for anti-parallel
arrangements.

The model calculations seem to contradict experimental findings in proteins that
phenyl rings are often in some perpendicular arrangement.158 For all complexes
except the o-xylene dimer we found perpendicular arrangements, mostly side-on to
benefit from dipole–dipole attraction, that were within 5 kJ/mol of the (anti-)parallel
minimum-energy structure. Improved description of the out-of-plane component of
the polarizability is expected to bring these structures down in energy, like it did for
the benzene dimer, and thus there seems to be no strong intrinsic dislike for perpen-
dicular arrangements between substituted arenes.



90 MODELLING CONDENSED-PHASE SYSTEMS
                                                                                                                                                        

The simple standard DRF force field yields binding energies for the molecular
complexes of benzene derivatives that agree very well with experimental values.
Only the benzene dimer itself is calculated to be more stable than what is found
experimentally. In view of the underestimation of the polarizability in the DRF force
field for benzene (Table 2) we suggest that the experimental binding energy of
benzene is too small. We cannot subscribe to the analysis of the factors determining
the structure of arene complexes given by Hobza et al.159 and by Hunter and
Saunders,157 viz. that the electrostatic interaction determines the structure and the
dispersion the binding energy. This conclusion was based on a faulty analysis of the
quadrupole–quadrupole interaction. The dispersion interaction constitutes the main
contribution to the binding energy. To maximize this interaction the monomers will
try to be as close to each other as possible. Acting against perpendicular arrange-
ments are repulsive interactions due to the Pauli principle, much stronger than the
electrostatic repulsion between quadrupoles in the parallel–displaced conformations.
The precise minimum in the latter is, however, influenced by electrostatic
interactions as a balance is struck between attraction and repulsion.

The MC minimum-energy search does not yield surprising low-energy struc-
tures. The difference with the manual-search structures are only slight tilts of the
aromatic rings. The benzene dimer exhibits a more pronounced tilt (24° between the
principal moments of inertia). The observed predominance of perpendicular orienta-
tions must be explained by the thermal population of such structures. In this respect,
the 5 kJ/mol difference we find between parallel and perpendicular structures must
be regarded as an upper bound. We have demonstrated that improvement of the
out-of-plane component of the polarizability tensor stabilizes perpendicular arrange-
ments more than parallel ones for the benzene dimer. It is to be expected that this
will be the same for the other complexes studied here, although toluene and o-xylene
will need less reparation of the polarizability than benzene because they have out-of-
plane centres that carry polarizabilities.

Other Solvent Molecules Considered in this Thesis

To further investigate the generality of the proposed scheme to obtain force-field
parameters, a comparison of calculated and experimental binding energies and equi-
librium distances of acetonitrile (MeCN) and tetrachloromethane (CCl4) dimers is
reported in Table 5. Force-field parameters are given in Appendices 1 and 2.

Although the computed binding energy of the MeCN dimer is not as large as fits
to experimental data give,174 it does compare very well to Jorgensens liquid-phase
interaction value of 16 kJ/mol.173 Jorgensens model reproduced the heat of vapor-
ization very well. The experimental uncertainty in the CCl4-data is quite large, but
the model interaction presented here compares well to those data. Note that CCl4
was not part of the learning set from which atomic polarizabilities were fitted to
molecular polarizabilities.49 For the CCl4 dimer a separate comparison was made for
the repulsive part of the potential to test the CHARMM repulsion term (not shown).
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Table 5: Calculated and experimental binding energies and equilibrium distances
for MeCN and CCl4 dimers.

Species - ∆Ebinding (kJ/mol) Req (Bohr)

DRFa Comp.b exp.c DRFa exp.c

MeCN 15.5 16173 21.8174 6.64 6.52
CCl4 3.1 3.8±1.1175 10.9 10.5±0.5

a Classical DRF force field. b Ab initio or other force field. c Experimental results.

The classical CHARMM repulsion was found to be a little too hard at the DRF equi-
librium distance, compared to the orthogonalization energy in a DZP basis, so the
present binding energy and equilibrium distance may be considered as upper limits.

Conclusion

The DRF force field is shown to provide a simple, general scheme to parameter-
ize atom-based interaction functions that closely follow the theoretical intermolecu-
lar interaction components, electrostatic, induction, dispersion, and repulsion. The
advantage of such a scheme is that the description can easily and systematically be
improved according to the required accuracy as more detailed information on the
molecules become available, either from experiment or from accurate quantum-
chemical calculations. An important advantage of the DRF force field over other
force fields such as CHARMM,126 AMBER,176, 177  and GROMOS178, 179  is the clear
separation of parameters, one set for each interaction component. In this way each
component can be improved independently from the others. Especially the separa-
tion of electrostatic and induction interactions through explicit modelling of res-
ponse properties avoids parameterization in which the immediate surrounding of an
atom is incorporated in non-transparent ways. For example, there is no need to dis-
tinguish between alcoholic, aldehydic, and carboxylic oxygens for non-bonded
interactions (except, of course, electrostatics) in the DRF force field.

Problems only arise at shorter distances where modelling of the consequences of
the antisymmetry requirement on the total wave function becomes impossible. At
intermediate distances the ad hoc repulsion potentials may be used to fine-tune the
interaction potential depth and location of the minimum. There is a need for a more
general repulsive potential in the spirit of the present approach.
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Solvation 3.3

Theory

THE GIBBS ENERGY of solvation is the free energy associated with the process of
bringing one molecule (the solute, A) from the gas phase into a liquid phase.180 The
liquid phase consists of a large number of molecules (the solvent, {S}):

A (g) + {S} (l) —> {A,{S}} (l) (8)

From both experimental and computational point of view, the interest in this process
lies in the interaction between solute and solvent molecules and the changes it causes
in both solute and solvent molecules. First, consider the computational route to the
free energy. The Helmholtz free energy of a system is related to the partition
function Z (section 1.2) by:

 F = - kT ln Z (9)

It is impossible to calculate the partition function exactly, except for idealized
situations.5 At room temperature, these idealized situations are often good approx-
imations to the actual ones—or at least serve as good points of departure. In order to
make use of the simple equations for the partition function the total energy of the
system should be expressible as a sum of independent components: electronic, vibra-
tional, rotational, and translational energy for individual molecules, and interaction
energy for collections of molecules. The partition function can then be expressed as a
product of the independent component partition functions:

 Z = exp -Ei/kT∑
i

 ≈ exp - ε0 + Ei
el  + Ei

vib  +Ei
rot  +Ei

tr  +Ei
int  /kT∑

i

 

 
= exp -ε0/kT  × zel  × zvib  × zrot  × ztr  × zint  

(10)

in which ε0 is the reference energy from which the contributions are counted. It can
be shown that the translational motion can always be separated off exactly from the
other types of motion, but the rotational and vibrational motions cannot.16 For our
purposes—simulating well-defined molecules at room temperature—the decoupling
of rotational and vibrational motions is an accurate enough approximation. The
vibrational motions shall be treated as harmonic oscillators and the rotational
motions as those of a rigid rotor, which are further approximations to the exact par-
tition functions.181 Furthermore, zel will be unity, since we deal with electronic
ground-state molecules.

Now consider the partition functions before and after solvation. First of all,
consider the solvent molecules already present in the liquid phase. The introduction
of a new molecule is hardly expected to change the available phase space of their



                                                                 3 Practice                                                                   93

degrees of freedom. The translational and rotational partition functions will not be
affected by the solvation process. The vibrational contribution is absent if the
molecules are assumed to be rigid. The same applies to the rotational and vibrational
freedom of the solute. Relaxation of the rigid-molecule condition is expected to make
little difference. The vibrations are usually low-amplitude motions and the sur-
rounding solvent molecules are on average not close enough to significantly change
the vibrational phase space. This is true for the overall rotational freedom as well,
although the exploration may take more time, because the surrounding molecules
hamper the rotation. This does not affect the partition function, though. For internal
rotations the story may be different, but they are expected to play a minor role for
the small molecules considered in this thesis.182

If we now start by keeping the solute fixed in space, the solvation free energy
may be calculated as:

 ∆Fsolv = - kT ln exp - Ei
int R0 /kT∑

i

(11)

in which i runs over all solvent-molecule configurations, and R0 signifies that the
solute is kept fixed in space. Ei

int R0  is the interaction energy between solute and
solvent molecules, i.e. the energy of the system additional to the same system
without the solute molecule.

Experiment and computation may be connected by correcting the experimental
values for the liberation free energy, i.e. the free energy the solute gains by removing
the restraint that it be fixed in space. The liberation free energy is connected to the
translational partition function:

 ztr = V 2πMkT/h2 3/2
 (12)

in which V is the volume available to the system and M is its mass. The contribution
of the liberation free energy may be estimated from the experimental liquid density
ρ and the ideal-gas pressure p of the pure substance at temperature T:

 ∆Glib = ∆Flib = - kT ln Vg/V l  = kT ln pM/RTρ  (13)

Most authors tacitly include the liberation contributions in their tabulated
values.183 This makes it difficult to connect computed values to experimental data.
We adopt the values given by Ben-Naim, as his view is conceptually simple and
general. It can be shown that with this definition of the solvation process, the Gibbs
and Helmholtz free energies are identical.180
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Solvation Models and the Computation of the Solvation (Free) Energy

Dielectric continuum models

The simplest way to compute the solvation energy is to view the solvation
process as immersing one solute molecule into a dielectric continuum, characterized
by the dielectric constant ε0 of the solvent. The solute is accommodated in a cavity in
the dielectric. For small molecules, a spherical cavity might be a good model. In that
case, the electrostatic component of the solvation energy is given by an analytic series
in solute multipole moments:103

 ∆Gsolv 
elst  = - 1

2
  ∑
l=0

∞

a- 2l + 1  
l + 1  ε0 - 1
l + ε0 l + 1

 Tlm
 2∑

m= -l

l

 (14)

in which a is the radius of the cavity and T lm  is the expectation value of the lm’th
multipole moment expressed in spherical harmonics. The first two terms of this
series, which give the energy of a charge and of a dipole in their own reaction fields,
respectively, are called the Born and Onsager terms.59, 60 The solvation energy is
seen to be strongly dependent on the cavity radius. Several approaches to calculate
the radius are in use, most of them based on the density of the pure liquid solute and
solvent.184, 185

The spherical cavity approach is used profusely in solvent modelling, even for
highly non-spherical solutes. An improvement to the spherical cavity is the general
cavity, which follows the solute’s shape. It may be constructed by defining spheres
around the solute’s nuclei, followed by tracing out the outer surface. The standard in
this approach has been set by Connolly (see Figure 6).61

The radii of the nuclear spheres are subject to choice. Most models employ the
van der Waals radii,186 which may be scaled up slightly. This means the cavity
surface is quite close to the solute. Analytic expressions for the energy of a charge}

probe

accessible
surface

Connolly’s van der Waals
surface

re-entrant
surface

contact
surface

molecular
van der Waals
surface

Figure 6. Definition of general shape cavity surfaces.
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distribution in such a generally shaped cavity do not exist, but numerical procedures
have been developed.56-58 We employ the Melc suite of programs by Juffer et al.,58

which is a boundary element method (BEM) to solve the Poisson equation for a
charge distribution in a cavity, the surface of which is represented by a number of
adjacent tiles. The program has several levels of accuracy regarding the representa-
tion of the reaction potential. The inhomogeneity of the induced surface dipole
density on a tile may be accounted for by a Gaussian quadrature. If the inhomogene-
ity is not accounted for, one speaks of the constant element method, which we have
employed throughout this work.

The continuum solvent model gives the Gibbs free energy , but of the electrostatic
term only.187 (In this context, the electrostatic term includes all orientation, vibration
and electronic effects that go into the dielectric constant.) It is indeed a free energy
because the dielectric constant is an average over all possible solvent configurations.
Separate models for dispersion and repulsion are necessary because these terms are
not included in Poisson’s equation.188, 189  Within the DRF approach, the dispersion
term can easily be included for a quantum-mechanically described solute (sections
2.10 and 3.2, but note that the continuum should be represented by the optic dielec-
tric constant for the computation of the dispersion component), but the repulsion
term is still to be treated separately. Empirical formulas exist for the repulsion inter-
action between a solute molecule and the surrounding solvent molecules.188 They
are, however, highly parameterized, which means they are usually optimized in
conjunction with other contributions. We shall not attempt this here, and will not
consider this contribution.

A final contribution to the free energy that needs consideration in the continuum
approach is the cost to create a cavity in the solvent to accommodate the solute. For
the calculation of this cavitation free energy the semi-empirical method based on a
hard sphere model due to Pierotti is used.190

∆Gcav = K0 + K1 σ12 + K2 σ12
2  + K3 σ12

3  ;
 

K0 = kT - ln 1-y  + 9
2
 y/1-y2  - 

πpσ1
3

6
 ; K1 = - kT

σ1
 6 y/1-y + 18 y/1-y2  + πpσ1

2 ;

 

K2 = kT
σ1

2
 12 y/1-y + 18 y/1-y2  - 2πpσ1 ; K3 = 4

3
 πp; y = 

πσ1
3 ρ

6 M
; σ12 = 1

2
 σ1 + σ2  

(15)

in which σ1 and σ2 are the solvent and solute diameter, respectively. This expression
is rooted in statistical mechanics and needs only solute and solvent diameter and
solvent number density as parameters. The molecular radii may be calculated from
the density, reducing the number of parameters by one, or fitted to experimentally
determined cavitation free energies. This completes the theoretical view of solvation
as a two-step process: first, a cavity is created in the solvent, after which the solute is
‘grown’ into it, gaining interaction free energy.
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Explicit solvent models

Finally, the explicit solvent models include a number of solvent molecules,
described either quantum chemically or classically, in the vicinity of the solute.66, 67,

97, 99, 104, 134, 139, 191-193 The explicitly treated solvent shell(s) may be embedded in a
dielectric continuum in the same way as the solute alone. The solvent molecules’
coupling to the solute and their interaction functions have been discussed in
Chapter 2 and discussed in section 3.2. The interaction term in eq. (11) may be split
into electrostatic, induction, dispersion, and repulsion interactions. The explicit
solvent model has the advantage that all interaction energy terms are included, but
the disadvantage that it is very difficult to obtain a free energy, because that requires
extensive sampling of the configuration space.191 In this context, it is advantageous
to look to the energy of solvation, given by:

 ∆Usolv = ∆Asolv + T∆ Ssolv (16)

in which ∆Ssolv is the entropy of solvation. The energy of solvation may be calculated
in the explicit solvent model by subtracting the average energy of the solvent
molecules alone from the average energy of the solute plus solvent molecules:

 ∆Usolv = Uint  s + UN  s - UN  0 (17)

in which   s denotes an average over the configurations (obtained through appropri-
ate thermodynamic sampling techniques) of the solvent molecules in the presence of
the solute, and   0 in the absence of the solute, but in the same volume. UN is the
total energy of the N explicitly treated solvent molecules, Uint the interaction energy
between the solute and N solvent molecules.

The rest of this section will be devoted to the study of the numerical accuracy,
validity and generality of the various solvent models applied to the process of solva-
tion. To this end several solutes will be solvated in several solvents, using the vari-
ous solvent models.

Solvation in Water

Z–E equilibrium of N-methylacetamide

The Z–E equilibrium of N-methylacetamide depicted in Figure 7 is unchanged
when going from the gas phase to aqueous solution.194, 195 Experimentally, both
rotamers have a solvation free energy of about -42 kJ/mol. Of the computational
approaches that have been applied to this equilibrium196-198, only the explicit
solvent model of Jorgensen,196 with a Monte Carlo sampling of the solvent configu-
ration space, has been able to reproduce experiment quite well: the solvation energy
of the E-rotamer was found to be 0.4 kJ/mol larger than that of the Z-rotamer. The
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Figure 7. Z–E rotamer equilibrium of N-methylacetamide.

semi-empirical AM1–SM1 solvation model gave a solvation free energy difference of
5.6 kJ/mol in favour of the E-rotamer.198

Here, the rotamer equilibrium of N-methylacetamide is studied by the charge-
distribution-in-a-cavity methods. The charge distribution was represented either
classically, using the DPCs from a quantum-chemical vacuum calculation (para-
meters are given in Appendix 2), or left quantum mechanically. For the quantum-
mechanically described charge distribution, the position of the boundary was varied,
and the estimate of the dispersion interaction was added to the electrostatic
interaction. The results are collected in Table 6.

If the standard, but physically incorrect van der Waals surface is used with either
classical or quantum-mechanical charge representation (entries 2 and 3 in Table 6),
the electrostatic component gives far too large a solvation energy. The explicit
quantum-mechanical charge-representation can only be used in a perturbation
approach, disallowing relaxation of the wave function in its own reaction field. Self-
consistent coupling with the solvent reaction field is numerically unstable due to
overlap effects resulting in the polarization catastrophe discussed in section 1.5.

Table 6. Electrostatic and dispersion contributions to solvation energies and
solvation energy differencesa of the Z- and E-rotamers of N-methylacetamide.

Solute/solvent model ∆Gsolv Z ∆Gsolv E ∆solv (E - Z)

Onsager approximationb,c -18 -21 -3

DP charges, BEM, vdWc,d,e -115 -72 +43

QM, BEM, vdWe,f,g -116 -79 +37

QM, BEM, vdW+H2Oe,h,i -8 -7 +1
QM, BEM, vdW+H2Oh,i,j, dispk -37 -38 -1

QM, BEM, vdW+H2Oh,i, tot -45 -45 0
a All energies in kJ/mol. Total vacuum energy in STO4-31G basis for Z-rotamer: -246.641773;
for E -rotamer-246.636106 Hartree. b Sphere radius of 5.93 Bohr, from pure N-methylacetamide
density. Computed vacuum dipole moments: Z: 4.38; E: 4.72 Debye (exp. 3.73 D). c ε0 = 78.5.  d DPCs
and standard Thole polarizability representation (see Appendices 1 and 2). e Triangulated boundary
surface (240 elements) from van der Waals surface. f STO4-31G basis set, vacuum density.
g Connolly’s van der Waals surface (ca. 500 elements) from van der Waals radii. h STO4-31G basis set,
reaction field coupled self-consistently to the QM density. i Connolly’s van der Waals surface (ca. 525
elements) from van der Waals + H2O radii. j ε∞ = 1.777. k Estimate of the dispersion energy [eqs.
(2.A.32) and (2.A.33)], γ = 0.59 for both rotamers, from experimental ionization potentials.



Table 7. Experimental solvation free energies and computed cavitation, electrostatic, and dispersion component to

solvation free energiesa in the dielectric continuum modelb of various solutes in water.

Solutec ∆Gexpd ∆Gcave ∆Gintf µg Classical charge

representation

Quantum mechanical charge

representation

Onsagerh vdWi vdWj dispk vdW+l dispk

CH3CNm -16.3 +8.5 -24.8 4.23 -25 -37  (-54) -44 (–) -151 -6 -18
CH3COCH3n -16.1 +7.3 -23.4 3.36 -11 -19  (-26) -29 (–) -195 -4 -30
H2Om -26.5 +13.8 -40.3 2.23 -21 -23  (-29) -22 (-27) -72 -3 -10
H2On -26.5 +13.8 -40.3 2.60 -29 -32  (-39) -30 (-35) -70 -5 -10
CH3OHm -21.4 +9.6 -31.0 2.47 -7 -19  (-23) -13 (-25) -140 -2 -16
CH3OHn -21.4 +9.6 -31.0 2.32 -6 -29  (-34) -16 (-21) -137 -2 -16
C6H5CH3n -3.7 +6.3 -10.0 0.18 -0.1 -16  (-17) -73 (–) -386 -4 -53
C6H6n -3.6 +6.7 -10.3 0.0 0 -8    (-8) -45 (–) -258 -8 -49
CCl4m +0.4 +6.5 -6.1 0.0 0 -0.1 (-0.2) -1 (-1) -225 0 -41

a All energies in kJ/mol, ε0=78.5, ε∞=1.777. b BEM implementation (see text). The number of boundary elements was approximately 300 for each
surface considered. c Parameters are given in Appendix 2. d Experimental total solvation free energy. e Cavitation free energy from eq. (15). f ∆Gint =
∆Gexp - ∆Gcav. g Computed vacuum dipole moment in Debye. h Onsager term with computed vacuum dipole moment, from eq. (14), solute cavity
size from pure solute density. i Dipole Preserving charges (see section 1.4) in general shape cavity at standard scaled van der Waals distance (scaling
factor is 1.2). The surface is the accessible surface as defined in Figure 6. Value in parenthesis reflects polarizable solute. j Same as i, but with quantum
chemical charge representation. A (–) denotes failure of the wave function to converge.
k Dispersion interaction energy estimate, from eq. (6), γ from experimental ionization potentials (see Appendix 4). l Water-radius added to van der
Waals radii to determine the boundary surface. m DZP basis set. n STO4-31G basis set.
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With the safe solute-boundary distance, the electrostatic component is small, but
adding the dispersion leads to quantitative agreement on both solvation energy and
the difference between the rotamers (entries 4-6 in Table 6).

Various solutes

The Z–E rotamer equilibrium of N-methylacetamide provides an example of the
possible usefulness of the dielectric-only solvation model if adjusted sensibly. The
model is usually claimed to be successful with the close boundaries that, however,
failed for this particular example. To investigate the scope of the dielectric-only
solvent model a number of solutes were solvated using a variety of approaches. The
calculated electrostatic and dispersion contributions to the solvation free energy of a
number of solutes in water in the Onsager approximation, and in general shape
dielectric-only solvent models are collected in Table 7. The charge distribution was
described either classically or quantum mechanically, and the boundary surfaces
were either close (scaled van der Waals radii) or distant (solvent accessible surface
with van der Waals plus solvent radii). The experimental solvation energies and the
model cavitation free energies are also shown in Table 7. In the dielectric-only
model, the interaction free energy ∆Gint should be reproduced by the sum of electro-
static, dispersion, and repulsion interactions. The model does not allow for an esti-
mate of the dispersion interaction for a classical charge representation, but an esti-
mate can be given for a quantum-mechanically described solute. We have not
attempted to calculate the repulsion interactions between solute and solvent.

It is clear from the results presented in Table 7 that there are grave problems with
the dielectric-only models. None of the approaches can be applied consistently for all
solutes. The Onsager model is too crude because it only considers the overall dipole.
Other features of the charge distribution are ignored. The results for the electrostatic
part of the interaction energy for the classical and quantum-mechanical
representations of the solute are seen to agree reasonably for the smaller molecules,
whether the polarizability of the solute is accounted for or not. This is a confirmation
of the quality of the classical representation of the quantum-mechanical charge
distribution, already pointed out in the previous section. Problems arise with the
larger molecules like toluene and benzene. The standard van der Waals surface is too
close to the solute and ‘charge leakage’ occurs, giving an artificially large interaction
energy. This problem is seen more acutely when the solute is allowed to respond to
its own reaction field. The charge density ‘creeps into’ the boundary, the total energy
tending to minus infinity. This is the polarization catastrophe pointed out in section
1.5. It does occur for smaller molecules as well, depending on the details of the
surface. The model we use has no mechanism to check this behaviour. Special
measures have to be taken, e.g. compensating for the leaked charge, as is done by
Miertus̆ et al.62

The sensitivity of the continuum model to the boundary-surface details is its
major weakness. The dependence of the electrostatic and dispersion contributions to
the free energy of solvation of water in water is shown in Figure 8. At the distance
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Figure 8. Continuum reaction-field stabilization energy of water in water as a
function of the van der Waals radii scaling factor. : electrostatic component (left

scale); : dispersion component (right scale). The boundary was Connolly’s van der
Waals surface with probe radius 3.64 Bohr (see Figure 6).

The dielectric constant was 78.5, the optic dielectric constant 1.777.

we feel the requirements of non-overlapping systems and prevention of the polar-
ization catastrophe are met (scaling factor of about 2, see the theoretical discussion in
section 1.5), the electrostatic stabilization energy (≈5 kJ/mol) reasonably reflects the
bulk contribution, but is far too small to be considered as the electrostatic part of the
solvation energy. At smaller scaling factors the electrostatic component alone repro-
duces the free energy of solvation (26.5 kJ/mol, see Table 7). Several continuum
models have been parameterized so the electrostatic component reproduces solva-
tion free energies. This procedure has been validated by the observation that cavita-
tion and dispersion–repulsion contributions tend to cancel.188, 189

If we consider the dispersion interaction as calculated in our approach, the fail-
ure of the dielectric-only model with the close boundary stands out. The dispersion
energies are seen to be quite large, or even absurdly large. Realistic estimates may be
made from explicit, polarizable solvent models, and we shall discuss the dispersion
interaction in the next section, which deals with the explicit solvent models.

Explicit solvent models

Although computationally more costly than dielectric continuum models,
explicit solvent models are worth studying in their own right since they provide so
much more information on and insight into the factors that play a role in the solva-
tion process. The main advantage is that explicit solvent models are expected to be
more generally valid because their parameterization is at a deeper level than that of
the dielectric models.

A number of the solutes studied in the previous section were immersed in a
number (25 or 26) of our explicit, polarizable water molecules. A Monte Carlo
sampling of the translational and orientational degrees of freedom was performed.
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Table 8. Solvation energiesa of various solutes in water, calculated by the explicit
solvent model.b

Solute ∆Uelst ∆Udisp ∆Urep ∆Uint ∆Usolv ∆Uexp

H2Oc -66 -39 +40 -65 ±  8 -35 -41
CH3COCH3c -52 -76 +53 -75 ± 12 -33 -40
CH3CNd -53 -56 +48 -61 ± 11 -32 -32
CH3OHd -40 -54 +40 -54 ± 8 -61 -44

a All energies in kJ/mol. b ∆Usolv is calculated by eq. (17). The solvent translational and rotational
degrees of freedom are sampled in 50,000 Monte Carlo steps. c 26 surrounding water molecules. d 25
surrounding water molecules.

The energy of solvation was calculated by subtracting the average total energy of the
solvent molecules alone from that of the solute plus solvent system [eq. (17)]. The
interaction components have been analysed. The results are shown in Table 8.

The results of the explicit solvent model deserve some discussion. The solvation
energies of water, acetone, and acetonitrile are seen to be in quite good agreement
with experiment.182 Only the solvation energy of methanol in water is some way off
the experimental value. This may be due to insufficient sampling, in combination
with equilibration of the system before collecting the data. In the runs we have
performed the number of sampling steps is rather small (about 2,000 trial moves per
solvent molecule). As far as the interaction energy between solute and solvent is
concerned, proper equilibration was not very important. This was not so for the
solvation energy, which is a difference between two total energies. The reliability of
the results will improve if the sampling is extended—it is known that Monte Carlo
sampling is thorough but slow. It would be well worthwhile to study the DRF force
field with more sophisticated and direct thermodynamic ways to obtain the solva-
tion energy. Nevertheless, the present results show the general validity of the
explicit water model. Rullmann has applied this model to calculate protonation
energies of amines in water,99 obtaining excellent agreement with experiment, prob-
ably because his simulations were more extensive, both in number of MC steps and
in number of solvent molecules considered.

The interaction energy of water in water was investigated in more detail. The
aims of this study are the comparison of the quantum-chemical description of the
solute to the classical one, and the investigation of the extent to which solvent
molecules need to be described explicitly. First, the water pentamer was studied. The
central water is surrounded by four water molecules. The surrounding molecules are
placed at optimal distances and angles, taken from the water dimer. This configura-
tion is studied both with and without a surrounding dielectric continuum to estimate
the bulk contribution. Next, a Monte Carlo sampling of the orientational degrees of
freedom is performed, keeping the centres of gravity at their original positions.
Finally, translational freedom of the surrounding molecules is allowed as well. The
results of these calculations are presented in Table 9.
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Table 9. Total interaction energy of a water molecule with surrounding water and
analysis of the interaction contributions.a Comparison of the description of the
solute charge distribution.

Solute/Solvent Modelb ∆Uint ∆Uelst ∆Udisp ∆Urep

DZP / 4 classicalc -60±5 (-67) -77 (-89) -15 (-15) +27 (+30)

DZP / 4 classical + diel.d -66±5 (-81) -79 (-89) -18 (-18) +26 (+30)

Clas. / 4 classicalc -58±5 (-76) -74 (-81) -26 (-27) +28 (+30)

Clas. / 4 classical + diel.d -70±5 (-86) -72 (-82) -25 (-27) +28 (+30)

DZP / 26 classical + diel.e -69±17 (-68) -67 (-72) -30 (-32) +40 (+39)

Clas. / 26 classical + diel.e -65±8  (-72) -66 (-69) -39 (-41) +40 (+39)
a All energies in kJ/mol. The values in parentheses reflect the reference, or start, geometry. b DZP
indicates the solute water being treated quantum mechanically in the DZP basis; Clas. indicates the
solute water being treated classically, like the surrounding water molecules (parameters for the
classical water [experimental molecular polarizability] may be found in Appendix 2); Diel. denotes
the addition of a dielectric continuum term (the boundary is located at the solvent accessible surface,
traced out from spheres located at the water centres of gravity). c 15,000 trial moves, rotation only.
d 15,000 trial moves, rotation and translation. e 100,000 trial moves, rotation and translation.

The agreement between quantum-mechanical and classical descriptions has been
pointed out before. There are some comments to be made on this, however.
Although the agreement between mixed and fully classical descriptions is good for
the total interaction energy between solute and solvent, this may not be so for the
individual components. This is especially true for the dispersion interaction, which is
invariably larger for the classical solute than it is for the quantum-mechanical one.
This is explained by the fact that the classical solute model reproduces the experi-
mental polarizability of water very well, whereas the DZP basis falls well short,
which has been noted in section 3.2. On the other hand, the electrostatic interaction is
seen to be larger in the quantum-mechanical solute case. This is due to the use of the
basis set, which extends more into the solvent than the point charges do in the
classical treatment.

The main solute–solvent interaction is seen to be captured by including only the
first solvation shell. For water in water building the first solvation shell is easy, as
the structure of the water pentamer is quite well known. For other solutes and
solvents such a procedure would be more difficult. Including only the first solvation
shell in the way it is done here can be deceptive, though. All solute–solvent interac-
tions are optimal. This may be true at zero Kelvin and in the gas phase, but it is not a
realistic picture of the condensed phase at room temperature. Allowing rotation of
the four first-shell molecules already raises the energy, and allowing translation re-
enforces this trend. As more solvent molecules are added, saturation will occur. As
far as the interaction between solute and solute is concerned we suggest that the 26
water molecules, which correspond to two to three solvent shells, are adequate. For
accurate calculations on thermodynamic processes, such as solvation energy,
boundary effects may necessitate more explicitly described solvent molecules before
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Table 10. Solvation and transfer free energiesa of benzene in various solvents in
the dielectric-only solvent model.b

Solvent ∆Gsolv,expc ∆Gtrans,expd ∆Gcave ∆Gint,calc ∆Gtrans,calcd

Benzene -31.0 0 +25.8 -11 0

n-Hexane -29.8 +1.2 +23.1 -11 -3

Methanol -26.0 +5.0 +19.9 -25 -20

Water -3.6 +27.4 +6.7 -57 -65
a All energies in kJ/mol. b The number of boundary elements was approximately 300. c Experimental
solvation energy, ref. 200. d Free energy of transfer, respective to benzene. e Cavitation free energy,
eq. (15), parameters are given in Appendix 4.

terminating in a continuum, as well as more extensive sampling or more advanced
thermodynamic techniques.191 Nevertheless, it is clear that addition of a discrete
first solvent shell is an essential improvement on the dielectric-only model.

Transfer Free Energy of Benzene

The dielectric-only solvent model has been applied almost exclusively to aqueous
solutions, and has been optimized for that purpose. In this section the generality of
the dielectric-only and explicit solvent models is investigated by applying them to
non-aqueous solvation. The transfer free energy is defined as the free energy of
transferring a solute molecule from one solvent to another.199 The solvation free
energy of benzene in benzene, hexane, methanol, and water is calculated by the
same procedure as used for the various solutes in water by the dielectric-only model.
The boundary is placed at the ‘van der Waals plus solvent’ radii to comply with the
no-overlap criterion advocated in section 1.5. (If the boundary surface is Connolly’s
van der Waals surface of benzene, the dispersion interaction [which is the dominant
contribution] is calculated to be -340 kJ/mol.) The results are presented in Table 10.

It is all too clear from Table 10 that the dielectric-only model is not straightfor-
wardly extended to accommodate solvents other than water. The lack of specific
interactions in the dielectric continuum model must be repaired by choosing optimal
solute–boundary distances for each solvent. The results for aqueous solvation
discussed before do not give us confidence that such a reparameterization would
lead to a solvent model that accommodates various solute classes, although such a
parameterization was proposed recently for non-polar organic solvents.88
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Conclusion

Dielectric-only solvent models encountered in the literature have been more or
less parameterized to reproduce solvation energies for a number of solutes in water.
The emphasis on aqueous solutions is understandable from its importance, espe-
cially in model studies of biological processes. In focusing on water, the specific
interactions of water as a solvent must have entered the parameters other than the
dielectric constant, limiting the generality of the dielectric continuum model. This
necessitates reconsidering parameters that should be independent of solute and
solvent, such as the boundary surface defining radii, if solvation in solvents other
than water is of interest.

Modelling of the first solvation shell(s) by molecular electrostatic (and response)
models does not suffer from the inconsistencies of the dielectric-only model. Such an
approach is more costly, however, and there may be problems regarding the number
of explicit molecules to be included before terminating the explicitly described
region by a dielectric. Boundary effects should be minimized. The property of inter-
est will decide to some extent the length to which one should go. If macroscopic
thermodynamic properties are wanted, such as solvation energies one should not be
easily satisfied. If, however, the potentials and fields at a microscopic region due to
the surrounding medium are of interest explicit description of the first two shells
will generally suffice.
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Solvatochromism 3.4

Introduction

SOLVENT EFFECTS on electronic spectra have long been the subject of fundamen-
tal and applied studies.201-204 The aim of that research has primarily been to provide
both qualitative and quantitative characterization of the various solvents. Solvent
polarity scales derived from electronic transitions serve in correlating structure and
activity in many areas of chemistry.

The computation of solvent effects from molecular models has followed the qual-
itative theories in an attempt to quantify the parameters appearing in the theory.103,

204 The standard models are based on a dielectric continuum description of the
solvent surrounding the solute placed in a cavity. Variations on the generic Onsager
‘dipole-in-a-sphere’ model have evolved with computing resources and range from a
description of the system as a simple dipole in a sphere to a semi-empirical or ab
initio quantum mechanically described solute in an arbitrarily shaped cavity.
Although useful, these methods fail to reproduce the red shift of electronic transi-
tions in non-polar solvents, which has been attributed to the absence of dispersion
interaction modelling. Recently, dispersion has been added to the model with good
results,185 but the dielectric-only models still fail to provide a detailed analysis of the
interaction components and are not generally applicable to all solvents, so the need
for explicit solvent models has been recognized and acted upon.

There are several methods that combine a quantum-mechanical description of
the solute with a classical description of explicit solvent molecules for the calculation
of solvent effects on electronic transition energies.205-208 However, because of the
lack of an explicit polarizability model of the solvent molecules, most of these
models still fail to reproduce the red shift of electronic transitions in non-polar
solvents. The Direct Reaction Field (DRF) approach does provide a way to estimate
the dispersion interaction between solute and solvent through an explicit polariz-
ability model for the classical mechanically described solvent molecules. This esti-
mate is based on comparing the second order perturbation (SOP) expression in the
Unsöld approximation to the two-electron reaction-field contributions to the total
energy, as was demonstrated in section 3.2.

π*←n Transition of Acetone

To elucidate the importance of the different interaction components contributing
to the shift, and to investigate the usefulness of the different solvent models, the
π*←n transition of acetone was calculated in water, in acetonitrile (MeCN), and in
tetrachloromethane (CCl4).209-211 The solvatochromic shift of this transition under-
lies one of the less successful solvent-polarity scales, Φ.202 It was chosen because it
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Table 11. Ionization energies and dispersion scaling parameters.

Molecule IE (eV)a γ in waterc γ in MeCNc γ in CCl4c

Acetone, S0 9.69 0.565 0.557 0.543
Acetone, S1 5.88b 0.682 0.675 0.662

Water 12.6

MeCN 12.2
CCl4 11.5

a Ionization energy, taken from the CRC Handbook of Chemistry and Physics. b The S1 state was
taken to be 3.81 eV above the S0 state.(this is about halfway between the computed and experimental
values). c γ = US/(US+UA), with US and UA the IE of solvent and solute, respectively.

has been studied previously by other groups with both dielectric continuum185, 212

and non-polarizable molecular solvent models,205, 206, 208  and for reasons of compu-
tational feasibility.

Results

The solvent models employed in this study are the dielectric continuum model
and an explicit solvent molecule model, in which 26 classically described, polarizable
solvent molecules surround the solute, the solute and solvent molecules being
surrounded by a dielectric. To comply with experimental conditions, a modest
Monte Carlo (MC) sampling of the solvent molecules’ translational and orientational
degrees of freedom was performed. The solute is treated quantum mechanically,
using the closed-shell RHF wave function for the ground (S0) state and the open-
shell ROHF wave function for the first singlet excited (S1) state, as implemented in
HONDO8.1. The scaling parameter γ for the dispersion interaction29, 55 [eq. (6)] is
different for the S0 and S1 states and for each solvent. The ionization energies and
computed γ’s are given in Table 11.

The computed transition energies, for the reference geometry as well as the
Monte Carlo averages, are given in Table 12. The analysis of the different contribu-
tions for the explicit solvent model is presented in Table 13.

Discussion

The results presented in Table 12 show first of all that the standard dielectric-
only model (Dielectric I) cannot be applied for all solvents in a consistent way. For
water as a solvent, the standard model without dispersion reproduces the experimen-
tal blue shift very well, but adding dispersion destroys the agreement completely
implying a reparameterization of the standard model for water if dispersion is to be
included. A reparameterization will not be easy as the dispersion contribution to the
shift is larger than the electrostatic contribution.

The standard model without dispersion (Dielectric I), that does so well for water,
fails for MeCN. The reaction field from a dielectric continuum hardly differs
between media with dielectric constants of 78.5 and 37.5. This can be seen from the
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Table 12. Computed excitation energy shifts (in cm-1) of acetonea in H2O, MeCN,
and CCl4 for different solvent models.

Solvent model Shift in H2Ob Shift in MeCNb Shift in CCl4b

Dielectric Ic -1,803  (+1,624) -1,848  (+1,579) -4,203  (+675)

Dielectric IId  -171     (+293)  -44      (+166)     -33    (+411)

Explicit solvent, referencee +1,639 (+2,788)  +620    (+1,597)  -216     (+57)

Explicit solvent, MC averagef +1,821 ± 330 +922 ± 310 -381 ± 75

Experimentalg +1,700 ± 200 +400 ± 200 -350 ± 200
a STO4-31G basis for acetone. Vacuum ground state energy: -191.6776986 Hartree; vacuum excitation
energy: 26,962 cm-1 (exp.: 36,100±100 cm-1, ref. 209). b A negative value indicates a red shift. The
values in parentheses are the values obtained by removing the dispersion contribution. c Boundary at
Connolly surface obtained with atomic radii equal 1.2 times the van der Waals radii (standard model).
d Boundary at Connolly surface obtained with atomic radii equal the van der Waals plus solvent
radii. e Lowest energy geometry in an all-classical MC sampling. f Average over 7,000 MC steps for
water, 7,500 for MeCN, and 15,000 for CCl4, treating the acetone molecule quantum mechanically. g

From refs. 209-211.

generic Born and Onsager reaction-field stabilization energies, eq (14). As was the
case for water, adding the dispersion contribution results in a red shift. When the
solvent size is accounted for (Dielectric II) the model still fails, as it does for water.
The shifts without dispersion are too small and adding dispersion only makes it
worse. Reparameterization of the solute–solvent boundary distance, distinguishing
between electrostatic and optical reaction-field components would be necessary to
obtain a dielectric-only model with correlating power.

For CCl4 the dispersion contribution in the standard dielectric-only model is far
too large, as it is for water, but it is required to get a red shift in CCl4 at all. Here, by
moving the boundary to a larger distance agreement between model and experiment
can be obtained, but this requires a new parameterization of the appropriate solvent
and solute sizes. Moving the boundary by a full solvent radius is obviously too
much to obtain quantitative agreement between experiment and dielectric model.

The discrete solvent model, apart from reproducing the experimental solvent
shifts very well, provides valuable insight into the importance of different contribu-
tions to the shifts in such diverse solvents as water, MeCN, and CCl4. It is seen in
Table 13 that the dispersion plays an important role in both the blue shift in the polar
solvent and the red shift in the non-polar solvent. Without accounting for the
dispersion contribution, the shifts in water and MeCN are calculated too large by as
much as 1,200 and 1,000 cm-1, respectively, and the red shift in CCl4 is not repro-
duced at all. For water, the electrostatic shift contribution is the dominant one,
confirming the qualitative explanation of the blue shift as originating from preferen-
tial solvation of the ground state. In the non-polar CCl4 the electrostatic contribution
is negligible, as expected, and the shift is almost entirely due to the dispersion
interaction.
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Table 13. Analysis of the contributions to the excitation energy shifts (in cm-1) of
acetone in H2O, MeCN, and CCl4 for  the explicit solvent model.

Energy component H2O CH3CN CCl4

refa MCb refa MCb refa MCb

Polarization -608 -611 -518 -298 -48 -75

Induction +888 +903 +974 +512 +96 +151

Electrostatic +2,509 +2,726 +1,141 +1,673 +9 +18

Dispersion -1,149 -1,197 -978 -965 -273 -475

Total +1,639 +1,821 +620 +922 -216 -381

Experimental +1,700 ± 200 +400 ± 200 -350 ± 200
a Reference geometry, obtained after equilibrating solvent molecules to classically described acetone.
b Monte Carlo average. 7,000 steps for water, 7,500 for MeCN, and 15,000 for CCl4.

The MC sampling of the solvent degrees of freedom does not modify the qualita-
tive picture given above for water, but improves the quantitative agreement for
CCl4. The number of MC steps was limited to around 10,000 because of extremely
high CPU demands (circa 90 CPU hours on a CRAY-YMP for 15,000 configurations).
For water the number of MC steps is probably too small to give reliable statistics of
the orientation polarization, and further sampling will be necessary on this system.
This seems even more so for MeCN, for which the MC results deviate appreciably
from the reference geometry result. Acetonitrile is a difficult solvent to model,
because of the tendency to form dimers—in which the monomer dipole moments are
anti-parallel—in the liquid phase. This is reflected in the fact that its dielectric
constant is smaller than one expects from the acetonitrile dipole moment.203 To
overcome the computational demands, it may be worthwhile to generate an ensem-
ble from an all-classical MC before applying the combined quantum-mechanical–
classical mechanical calculations for ground and excited state.205

It is perhaps surprising that the dispersion contribution to the solvent shift is
larger for water than it is for CCl4, because the latter has the larger molecular polar-
izability. In fact, the dispersion interaction between acetone and water is larger than
between acetone and CCl4. This is due to the distance factor in the dispersion inter-
action. Recall the SOP expression for the dispersion [eq. (4)], in which the inter-
molecular distance enters to the inverse sixth power. The mean distances of the
closest solvent molecules were calculated from the radial distribution functions of
the Monte Carlo simulations and are shown in Table 14, together with the calculated
dispersion interaction. The ratio between the dispersion interactions for water and
CCl4 is seen to compare very well between the London approximation for the closest
six solvent molecules and the Monte Carlo results, confirming the quality of the
approach adopted here. Although the molecular polarizability of CCl4 is larger than
that of water by a factor of 7 (see Appendix 4), the mean distance of the closest
solvent molecules to the acetone molecule is smaller for water than for CCl4 by a
factor of 0.65, and so explains the larger interaction between acetone and water
compared to CCl4.
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Table 14. Mean acetone–solvent distances for the six closest solvent molecules in
Monte Carlo simulation for water and CCl4, computed London prefactor, and
computed total dispersion interaction between the solvent and acetone.a

Solvent rAp  (Bohr)b Prefactorc ∆Edisp
London d ∆Edisp

DRF  e ratiof

H2O 7.0 8.5 -17 -80 4.7
CCl4 11.4 57.8 -6.5 -28 4.3

a All energies in kJ/mol. b Brackets denote average over ensemble as well as closest six molecules.
c Prefactor for London formula, equal  3 α2 U2 / 2 U1 + U2  , in which 1 denotes acetone and 2 the
solvent. d London formula:  ∆Edisp

London = - 3 α1 α2 U1 U2 / 2 U1 + U2   rAp
-6  * 6 , with experimental

polarizabilities and ionization energies (see Appendix 4). e Total dispersion interaction between
acetone in ground state and surroundings in Monte Carlo simulation. f ∆Edisp

DRF /∆Edisp
London.

Conclusion

Computation of the solvent effect on the electronic transition of acetone is possi-
ble with a general explicit solvent model for such diverse solvents as water, acetoni-
trile, and tetrachloromethane. Standard dielectric-only models fail in reproducing
the solvent shifts. They could still be useful in an engineering sense if new parame-
terizations are found. The reparameterization should at least take the solvent size
into account and should probably employ different cavity surfaces for electrostatic
(εs) and optical (ε∞) reaction-field components.

The computation of the dispersion interaction, as well as the induction and
polarization components of the classical partition require an explicit polarizability
representation of the classical partition, which is present in our force field. The only
parameters required for the dispersion are the ionization energies (IEs) of solute and
solvent, available from experiment or computation. The dispersion scaling factors
[eq. (6)] are not very sensitive to errors in the IEs: a 10% error in the solute or solvent
IE results in a 3-5% error in γ, corresponding to an error of 25–50 cm-1 in the calcu-
lated shift. The error made as a result of the Unsöld approximation itself is not
included in this assessment. Thus the explicit solvent model with polarizability may
be used to provide both qualitative insight in and quantitative information on elec-
tronic transition energy shifts in any solvent in a generally applicable formalism.
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The Nature of Dielectric Behaviour 3.5

Introduction

IN THE PRECEDING APPLICATIONS of various solvent models it has become clear
that the dielectric continuum-only model has severe limitations, although it may be
very useful in obtaining quantitative solvation energies in an engineering context.
The breakdown of this model is due to the violation of the assumptions under which
the model has been derived, notably the non-linearity, or saturation, effects that
dominate the behaviour of the first few solvent shells. This saturation expresses itself
in the orientation component of the response in polar solvents: the dipolar interac-
tions with the solute are strong enough to hamper rotation of the solvent molecules
in the first solvent shells. Deviation from dielectric behaviour due to the electronic
component is often assumed to be much smaller, or absent. Whereas for the orienta-
tion component the homogeneity and anisotropy of the first solvent shells is readily
acknowledged, current practice for the electronic component assumes homogeneity
and isotropy on a microscopic scale. This assumption shows up in the popular use of
an ‘internal dielectric constant’ of 2 to 6 to screen charge–charge interactions in simu-
lations of biomolecular systems. Another example of the use of dielectric constants
appears in dielectric continuum reaction-field approaches for the computation of
solvation energies and solvent effects. Here the interior of the cavity is given a low
dielectric constant, effectively reducing the reaction field from the bulk. In this
section the behaviour of charge–charge interactions moderated by explicit polariz-
abilities is examined to investigate the validity of the use of such ‘local dielectric
constants’, and distance-dependent dielectric screening functions. The validity of
using internal dielectric constants in continuum models is investigated by the calcu-
lation of the KCl dissociation curve in a dielectric.

The Dielectric Function

The dielectric constant (ε) of a material is derived for macroscopic systems as the
response of a bulk-amount of material to an applied electric field (section 1.4).52, 53

The electric field can be generated by charging two plates in a capacitor, for example.
The effect of the material intervening between the plates is to reduce the interaction
between the plates with respect to vacuum, so the repulsion or attraction (depending
on whether the plates carry like or unlike charge) between the plates is less. This
effect is called screening, as the presence of the charge on one plate is made less
apparent to the charge on the other. The rearranged charge distribution in the
intervening material generates a field that opposes that of the charged plate.

The dielectric constant is next encountered as a scaling parameter in Coulomb’s
law for the force between interacting charges qi and qj connected by a vector rij:
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 Fij = 
qi qj rij

ε  rij 
 3

 (18)

with the same scaling holding for the potential energy. It is very important to keep in
mind that eq. (18) is a ‘macroscopic formula’, i.e. it holds for macroscopic charges
and distances, and moreover, only if the charges are completely immersed in the
material for which ‘ε’ stands, which is supposed to be homogeneous and isotropic.
One must realize that the linear response of (bulk) material is the result of averaging
the microscopic responses over a volume which may be microscopic on an everyday
scale, but must be macroscopic on the atomic scale. Jackson gives a volume of 106

cubic Å as an absolute lower limit to the macroscopic domain.52 Hence, the charges
in eq. (18) should be about 100 Å apart, and the boundaries of the bulk material in
which they are immersed should also be that far away from them!

Computational chemists mainly deal with microscopic systems in which charge
densities—and associated potentials, fields, and responses—vary wildly. However,
all properties of such systems are also obtained as averages. For example, the induced
polarization P in bulk material for a weak external electric field E is given by:

 P = χe  E (19)

in which χe  is the electric susceptibility. P is the average dipole density of a macro-
scopic volume (∆V) of that material, and gives rise to a dipole moment M:

 M = χe  ∆V  E (20)

reflecting the change in the average positions of (bound) charges due to the presence
of the field. From eq. (20) we see that χe  ∆V may be interpreted as the macroscopic
polarizability of ∆V.

If the description of the system is explicitly quantum mechanical, the average is
taken over the charge density via the wave function, but, dropping mathematical
rigor for the moment, it is effectively the average over a volume which is typical for
the size of the system. For example, if the potential inside an atomic ion is calculated,
the result will reflect the variations in the charge density. Restricting the integration
over the charge-density to the volume inside a spherical surface, the result for a
measurement-point just outside the volume of integration goes smoothly to that for
a point charge located at the ion’s nucleus in the limit of extending the integration
beyond the last maximum in the charge density.

The microscopic analogue of eq. (20) is:

 ind = α E (21)

with α  the system’s polarizability, and again describes the changes in the average
positions of the charges in the field. We note that eq. (21) is applicable only if E is
external, i.e. sources are located outside the system’s ‘volume’, and the averaging is
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done over that complete volume as is implied in the expectation value of ind. Here
too, the details of the actual charge distribution are lost.

All this is well known of course and is the basis for systematically going from
integral approximations in ab initio methods to semi-empirical approaches and,
finally, to the development of classical ‘force fields’. It is particularly in using screen-
ing parameters in force fields that many computational chemists tend to forget about
the macroscopic nature of dielectrics and the dielectric constant. In microscopic force
fields the screened Coulomb’s law [eq. (18)] is applied between charges, the screen-
ing factor usually ranging from 2 to 6, based on measurements of the permittivity of
proteins, while optimization of force fields even leads to distance-dependent
‘dielectric constants’.

A number of popular force fields employ a distant-dependent effective dielectric
function for the calculation of electrostatic interactions:

 ∆Uelst  = 
qi qj

4π ε(rij) rij
∑
i<j

 (22)

accompanied by a reference to Warshel and Levitt. An effective ε(r) was introduced
by Warshel and Levitt93 to calculate approximately self-consistent orientations of
Langevin dipoles, modelling water surrounding lysozyme, in order to avoid the
costly self-consistent calculations, such as described in Chapter 2. Their approach
was an engineering one, first going through the self-consistent calculation and then
finding a best fit of the ε(r) to the effective field of source charges at the dipoles. They
expressly mention that this effective, distance-dependent dielectric constant was not
used in the calculation of the interaction between the source-charges within
lysozyme. They did, however, use the same approach to calculate the induced
dipoles at explicitly described polarizabilities within the lysozyme. For this, they
found that the ε(r) was hardly distance dependent, and used the average value of
1.36. Again, this effective ε was not applied to the direct charge–charge interactions.
The effect of the polarizabilities on the total energy was obtained as the interaction
between the induced dipoles and the charges:

 Utot = 1
2

 
qi qj

rij
 + 1

2
 qi 

rik
†  α k

ε(rik) rik
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rkj
3

 qj∑
i,k,j
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i,j

 (23)

which can never be cast into the form of eq. (22), even with additional fitting, the
main obstacle being the appearance of the scalar products of vectors in eq. (23). The
same holds for the self-consistent solution of this problem which leads [cf. eq. (2.35)]
to:

 Utot = 1
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Employing effective dielectric constants in microscopic calculations is a result of
scaling the macroscopic concepts down to microscopic dimensions. Knowing the
limitations set on a macroscopic dielectric—homogeneity, isotropy, and linearity—
the validation of the use of local, microscopic, dielectric constants is all but clear. The
case against the physical meaning of any linear response theory to the description of
microscopic behaviour has even been made.213 We therefore investigate how
charge–charge interactions are influenced on a microscopic scale by polarizable
material, and under what conditions macroscopic-like dielectric behaviour may be
expected.

The microscopic model underlying a macroscopic dielectric consists of a filling of
space with interacting polarizabilities of some magnitude. On the chemical scale,
‘units’ of polarizability are typically molecular polarizabilities. We therefore choose
to fill the space with polarizable spheres of radius 3.64 Bohr and with a polarizability
of 10 cubic Bohr. These values are obtained from liquid water properties at room
temperature. We start with a one-dimensional system to get a grip on the basic rules
governing the interactions between charges in a polarizable environment. We then
generalize the insights gained from that exercise to three-dimensional systems. In the
one-dimensional systems we use the term anisotropy to mean absence of left-right
symmetry. This concurs with the three-dimensional notion of inequality of different
directions.

The interaction between two test charges is calculated according to eq. (24),
which in this specific case reads:

 E r12  = Evac  + Escr 
self  + Escr 

int  = 
q1 q2
r12

 + 1
2

 q1 
r1k

†  

 r1k
3
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(25)

in which k and l are the indices of the relay matrix R that formally couples all polar-
izabilities in the system [eq. (2.35)]. The interaction terms are the vacuum Coulomb
interaction, the screening of the self interaction and the screening of the electrostatic
interaction.

Basic Interaction Components

The first system studied is a one-dimensional array of polarizable spheres, shown
in Figure 9. A linear array of polarizable spheres is touching each other exactly. Two
spheres are given a unit charge at their centres, one positive, the other either positive
or negative. The spheres carrying the charges are situated as indicated in Figure 9
with k left-neighbouring spheres, and m right-neighbouring spheres, and n spheres
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Figure 9. String of polarizabilities.

in between. The force between the charges is computed by finite difference from the
interaction energy displacing the second charge by δ=0.01 Bohr in two directions:

 Factual r  = - 
E r+δ  - E r-δ

2δ
 (26)

and from this, the effective dielectric constant of that arrangement by:

 ε(r) = 
Fvacuum (r)
Factual (r)

 (27)

The first series of calculations are on a growing chain of polarizabilities with a
fixed number (0, 1, or 4) of polarizable spheres just outside the charges. The
computed effective ε as a function of interposed polarizabilities, ε(n), for both like
and unlike charges for k=m=0 and k=m=1 are shown graphically in Figure 10.

It is immediately clear that the like and unlike charge combinations behave
differently as concerns the effective screening on this microscopic scale. On closer
examination, however, their behaviour operates on the same mechanism, viz. a
tendency to be as close as possible to the surplus of polarizability. The unlike charges
attract each other more than in vacuum, resulting in an ε<1, whereas the like charges
start out behaving somewhat as if they were in a dielectric, but eventually start
attracting each other, so that ε becomes negative. The cause of this effect is the
anisotropy of the polarizable environment, combined with the increasing importance
of the self-energy of the charges as the distance between them grows.

The contribution to the self-energy of a charge from a polarizable environment is
the interaction between the charge and the dipoles it induces in the environment.
The force from this contribution will be determined largely by the immediate
surroundings, as the effective field at the surrounding polarizabilities falls off rather
fast with the distance. As the direct charge–charge interaction becomes less, the
behaviour of a charge will increasingly be determined by its immediate surround-
ings. The force resulting from the self-interaction of a charge in a polarizable envi-
ronment as a function of anisotropy is shown in Figure 11, together with the magni-
tude of the self-interaction as the amount of polarizable material increases.



                                                                 3 Practice                                                                 115

-6

-4

-2

0

2

4

0 1 2 3 4 5 6

Ef
fe

ct
iv

e 
ep

si
lo

n

Number of intervening polarizabilities

-20

-15

-10

-5

0

5

10

15

0 4 8 12 16 20

Ef
fe

ct
iv

e 
ep

si
lo

n

Number of intervening polarizabilities
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: + + charge combination; : + - charge combination.
Top: figure 10a: k=m=0; bottom: figure 10b: k=m=1 (see Figure 9).

                                                                                                                                             

0

20

40

60

80

100

1 2 3 4 5 6

Pe
rc

en
ta

ge

Number of polarizabilities

Figure 11.  Study of self-interaction of a charge surrounded by polarizabilities. : percentage
of the force from the self-interaction on a single charge located at the ±-position in Figure 9,

as a function of m, with k=29, relative to m=1; : percentage of the self-interaction as a
function of the number of neighbouring polarizabilities m, with k=m-1,

relative to m=30 (see Figure 9).
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The force from the anisotropy rapidly diminishes as more polarizable material is
introduced on the right hand side of the charge, indicating that three to four polariz-
abilities should suffice to eliminate this component of the total force. Calculations
with k=m=4 show that at distances of more than 200 Bohr (n>27), deviation from
dielectric behaviour still occurs. Apparently the anisotropy, although energetically
very small, eventually still dominates the charge–charge interaction.

Toward a Dielectric

Elimination of the anisotropy may be achieved by making sure the charges are
surrounded by an infinite amount of polarizable material, which may be done in a
computational sense by applying a dielectric continuum method. Therefore, the
configuration of Figure 12 was examined. The dark spheres carrying the charges are
embedded in a number of layers of polarizabilities, the whole being enveloped by a
dielectric continuum, with ε=1.78. The result of the distance dependence of the
effective screening between the charges for a box with fixed length of 31 polarizabil-
ities is shown in Figure 13.

The most important conclusion to be drawn from the results presented in Figure
13 is that only in a situation in which the surroundings are as isotropic as possible,
like and unlike charge combinations behave according to the same effective scaling
law. Deviations seen from n=11 onwards indicate boundary effects, as the number of
explicit polarizabilities between the charge and the dielectric becomes less than four.

The concept of a dielectric continuum, defined on a macroscopic scale, is not
generally scaleable to microscopic dimensions. At microscopic dimensions, the
requirement of anisotropy for dielectric behaviour will seldom be fulfilled, be it in
the computational model or in the real system, as can be learned from looking at
electronic density maps. It is the anisotropy of the immediate surroundings that
cause deviation from dielectric behaviour, mainly because the self-energy of a charge
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Figure 12. Box filled with polarizabilities and surrounded by a dielectric
continuum. The dark spheres carry the charges.
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Figure 13. Effective  for interacting charges in box filled with
polarizabilities and surrounded by a dielectric continuum as a function of

intervening layers (n) of polarizabilities (k=3, m=31, see Figure 12).
 : + + charge combination; : + - charge combination.

is sensitive to the anisotropy. In a true dielectric, the self-energy of a charge is
indifferent to the position of the charge in the dielectric, and hence does not
contribute to the force.

On modelling ‘low-dielectric’ regions

In this section we investigate the effect of introducing a ‘low-dielectric’ region in
the modelling of solvent effects as for example implemented in CHARMM126 and
DELPHI.56 Solvation effects are often studied by solvating a vacuum Minimum
Energy Reaction Path (MERP) in water by solving appropriate linearized Poisson-
Boltzmann equations. To cite for instance Dejaegere et al.:214

The solute molecules are treated as irregularly shaped objects whose interior has a uniform

relative permittivity εi with point charges at positions corresponding to the atomic nuclei, as

usual in a cavity in a dielectric continuum with ε=80. Any tendency for solvation to alter the

charge distribution of the solutes (by electronic polarization effect, for example) is presumed

to be included in εi; εi was set to 2.

Note that this is equivalent to setting εout=40, and leaving εi=1, since in the Poisson
equation dielectric effects are only related to the ratio εout/εi.

58

In the light of the preceding sections it is doubtful whether such a uniform
screening is able to mimic the microscopic behaviour of the solutes. Therefore we
treated a KCl molecule with our DRF approach. We first obtained part of the poten-
tial energy curve from RHF calculations, using a Wachters basis set for K215 and
Dunning’s DZP basis for Cl.148 Subsequently we solvated the system with the
‘cavity-in-continuum-approach’, first using the fully quantum-mechanical charge
distribution and ε=80. This exercise was repeated, now using the DPCs43 and ε=40,
i.e. following the procedure suggested above. We also used a fully classical model
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Figure 14. Solvation of KCl in various approximations. : QM representation,
vacuum; : Classical representation (charge-transfer correction), vacuum;
: Solvated QM representation, =80; : Solvated classical representation,

=80; : Solvated point charges, =40.

with experimental atomic radii216 and polarizabilities for K+ and Cl-.123 In all
reaction-field calculations we used a boundary defined by Connolly surfaces (see
Figure 6), constructed anew for each interatomic distance, with the ionic radii
multiplied by a factor of 1.3. This is slightly larger than the factor of 1.2 advocated by
e.g. the Pisa group,217 because for smaller distances no convergence was obtained in
the SCF-DRF-RHF calculations, due to the relatively large basis set. Results are
collected in Figure 14.

From Figure 14 we see that in vacuum the classical representation of KCl ( ) does
not do too badly in comparison with the RHF results ( ) although the DRF force
field was not conceived for ionic cases. The agreement is obtained after correction
with the experimental ionization energy and electron affinity. It leads to almost the
same equilibrium distance and the curves have very similar shapes near this
distance. The short-range repulsion is too hard, but only in the less important
regime, as we have seen for the water dimer (section 3.2). Solvating the QM charge
distribution in a dielectric with ε=80 ( ) differs qualitatively from solvating only
point charges in a dielectric with ε=40 ( ), as expected. In the full treatment the
molecule tends to dissociate, while in the point-charge-only treatment the atoms
remain bound, albeit weakly. The difference between using a dielectric constant of
40 and 80 in either treatment is very small (maximal ≈2 kJ/mol, not shown).
Accounting for the microscopic polarization of KCl is essential to get correct
behaviour, which is demonstrated by the fully classical solvated case ( ) which
tends more to dissociation—like the fully quantum-mechanical case—than that of
the solvated point charges.
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Conclusion

The concept of a dielectric constant, defined on the macroscopic level, is not
generally applicable at microscopic dimensions. Since the dielectric constant should
be a real constant for homogeneous systems, or only a very slowly changing function
of position, it is incompatible with a microscopic description of a system. The most
important difference between ‘dielectric’ and ‘microscopic’ response behaviour is
that the latter is dominated by local anisotropies which does not lead to general
screening of Coulomb interactions. The actual difference between Coulomb interac-
tions in vacuum and in the presence of some material with (linear) response on
microscopic distances depends strongly on the geometry, the types and values of
source charges, and on the response functions. Hence, in an arbitrary arrangement of
charges of either type, with or without a dielectric around them, the ‘response factor’
can be anything. Failure of dielectric screening behaviour in proteins has been
attributed to the nuclear response component.218

Fitting procedures are quite normal in the construction of force fields, but refer-
ences to ‘dielectric constants’ in such procedures can be avoided—without any loss
of validity within the fitting procedure—by using expressions like:

 U =   - 
Aij

rij
6

 + 
Bij

rij
12

 + 
Cij qi qj

rij
  + ... ∑

i,j

 (27)

for the ‘non-bonded interactions’, stressing that A, B, C, ..., and the q’s are no more
than (interdependent) fit-parameters which should not be interpreted as physically
meaningful.

In contrast, the DRF parameters, in particular the charges and polarizabilities, are
obtained as well-defined and independent properties of the subsystems and thus
have to a large extent their usual physical contents. We conclude that the natural
response functions for microscopic descriptions are local (dipole and higher) polar-
izabilities which are shown to behave to a large extent similarly to a full quantum-
mechanical treatment of the system.
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Conclusion 3.6

THE MODELLING of the condensed phase from first principles has been put to the
test. The sensible models based on quantum-theoretical analysis of the interactions
between molecules have proven feasible, useful, and necessary for the reliable calcu-
lation of solvent effects for a range of solutes and solvents. With the results of this
work in hand we may step out confidently into application of this approach to many
other areas of chemistry.

Future developments lie in improving the accuracy of the quantum-chemical and
classical descriptions. This will be automatic as available computer power becomes
available: the codes are there. The growing interest of computational chemists at the
moment is in the dynamic properties of chemical systems. Chemists want to do
chemistry! This is the edge of computational chemistry today. Codes are being
written, refined, and generalized. The opportunity to step in with combined quan-
tum-chemical–classical models must be taken.

A very important problem of the combined quantum-chemical–classical models
is the transition between quantum-chemical and molecular mechanical regions, and
between the discrete molecular and continuum regions. Especially the cutting of
bonds, as it is encountered in cluster-calculations on solid-state and biological
systems remains a most challenging problem. The models based on the separability
into non-overlapping fragments fail. The development of a feasible approach to this
problem in the spirit of the scheme presented in this thesis should be sought in the
definition of small, transferable spectator groups which influence the electronic
density through the (temporary) presence of occupied basis functions.

The practice of computational chemistry discussed in this chapter covers a wide
range of specializations within the discipline. We have not been able to adhere to the
standards of all disciplines. The wave functions could have been of higher quality,
the thermodynamic averaging more extensive. The effort lies in the combination of
specializations, mainly to demonstrate its possibility and added value. There
remains a great need for sophistication and optimization of the techniques, to further
enable the feasibility of sensible model calculations.
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Appendix 3.7

1. General DRF force field parameters

Table A1. Atomic polarizabilities and radii for use in computation of induction,
dispersion, and repulsion energies.

Dampinga Exponential Linear Repulsion

Width-parametera 2.089 1.662 I II

Atom polarizabilityb polarizabilityb radiusc radiusc

H 2.881 3.469 2.516 2.267

C 8.672 9.482 3.518 3.213

N 6.526 7.457 3.247 2.929

O 5.304 5.871 2.989 2.872

F 3.200 3.577 – 2.778

Cl 17.61 17.61 4.324 3.307
a Thole’s damping functions 1 and 4, respectively, see ref. 49. b In Bohr3. c  In Bohr.

The parameters given here are used throughout this thesis, unless noted otherwise.
For the repulsion the radii of set I are used throughout, except for the benzene-
derived dimers, for whom set II is used. Further deviation from the parameters
given here is only for the polarizabilities of H and O in water when fitted to the
DZP-polarizability (Table 1; Figure 2); and for H and C in the benzene SDPC, EDPC,
SP and EP parameterizations, which are given in Appendix 3.

2. DRF Force-Field Parameters and Computed Molecular Properties for
Molecules Used in this Thesis

Table A2. Atomic Cartesian co-ordinates, partial charges, computed overall dipole
and quadrupole moments, and computed polarizability.

Molecule Xa Ya Za qb µ, θc αd

Water* 0.787 9.8
O 0.0 0.0 0.0 -0.796 -0.06  9.4
H (O1) 1.1031  1.4325 0.0 +0.398  1.26 12.3
H (O2) 1.1031 -1.4325 0.0 +0.398 -1.19  7.6



122 MODELLING CONDENSED-PHASE SYSTEMS
                                                                                                                                                        

Table A2 (continued).

Molecule Xa Ya Za qb µ, θc αd

Benzene† 0.0 61.5
C (1) 0.0 -2.63995 0.0 -0.1035  2.33 74.2
C (2) -2.28626 -1.31997 0.0 -0.1035  2.33 74.2
C (3) -2.28626  1.31997 0.0 -0.1035 -4.66 36.3
C (4) 0.0  2.63995 0.0 -0.1035
C (5)  2.28626  1.31997 0.0 -0.1035
C (6)  2.28626 -1.31997 0.0 -0.1035
H (C1) 0.0 -4.68841 0.0  0.1035
H (C2) -4.06028 -2.34421 0.0  0.1035
H (C3) -4.06028  2.34421 0.0  0.1035
H (C4) 0.0  4.68841 0.0  0.1035
H (C5)  4.06028  2.34421 0.0  0.1035
H (C6)  4.06028 -2.34421 0.0  0.1035

Toluene† 0.11 74.4
C (1) 0.0 -2.63995 0.0 -0.1150  2.02 83.6
C (2) -2.28626 -1.31997 0.0 -0.1097  2.00 92.0
C (3) -2.28626  1.31997 0.0 -0.1533 -4.02 47.5
C (4) 0.0  2.63995 0.0 -0.1868
C (5)  2.28626  1.31997 0.0 -0.1556
C (6)  2.28626 -1.31997 0.0 -0.1043
H (C1) 0.0 -4.68841 0.0  0.0991
H (C2) -4.06028 -2.34421 0.0  0.1016
H (C3) -4.06028  2.34421 0.0  0.1048
C (7) 0.0  5.55013 0.0  0.3860
H (C5)  4.06028  2.34421 0.0  0.1037
H (C6)  4.06028 -2.34421 0.0  0.1015
H (C71)  1.94202  6.23668 0.0  0.1028
H (C72) -0.97101  6.23668  1.68183  0.1118
H (C73) -0.97101  6.23668 -1.68183  0.1118

o-Xylene† 0.20 86.8
C (1) 0.0 -2.63995 0.0 -0.1159  1.65 100
C (2) -2.28626 -1.31997 0.0 -0.1205  1.73 103
C (3) -2.28626  1.31997 0.0 -0.1563 -3.38 57.8
C (4) 0.0  2.63995 0.0  0.1331
C (5)  2.28626  1.31997 0.0  0.1322
C (6)  2.28626 -1.31997 0.0 -0.1566
H (C1) 0.0 -4.68841 0.0  0.0973
H (C2) -4.06028 -2.34421 0.0  0.0973
H (C3) -4.06028  2.34421 0.0  0.1033
C (7) 0.0  5.55013 0.0 -0.3815
C (8)  4.80655  2.77507 0.0 -0.3849
H (C6)  4.06028 -2.34421 0.0  0.1026
H (C71)  1.94202  6.23668 0.0  0.1133
H (C72) -0.97101  6.23668  1.68183  0.1064
H (C73) -0.97101  6.23668 -1.68183  0.1064
H (C81)  6.37213  1.43651 0.0  0.1036
H (C82)  4.91511  3.96013  1.68183  0.1101
H (C83)  4.91511  3.96013 -1.68183  0.1101
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Table A2 (continued).

Molecule Xa Ya Za qb µ, θc αd

Fluorobenzene† 0.80 62.1
C (1) 0.0 -2.63995 0.0 -0.1243 74.6
C (2) -2.28626 -1.31997 0.0 -0.1112 74.8
C (3) -2.28626  1.31997 0.0 -0.2134 36.8
C (4) 0.0  2.63995 0.0  0.5658
C (5)  2.28626  1.31997 0.0 -0.2134
C (6)  2.28626 -1.31997 0.0 -0.1112
H (C1) 0.0 -4.68841 0.0  0.1034
H (C2) -4.06028 -2.34421 0.0  0.1161
H (C3) -4.06028  2.34421 0.0  0.1213
F (C4) 0.0  6.41657 0.0 -0.3705
H (C5)  4.06028  2.34421 0.0  0.1213
H (C6)  4.06028 -2.34421 0.0  0.1161

Acetonitrile* 1.67 29.3
C (CN) 0.0 0.0 0.0 +0.5050 -1.52 38.3
N -2.20 0.0 0.0 -0.5090  0.76 24.7
C (Me)  2.81 0.0 0.0 -0.8360  0.76 24.7
H (C21)  3.45 -1.81 0.0 +0.2800
H (C22)  3.45  0.90  1.57038 +0.2800
H (C23)  3.45  0.90 -1.57038 +0.2800

Acetonee† 1.50 42.4
C (CO)  0.46479  0.95640 -0.00905 +0.61375  0.64 46.0
O  1.68667  2.89733  0.00450 -0.52335 -1.70 45.2
C (Me 1) -2.37519  0.98510 -0.00004 -0.37730  1.06 36.0
H (C11) -3.09296  0.00491  1.64946 +0.11070
H (C12) -3.10363  0.01723 -1.65125 +0.11070
H (C13) -3.05158  2.90761  0.01028 +0.11070
C (Me 2)  1.71788 -1.59275 -0.02687 -0.37730
H (C21)  1.20654 -2.64285  1.65643 +0.11070
H (C22)  1.09693 -2.68784 -1.64194 +0.11070
H (C23)  3.74285 -1.37428 -0.09414 +0.11070

Methanolf* 0.76 22.5
C -0.71167 -0.15571  0.27004 -0.0139  0.18 23.7
O  1.95454 -0.15571  0.27004 -0.6021 -0.63 21.3
H (OH)  2.49028  0.68843 -1.25289  0.4111  0.45 22.6
H (C21) -1.46813  1.81716  0.27004 +0.0545
H (C22) -1.47096 -1.20376 -1.40218 +0.0545
H (C23) -1.26498 -1.14933  2.05319 +0.0959

Tetrachloromethane* 0.0 73.5
C -0.058959 0.0  0.043464 -0.1944  0.0 73.5
Cl (1)  3.266958 0.0  0.043464  0.0486  0.0 73.5
Cl (2) -1.167662 -3.135811  0.043464  0.0486  0.0 73.5
Cl (3) -1.167662  1.567906  2.759000  0.0486
Cl (4) -1.167662  1.567906 -2.672072  0.0486
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Table A2 (continued).

Molecule Xa Ya Za qb µ, θc αd

Z–N-methylacetamidee* 1.72 51.7
C (CO) -3.73962 -0.09300 0.0  0.9995  4.67 64.7
O (CO) -3.70680 -2.40791 0.0 -0.7774 -4.73 51.4
N -5.92445  1.21486 0.0 -0.6092  0.06 39.0
H (N) -5.89809  3.08396 0.0  0.3218
C (Me C) -1.33048  1.41587 0.0 -0.4922
H (CC1) -0.23408  0.90644 -1.64693  0.1504
H (CC2) -0.23408  0.90644  1.64693  0.1504
H (CC3) -1.63525  3.43365 0.0  0.0727
C (Me N) -8.34561 -0.07657 0.0 -0.0966
H (CN1) -8.53582 -1.25917  1.65374  0.1065
H (CN2) -8.53582 -1.25917 -1.65374  0.1065
H (CN3) -9.83478  1.31557 0.0  0.0676

E–N-methylacetamidee* 1.86 51.3
C (CO) -3.73974 -0.10386 0.0  0.9893  5.92 57.8
O (CO) -3.81312 -2.41861 0.0 -0.7912 -6.97 57.3
N -5.88881  1.27700 0.0 -0.6115  1.05 38.8
H (N) -7.45965  0.24955 0.0  0.3479
C (Me C) -1.24366  1.25824 0.0 -0.4876
H (CC1) -0.18568  0.66825 -1.64539  0.1504
H (CC2) -0.18568  0.66825  1.64539  0.1504
H (CC3) -1.39505  3.28656 0.0  0.0932
C (Me N) -6.13996  4.00631 0.0 -0.1042
H (CN1) -5.30435  4.85414 -1.66201  0.0878
H (CN2) -5.30435  4.85414  1.66201  0.0878
H (CN3) -8.12783  4.45872 0.0  0.0877

a Cartesian co-ordinate in Bohr. b Partial charge from HF wave-function DPC-analysis in atomic
charge-units. * DZP basis; † STO4-31G basis set. c Overall dipole moment in a.u. (1 a.u.=2.54 D
=8.478 10 -30 Cm), and xx, yy, and zz components of the Buckingham quadrupole-moment tensor in
a.u. (1 a.u.=4.487 10-40 Cm2). d Isotropic polarizability, and xx, yy, and zz components of molecular
polarizability tensor in Bohr3. e STO4-31G-optimized geometry. f AM1-optimized geometry (CAChe-
system).
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3. Special Benzene Model Parameters

–A. Scaled models: SDPC and SP. The atomic charges and polarizabilities are scaled
to yield the experimental quadrupole moment and isotropic molecular polarizability.
The charges are -0.1626e and +0.1626e; the polarizabilites are 10.0 and 3.4 for C and
H, respectively, with Thole’s standard exponential damping model.

–B. Extra-centre models: EDPC and EP. Extra charge- and polarizability-points are
added 1.8897 Bohr (1.0 Å) above and below the C-atoms in the z-direction. The extra
points are given a charge of -0.07e, a polarizability of 1.3 Bohr3, and a radius of 1.3
Bohr. Each C-charge is corrected to +0.0365e (from -0.1035e) to neutralize the charge-
shift to the extra points. The H-charges are unaltered.

4. Selected Molecular and Bulk Properties

Table A3. Experimental molecular and bulk properties of various solvents.a

Species MW b µ (D)c α (Bohr3)d IE (eV)e ρ (g/cm3)f ε0 g nD20 h

H2O 18.01 1.85 10 12.6 0.9971 78.5 1.333
CH3CN 41.05 3.92 12.2 0.7856 37.5 1.344
CH3OH 32.04 1.70 22 10.84 0.7914 32.6 1.329
C6H5CH3 92.15 0.36 8.82 0.8669 2.38 1.494
n-C6H14 86.18 10.18 0.6603 1.89 1.372
C6H6 78.11 0 75 9.24 0.8787 2.30 1.501
CCl4 153.8 0 71 11.5 1.5942 2.20 1.466
CH3COCH3 58.08 2.88 9.69 0.7899 20.7 1.359

a Sources: CRC Handbook of Chemistry and Physics, 64th edition and P.W. Atkins Physical Chemistry,
4th edition. b Molecular weight in atomic mass units. c Vacuum dipole moment in Debye. d

Molecular isotropic polarizability. e Ionization energy in eV. f Liquid density at 298 K in g/cm3. g

Dielectric constant at 298 K. h Refractive index at 293 K.
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Summary

THE TREATMENT of solvent effects is attracting ever growing interest in
computational chemistry because it marks the meeting of two mainstream develop-
ments in approaching chemistry by computation rather than by experiment: quantum
chemistry, which attempts to calculate molecular properties and reaction profiles
from first principles, i.e. by solving the Schrödinger equation for nuclei and elec-
trons, the building blocks of matter as far as the chemist is concerned; and molecular
mechanics, which attempts at calculating macroscopic properties from microscopic
representations of matter by statistical thermodynamics, operating at a higher level
of aggregation than does quantum chemistry, viz. that of atomic or molecular
building blocks. Interest from experimental chemistry is also bountiful, because
direct observation of microscopic key-events in condensed-phase experiments is
very difficult.

The computational approaches suffer from technological limitations in their
application. The first-principle methods are very detailed descriptions, rendering
these techniques very CPU and memory intensive, barring statistical thermodynamic
calculation of large samples; by stepping up a level of aggregation to molecular
mechanics such calculations become feasible, be it at the expense of much detail. The
loss of detail may seriously undermine the physical meaning and interpretability of
the results. The problems with the physical meaning and interpretability of statistical
thermodynamic calculations lie especially in the description of the atomic building
blocks. Although the descriptors are cast in forms that are based on sound
theoretical analysis of intermolecular interactions, the numerical values, the parame-
ters, are usually fit to macroscopic properties, and thus the ‘atoms’ are not the same
as they would be in isolation, but effective macroscopic atoms. The fitting procedure
causes a mixing of physical effects to enter parameters that stand for clearly defined
interaction components, and thus obfuscates the analysis.

The approach followed in this thesis chooses the first-principle methods as the
starting point for building a molecular mechanics description of molecular aggre-
gates. In this way, a hierarchical description of the condensed phase is built up from
depth, retaining the physical meaning of the interaction energy components of the
molecules. An especially important feature of this approach is that it allows mixing of
the first-principles and molecular descriptions in a transparent and consistent way.
The mixing is necessary if one wants to describe processes that cannot be dealt with
without the quantum mechanics of the electrons and/or nuclei of at least part of the
system, such as the spectrum, electron-transfer processes, and reactions.

Starting with a clear-cut analysis of interaction at the level of nuclei and elec-
trons, criteria for both application and the building of molecular representations that
preserve the physical meaning of the parameters—distributed charges and
polarizabilities, completed by ad hoc repulsion parameters—are derived. The crite-
rion for application of the molecular representation is spatial separation of the
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molecules, i.e. they should be recognizable as such. The properties of interest for
building the molecular model are the electrostatic and electric response properties of
the molecules that can be obtained from the molecules in isolation, i.e. without
having to resort to the macroscopic.

The application of the molecular model to condensed-phase systems constitutes a
border-line case. The molecules are close, yet they are recognizable. Some special
measures have to be taken to prevent accidents due to the spatial extent of the
molecules. These may again be rooted in sound theoretical analysis at the deepest
level, or rather ad hoc. Whatever choices are made, checking is necessary.

The outline of this thesis is the following. In Chapter 1 the analysis of inter-
molecular interactions from quantum theory is elaborated in the mathematical
language, emphasizing the assumptions underlying the transition from quantum-
chemical to classical representation of the molecules. The classical molecular
description in terms of the properties of isolated molecules is derived from the
quantum-theoretical formulas. The molecular electrostatic and response models are
introduced and put under some scrutiny as concerns the internal consistency and
limits of applicability. Chapter 2 provides the computational chemist with the tools
to put his ideas into action, as the implementation of the molecular model in combi-
nation with standard quantum-chemical is detailed on. Finally testing and applica-
tion of the molecular model to various chemically interesting systems is carried out
in Chapter 3. These include the water dimer and van der Waals complexes, solva-
tion, both aqueous and non-aqueous, and solvatochromism of acetone. It is shown
that the approach advocated by us provides a general and straightforward scheme to
attack very different systems. The treatment of the various systems is not always
entirely satisfactory, but at least the approach leaves little doubt about the improve-
ments necessary to obtain better agreement with highly accurate ab initio calculations
and experiment. The chapter closes with an analysis of the nature of dielectric
behaviour, demonstrating that although the macroscopic is a result of the goings-on
of the microscopic, the microscopic may not be represented as a scaled-down macro-
scopic. Finally, a section for the interested readers commanding the Dutch language
is included presenting a broader introduction to quantum chemistry and molecular
models in the light of computational science as a means to study nature. The ideas
behind the approach chosen in this work are introduced by appealing to everyday
analogues.

The aim of the work presented in this thesis is to work toward a consistent,
sensible, and applicable model for condensed-phase phenomena, preserving physi-
cal meaning handed down by quantum theory. This approach is believed to be more
fruitful than approaches based on fitting to macroscopic properties because it is
more general and not hampered by mixing of separable effects in the molecular
descriptions.
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Quantumchemie en
moleculemodellen

Laten we er vooral allemaal anders over denken.

C. BUDDINGH’

Sommige mensen... Aforismen verzameld door Gerd de Ley (1971)
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Inleiding A.1

SINDS MENSENHEUGENIS houdt onze soort zich bezig met de dingen der
natuur en de natuur der dingen. Kennis van de dingen der natuur is noodzakelijk
om ons te handhaven; kennis van de natuur der dingen moet ons helpen de natuur
te beheersen en, nog verdergaand, naar onze hand te zetten. Het begin van deze
kennis ligt in directe zintuiglijke waarneming van natuurverschijnselen. Daarna ook
in indirecte waarnemingen gedaan met behulp van vervaardigde instrumenten.
Tenslotte door waarnemingen in door ons geforceerde situaties, ofwel experimenten.

De sleutel tot het handhaven in, en het beheersen en manipuleren van de natuur
ligt in het ordenen van de waarnemingen. Een zinvolle ordening doet regelmatig-
heden naar voren komen die helpen situaties te herkennen en te voorspellen, waar-
door het mogelijk is op tijd passende maatregelen te treffen. Regelmatigheden leiden
tot formulering van ‘natuurwetten’: vaste verbanden tussen verschijnselen. Deze
helpen bij het beheersen van de natuur, en bij het manipuleren ervan. Experimen-
teren langs de gevonden regels van oorzaak en gevolg is de basis voor technologie:
het vervaardigen van voorwerpen om een bepaalde taak uit te voeren.1 Hierbij is
vooral belangrijk dat het voorwerp doet wat ervan verwacht wordt en is de vraag
naar diepere achtergronden minder interessant.

Van oudsher is de mens echter ook op zoek naar inzichten die de veelheid aan
natuurverschijnselen onder één noemer brengen. Het bestaan van één algemeen
principe dat àl het waarneembare verklaart vervult blijkbaar een diepe behoefte in
ons bewustzijn. In tegenstelling tot technologie gaat het hierbij vooral om de
algemeenheid, de schoonheid, de eenvoud en de consistentie van de aangedragen
verklaring. De moderne natuurwetenschap verschilt van andere wegen tot het
vinden van algemene waarheden doordat zij natuurwetten formuleert die niet ver-
trouwen op alledaagse, aan de natuurlijke waarnemingen zèlf ontleende concepten,
maar veeleer uitgaan van ideale, bedachte toestanden.2 Niettemin heeft zij als enig
toegestane toetssteen de meetbare werkelijkheid. Neem als voorbeeld de beweging
van voorwerpen. In de alledaagse beleving moet voortdurend moeite gedaan
worden een voorwerp in beweging te houden. Men moet een kracht op het voor-
werp uitoefenen. Aristoteles verwoordde deze ‘natuurwet’ die twee millennia stand
hield. Toen bleek een radicaal ander concept, namelijk dat een voorwerp haar baan
onveranderd van snelheid en richting voortzet als daar geen kracht op wordt uitge-
oefend, te leiden tot een dieper inzicht, en konden uiteindelijk de bewegingen van de

1 The Evolution of Technology, G. Basalla (Cambridge University Press, Cambridge, 1987. In vertaling
verschenen onder de titel: Geschiedenis van de technologie, Uitgeverij Het Spectrum B.V., Utrecht, 1993.)
2 The Unnatural Nature of Science, L. Wolpert (Faber and Faber Ltd., London, 1993); The Character of
Physical Law, R.P. Feynman (British Broadcasting Company, London, 1965. Ook bij Penguin Books,
London, 1992); Physics and Philosophy, W. Heisenberg (Harper & Row, New York, 1962. Ook bij
Penguin Books, London, 1990).
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hemellichamen, vallende appels en veren, en van gas in een buis in één en de-zelfde
theorie (de klassieke mechanica) worden ondergebracht.

Het inzicht dat leidde tot de algemeen geldige beschrijving van bewegende ob-
jecten kwam tot stand met behulp van een gedachtenexperiment. Galileo stelde zich
een situatie voor waarin een voorwerp met niets in aanraking zou komen. Een lucht-
ledige dus, iets dat in de natuur niet voorkomt, getuige de klassieke spreuk ‘Natura
abhorret vacuum’, ‘De natuur verafschuwt het ledige’. Nadat de afkeer van het idee
van een luchtledige was overwonnen en men op zoek ging naar bewijs voor het
bestaan ervan, bleek het succes van de nieuwe zienswijze. Niet alleen werden de
bewegingswetten getoetst en correct bevonden (in het luchtledige valt een appel
even snel als een veer), maar er opende zich ook een geheel nieuwe tak van techno-
logie en wetenschap rond het vacuüm, uitmondend in de eerste stoommachine.

Toch komt ook in de wetenschap een einde aan het begrijpen. De mechanica
werd geformuleerd in termen van ‘krachten’ die op objecten werken. Hoe die
‘krachten’ tot stand kwamen wist men niet, en weet men voor een deel nog steeds
niet. Het concept is echter zó krachtig dat men er zich in eerste instantie niet om
bekommert wat de fysische betekenis ervan is. Zo worden in de wetenschap modellen
opgesteld die de werkelijkheid beschrijven, en wel in kwantitatieve zin. De nadruk op
kwantitatief juiste theorieën kenmerkt de moderne wetenschap meer dan iets anders.
Waar het in de klassieke wetenschap vooral belangrijk was of een inzicht esthetisch
was, moet een theorie tegenwoordig waarnemingen getalsmatig beves-tigen en de
uitkomst van metingen voorspellen. Daarbij blijft natuurlijk het streven naar
eenvoud bestaan, maar een esthetisch aansprekende theorie die geen kwanti-tatieve
voorspellingen doet is waardeloos. Als gezegd is de enig toegestane toets-steen de
meetbare werkelijkheid, het experiment.

Door het getalsmatige van de huidige wetenschap is zij bijzonder wiskundig van
aard.3 Er wordt voortdurend gerekend. Omdat de kennis van de natuur beperkt is,
zijn de opgestelde modellen dat ook. Maar er is ook een beperking aan de hoeveel-
heid detail die in een model gestopt kan worden om het nog mogelijk te maken bere-
keningen uit te voeren. In dit verband heeft de enorme vooruitgang in computer-
kracht de mogelijkheden van de natuurwetenschapper net zo spectaculair vergroot
als die van de videospelletjesfanaat. Zo is het nu mogelijk de bewegingen van een
redelijk groot aantal wisselwerkende deeltjes (of dat nu revolverhelden in cyber-
space of elementaire deeltjes in versnellers zijn) ‘levensecht’ te beschrijven. Om de
levensechtheid van computerspelletjes te waarborgen worden minder belangrijke
objecten ruwer weergegeven. Het weglaten van die decorstukken zou echter een
hinderlijk gat achterlaten. Iets dergelijks geldt in de scheikunde als we eigenschap-
pen van moleculen in oplossing willen berekenen, hetgeen in dit proefschrift
centraal staat.

3 Mathematics in Western Culture, M. Kline (Oxford University Press, Oxford, 1953. Ook bij Penguin
Books, London, 1982).
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Een zeer algemeen model voor het beschrijven van de natuur is het opgebouwd
denken van materie uit elektrisch geladen deeltjes, genaamd protonen en elektronen,
die met elkaar een wisselwerking aangaan. De wetten waaraan die deeltjes moeten
voldoen zijn uitermate eenvoudig en het model is toepasbaar op letterlijk alle
verschijnselen, van atoomspectra tot de onderlinge bewegingen van sterrenstelsels.
De rekeninspanning die vereist is om de bewegingen van de deeltjes te beschrijven is
echter bijzonder groot, en er zijn onnoemelijk veel deeltjes betrokken bij de ver-
schijnselen van alledag, zodat de vragen die beantwoord kunnen worden met deze
zeer gedetailleerde beschrijving beperkt zijn tot die waarin een klein aantal protonen
en elektronen een cruciale rol spelen. Het nut is echter uit te breiden door uit de
beschrijving in termen van protonen en elektronen collectieve eigenschappen af te
leiden die kunnen dienen voor grofstoffelijker beschrijvingen. Vergelijk de situatie
met het weergeven van een muur in een videospel. De afzonderlijke stenen hoeven
niet getoond te worden als het erom gaat aan te geven dat de bewegingsmogelijk-
heden van de held beperkt zijn. Een ondoordringbaar vlak, het collectieve effect van
zoveel stenen, brengt de boodschap over. Detail kan echter noodzakelijk zijn, als er
bijvoorbeeld een losse steen gezocht moet worden waarmee een verborgen deur
geopend kan worden. In de buurt van de held moet de muur zijn weergegeven als
losse stenen, maar verderop volstaat een vlak. Zo hangt de benodigde hoeveelheid
detail af van de situatie waarin we geïnteresseerd zijn.

Hetzelfde geldt in de scheikunde bij de beschrijving van eigenschappen van
stoffen. Het detail van protonen en elektronen is niet altijd nodig. Of het is slechts
plaatselijk van belang. Er is dan behoefte aan een gecombineerd model. Gedetail-
leerd waar het moet, globaal waar het kan. In dit proefschrift wordt beschreven hoe
men kan komen van een beschrijving van materie op het niveau van protonen en
elektronen tot een beschrijving op het niveau van moleculen en van op het niveau
van moleculen tot op het niveau van vloeistoffen. Deze procedure heeft tot doel de
niveaus te kunnen combineren op een manier die consistent is met het diepste
niveau, zodat de toepasbaarheid maximaal blijft, en tegelijkertijd de toepassings-
mogelijkheden vergroot worden door vermindering van de benodigde rekeninspan-
ning. Het gaat in dit proefschrift om de praktische uitwerking van de vereen-
voudigde modellen. Het onderzoek beoogt criteria aan te geven waaraan de
molecule- en vloeistofmodellen moeten voldoen om te mogen worden gebruikt en
om te worden gecombineerd met de gedetailleerde beschrijving.
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Grondslagen van de quantumchemie A.2

QUANTUMCHEMIE is de toepassing van quantumtheorie op vraagstukken die
spelen bij scheikundig onderzoek. De quantumtheorie is in het eerste deel van deze
eeuw ontwikkeld naar aanleiding van een groot aantal experimenten op het raak-
vlak van natuur- en scheikunde waarvan men de resultaten niet kon rijmen met de
theorieën die destijds golden met betrekking tot het gedrag van de bouwstenen van
materie. In de loop der tijden is de mens erin geslaagd materie steeds gedetail-
leerder te bekijken. Met de eerste microscopen werd het bestaan van cellen aange-
toond, later volgden bacteriën, nog later grote moleculen zoals DNA, en pas sinds
een aantal jaren kleinere moleculen en atomen.

Hoewel we pas nu atomen ‘direct’ kunnen zien door een microscoop is er al veel
langer indirect bewijs voor het bestaan van deze bouwstenen van het heelal.4 De
atomen zelf bestaan uit nog weer kleinere bouwstenen. Men denkt atomen als zijnde
opgebouwd uit een relatief immobiele ‘harde pit’, de kern, met daaromheen een ijle
wolk snelle deeltjes, de elektronen. In de kern is een hoeveelheid protonen verza-
meld die samen het atoom zijn ‘karakter’ geven: bij één proton hoort waterstof, bij
twee helium, bij zes koolstof, bij zeven stikstof en bij tweeënnegentig hoort uranium,
om vijf van de ruim honderd bekende atoomsoorten te noemen.

Elk proton draagt één positieve elektrische lading, dus in de kern van een atoom
bevindt zich een opeenhoping van positieve lading. Gelijke ladingen stoten elkaar af.
Dat de protonen toch bij elkaar in de kern blijven is te danken aan de aanwezig-heid
van nog weer andere deeltjes in de kern, neutronen genaamd, die door hun
wisselwerking met de protonen onder andere als ‘kleefstof’ dienst doen. Ook de
kern zelf bestaat dus uit nog weer kleinere deeltjes. Het lijkt wel of in ieder brokje
materie weer nieuwe, kleinere brokjes materie te vinden zijn. Men is er nog niet uit
of dat een keer ophoudt. In ieder geval bestaan protonen en neutronen uit drie zoge-
naamde quarks, waarvan er zes typen moeten zijn. Voor scheikundigen is het
eigenlijk niet zo belangrijk wat zich allemaal in die kern afspeelt omdat de verschijn-
selen die zij bestuderen de kern ongemoeid laten. Wie meer wil weten over de bouw
van kernen moet zich wenden tot de subatomaire natuurkunde.5

Voor de scheikunde zijn de snelle deeltjes rond de kern, de elektronen, belang-
rijk, en dan vooral de manier waarop de elektronen zich rond de kern kunnen verde-
len. Elk elektron draagt één negatieve elektrische lading. Ongelijke ladingen trekken
elkaar aan volgens dezelfde wetmatigheid als waarmee gelijke elektrische ladingen
elkaar afstoten. De kern trekt de elektronen aan en de elektronen stoten elkaar af. De
grote vraag aan het begin van deze eeuw was waarom de elektronen zich niet op de

4  Taming the Atom—The Emergence of the Visible Microworld, H.C. von Baeyer (Random House, 1992.
Ook bij Penguin Books, London,1994).
5 De bouwstenen van de schepping—Een zoektocht naar het allerkleinste, G. ’t Hooft (Ooievaar
Pockethouse, Amsterdam, 1992).
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kern storten, net als een steen op de aarde valt door de zwaartekracht. Men stelde
zich voor dat de elektronen in banen om de kern cirkelen, net als de planeten om de
zon. Zo’n baan wordt gekarakteriseerd door een grootheid genaamd energie (dat
geldt ook voor planeten om de zon). De energie bestaat uit twee componenten,
potentiële energie en bewegingsenergie. Voor een stabiele, ofwel stationaire, baan
moet er een vaste verhouding zijn tussen de twee, dat is het zogenaamde viriaal-
theorema. Verlies van bewegingsenergie betekent verlies van potentiële energie en
een cirkelbaan dichter bij de kern. Van elektronen was bekend dat zij energie verlie-
zen als zij bewegen. Dat gebeurt in de vorm van straling. (Dat straling ook een vorm
van energie is merkt men tijdens het doorbrengen van een dag in de zon.) Door de
beweging bij het cirkelen rond de kern zou een elektron steeds een beetje energie
moeten afgeven en daardoor dichter bij de kern komen totdat het erin zou vallen. Zou
dit het geval zijn, dan nam alle materie ongeveer honderdduizend keer zo weinig
ruimte in beslag als nu het geval is.

De oplossing voor dit probleem werd voorgesteld door de natuurkundige Niels
Bohr.6 Hij bekeek het waterstofatoom, dat bestaat uit één proton en één elektron. Hij
veronderstelde nu een aantal dingen. Ten eerste verbood hij het elektron zomaar een
willekeurige hoeveelheid energie uit te stralen. Dat verbod was niet zo uit de lucht
gegrepen als het lijkt, want al eerder had een andere natuurkundige, Max Planck,
ontdekt dat er met straling iets bijzonders aan de hand is. Om zijn experimenten te
verklaren moest Planck ervan uitgaan dat stralingsenergie slechts met bepaalde hoe-
veelheden tegelijk wordt afgegeven of opgenomen. Hij noemde die hoeveelheden
quanten. Ten tweede postuleerde Bohr dat het elektron alleen zeer goed bepaalde
hoeveelheden energie kan hebben. Het elektron kan nu van de ene baan naar de
andere ‘springen’ door opname of afgifte van stralingsquanten. Nu zou het nog
mogelijk kunnen zijn dat het elektron kan springen naar een baan waarbij het zich
permanent in de kern bevindt. Vergelijking van de maximale energie-sprong van het
waterstofatoom met de mogelijke energie van de diepstliggende baan leidt echter tot
de conclusie dat het elektron zich niet permanent op de kern kan bevinden, waar-
mee de stabiliteit van atomen is verklaard.

Hoewel aanvankelijk als ‘lapmiddel’ geformuleerd, bleek de theorie van Bohr
wel degelijk betekenis te hebben. Verder onderzoek leidde tot de theorie van de
quanten, de quantumtheorie, en leerde dat er in het kleine ‘universum van het
atoom’ andere wetten heersen dan in de wereld die we van het leven van alledag
kennen. De kleinschaligheid die bereikt is in de beschrijving van materie leidt soms
tot vreemde denkbeelden die we ontwikkelen om ons een voorstelling te maken. Zo
hebben we nu protonen en elektronen steeds ‘deeltjes’ genoemd, daarbij het beeld
oproepend van kluitjes materiaal. Dat beeld is maar ten dele correct, want protonen
en elektronen gedragen zich in sommige opzichten alsof het ‘golven’ zijn. Een deeltje
kan maar op één plaats zijn, een golf is overal, denk aan een golf gemaakt door het
gooien van een steen in een vijver. Wil men dus realiteitswaarde aan de kleine
bouwstenen van materie toekennen, dan zijn ze zowel ‘deeltjes’ als ‘golven’. Het

6 A History of Mechanics, R. Dugas (Édition du Griffon, Neuchâtel, 1955. In Engelse vertaling
verschenen bij Dover Publications, New York, 1988).
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gebrek aan passende beeldspraak maakt het voor veel mensen moeilijk de quantum-
theorie te begrijpen.7 Zij zijn in goed gezelschap. Niels Bohr zelf zei dat iemand die
de quantumtheorie niet moeilijk vindt haar niet begrepen heeft.

De quantumtheorie is dus de verzameling van wetten die gelden op atomaire
schaal. Uit die wetten volgt de quantummechanica, dat is de wiskundige formule-
ring van de bewegingsvergelijkingen voor de deeltjes – in ons geval kernen en elektro-
nen – waarmee hun onderlinge bewegingen kunnen worden uitgerekend. Zo kun-
nen berekeningen worden gedaan aan atomen, bestaande uit één kern en een aantal
elektronen, maar ook aan moleculen, die bestaan uit meerdere kernen met daarom-
heen elektronen. De onderlinge bewegingen van de kernen en elektronen kunnen
niet zoals de baan van een kanonskogel met de klassieke mechanica heel precies van
tijdstip naar tijdstip worden berekend, maar als een waarschijnlijkheid dat een deeltje
zich op een bepaalde tijd op een bepaalde plaats in de ruimte bevindt. De waar-
schijnlijkheidsverdeling van de kernen en elektronen over de ruimte definieert een
toestand. Er bestaan allerlei mogelijke toestanden die meer of minder gunstig zijn. De
mate van gunstig zijn wordt uitgedrukt in de energie van de toestand. Elke toestand
die stabiel is, dat wil zeggen dat de bijbehorende waarschijnlijkheidsverdeling een
tijdje kan standhouden, heeft een bepáálde energie. Het vóórkomen van bepaalde
toestanden is afhankelijk van de beschikbare energie.

Quantumchemie houdt zich bezig met het oplossen van de bewegingsverge-
lijkingen van de kernen en elektronen met als doel het begrijpen en voorspellen van
molecule- en stofeigenschappen. Dat is belangrijk omdat de quantummechanische
natuur der dingen doorwerkt in het alledaagse. Neem bijvoorbeeld kleur. Kleur
ontstaat doordat materiaal waarop wit licht valt een deel van dat licht opneemt,
absorbeert. (Wit licht bestaat uit een mengsel van alle kleuren licht, iets dat men kan
zien aan de regenboog die ontstaat als het licht van de zon gebroken wordt door
water in de atmosfeer.) Het materiaal kan alleen dat deel van het licht gebruiken dat
overeenkomt met de energie die nodig is om van de ene naar de andere toestand te
komen. De energie van de rest van het licht ‘past’ niet bij een overgang tussen twee
toestanden en wordt teruggekaatst. Wat wij zien is wit licht verminderd met het
geabsorbeerde deel. Welke kleur het materiaal krijgt wordt bepaald door de samen-
stelling van het materiaal in termen van de onderlinge verdeling van kernen en elek-
tronen en de mogelijke toestanden.

Zo kan men eigenlijk alle stofeigenschappen uiteindelijk verklaren met behulp
van de quantumtheorie, en kwantitatieve voorspellingen doen met behulp van de
quantummechanica. Alle wetenschap houdt zich bezig met het leggen van relaties
tussen structuur en gedrag. Steeds meer disciplines bereiken daarbij het niveau van
moleculen, het terrein van de scheikunde. Zo krijgt de scheikunde een steeds belang-
rijkere rol in wetenschap en technologie, van elektrische schakelingen in ‘chips’ tot
ontwikkeling van geneesmiddelen, van eigenschappen van nieuwe materialen tot de

7 Alice in Quantumland, R. Gilmore (Sigma Science, Wilmslow, 1994); Mr. Tomkins Explores the Atom, G.
Gamov (Cambridge Unversity Press, Cambridge, 1945. Opnieuw verschenen als Mr. Tomkins in
Paperback, Canto edition, 1994)
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samenstelling van interstellaire gassen. Quantumchemie heeft een plaats waar schei-
kunde een plaats heeft, als complementair gereedschap bij experimentele technie-
ken. Zowel als hulp bij de verklaring en interpretatie van experimentele gegevens,
maar ook als techniek op zichzelf, voor het uitvoeren van ‘numerieke experimenten’,
om inzichten te verwerven waarvoor geen experimentele techniek beschikbaar is.
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Moleculemodellen en quantumchemie A.3

HET EENVOUDIGSTE EN MEEST ALGEMENE MOLECULEMODEL is de beschrijving
van ‘moleculen’ als een verzameling bij elkaar horende kernen en elektronen,
deeltjes die zich gedragen volgens de quantummechanica, zoals beschreven in de
vorige paragraaf. Met dit model kunnen in principe alle eigenschappen van indivi-
duele moleculen, alsmede interacties tussen en reacties van moleculen, worden
voorspeld door het uitvoeren van berekeningen. De beperking van de beschikbare
rekenkracht verhindert echter een zo grootschalige aanpak van chemische probleem-
stellingen. Het is echter ook lang niet altijd nodig zo diep terug te grijpen in de
theorie. Bepaalde materiaaleigenschappen kunnen ook op een minder hoog niveau
worden begrepen.

Neem bijvoorbeeld de verdamping van vloeistoffen. Methaan (aardgas) is bij
kamertemperatuur geen vloeistof maar een gas. Het is een vloeistof bij temperaturen
ver onder nul graden Celcius. Water daarentegen is bij kamertemperatuur een vloei-
stof en kookt pas bij honderd graden Celcius. De verklaring hiervoor is dat stoffen
bestaan uit een grote hoeveelheid moleculen. Water bestaat uit watermoleculen,
methaan uit methaanmoleculen. Omdat methaanmoleculen veel minder aan elkaar
‘kleven’ dan watermoleculen kunnen ze makkelijker de vloeistof verlaten en zal de
vloeistof makkelijker verdampen. De minder sterke interactie tussen de methaan-
moleculen kan verklaard worden door te kijken naar een aantal eigenschappen van
de moleculen. Methaanmoleculen hebben een andere verdeling van de lading dan
watermoleculen. In methaanmoleculen is de positieve en negatieve lading even-
wichtiger verdeeld over het molecule: de moleculen zijn minder polair. Minder
polaire moleculen hebben minder sterke wisselwerking met elkaar dan polaire mole-
culen. De molecule-eigenschap ‘polariteit’, iets dat te meten is, bepaalt dus (mede) de
verdampingssnelheid van een vloeistof.

Het verschil in polariteit tussen methaan- en watermoleculen vindt haar
oorsprong in de verdeling van de kernen en elektronen waaruit de moleculen zijn
opgebouwd. Een methaanmolecule bestaat uit één koolstof- en vier waterstofkernen
en tien elektronen; een watermolecule uit één zuurstof- en twee waterstofkernen en
eveneens tien elektronen. Gezien vanuit de koolstofkern wijzen de vier waterstof-
kernen in methaan allemaal een andere kant op; de twee waterstofkernen in water
liggen aan één kant van het molecule ten opzichte van de zuurstofkern. In het
methaanmolecule zijn de positieve ladingen veel evenwichtiger verdeeld dan in
water, zodat ook de elektronen evenwichtiger verdeeld zijn. De stofeigenschap
hangt uiteindelijk wel af van de dieper liggende quantummechanica van de kernen
en elektronen, maar wij kunnen haar ook duiden in termen van collectieve eigen-
schappen van een aantal kernen en de daarbij behorende elektronen. We hebben dan
een stap gemaakt van de beschouwing van materie op het kern-en-elektronniveau
naar een moleculair beeld: materie bestaat uit een verzameling moleculen, die door
hun onderlinge interacties de eigenschappen van de stof bepalen. Op het molecu-
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laire niveau doen de gedragingen van de individuele kernen en elektronen er niet
meer toe.

Het collectief optreden van groepen kernen en elektronen is te vergelijken met
het voeren van cao-onderhandelingen door vertegenwoordigers van werkgevers en
werknemers. De individuele werkgevers en werknemers zullen elkaar vaak nauwe-
lijks kennen, zeker niet als ze in verschillende bedrijven werken, maar gezamenlijk
oefenen ze wel degelijk invloed op elkaar uit. De onderhandelaars verwoorden de
collectieve belangen van hun achterban. Komt er een akkoord, dan kan het voorko-
men dat individuen het daarmee niet eens zijn, maar het collectief zal zich tevreden
tonen. Zouden individuele werkgevers en werknemers met elkaar hebben onder-
handeld, dan zouden (in een redelijke maatschappij) sommigen het heel slecht, som-
migen het heel goed en de meesten het naar tevredenheid treffen, maar gemiddeld
zou het resultaat niet veel verschillen van de centraal gemaakte afspraken. Voor het
begrijpen van het resultaat is dus geen kennis vereist van de verlangens van alle be-
trokken individuen, maar volstaat kennis van het gezamenlijk en gemiddeld belang.

Het voordeel van het gebruik van moleculemodellen boven het kern-en-elektron-
model is, naast het vereenvoudigde inzicht, de enorme besparing op de benodigde
rekeninspanning, net als centraal overleg onnoemelijk veel tijd bespaart. Het kern-
en-elektronmodel heeft belangrijke rekentechnische nadelen. Ten eerste het werken
met waarschijnlijkheden. Van deeltjes die zich volgens de klassieke mechanica ge-
dragen, zoals de kanonskogel uit paragraaf 2, hoeft per deeltje maar één plaatscoör-
dinaat, dat zijn drie getallen, op elk tijdstip te worden bijgehouden; voor quantum-
deeltjes een waarschijnlijkheid in èlk stukje van de ruimte, dat zijn in principe onein-
dig veel getallen. Het probleem kan toch hanteerbaar gemaakt worden door gebruik
te maken van eenvoudige recepten, functies, die bij een plaats in de ruimte een
waarschijnlijkheid geven volgens een vaste formule. Zo hoeft niet op elke plaats in
de ruimte een waarschijnlijkheid bewaard te worden, maar kan deze worden uitge-
rekend met behulp van het recept. Vanwege het ‘golfkarakter’ van de deeltjes-
beschrijving noemt men de functie die de waarschijnlijkheidsverdeling oplevert de
golffunctie. De makkelijkste manier om de golffunctie van àlle deeltjes hanteerbaar
te maken is haar uit te schrijven als produkt van golffuncties van de losse deeltjes. Er
is echter een addertje onder het gras dat een groot struikelblok voor de quantum-
chemie oplevert.

Elektronen zijn ononderscheidbaar: het is onmogelijk een ‘mentaal naamplaatje’,
zoals een nummer, aan individuele elektronen te hangen. Eigenlijk is de term
‘individueel elektron’ al fout. De golffunctie die ontstaat door het produkt te nemen
van alle losse-deeltjesfuncties is niet correct omdat daarin de elektronen tòch
genummerd zijn. Deze fout kan goedgemaakt worden door alle elektronen in de
genummerde golffunctie op alle mogelijke manieren met elkaar te verwisselen. Als
er N elektronen zijn dan bestaat de echte golffunctie uit N! (dat is N×(N-1)×(N-
2)×...×2×1) van dezelfde, maar verschillend genummerde golffuncties. Het verve-
lende is dat al deze golffuncties op een bepaalde manier moeten worden opgeteld,
en wel zó dat de golffuncties die ontstaan door een oneven aantal verwisselingen
van elektronen met een minteken tellen, en de golffuncties die door een even aantal
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verwisselingen ontstaan met een plusteken. Deze antisymmetrie-eis voor elektronen
is een voorbeeld van het zogenaamde Pauli-principe voor fermionen die de toepas-
sing van de quantummechanica grote beperkingen oplegt door de overweldigende
rekeninspanning die zij vereist. Door over te schakelen op het moleculemodel wordt
al deze ellende omzeild – er is immers geen sprake meer van elektronen – en blijft
alleen het klassieke technische rekenprobleem over, dat voor het berekenen van de
bewegingen van N deeltjes N×(N-1) interacties nodig zijn, hetgeen overigens ook
nog beperkingen oplegt aan het aantal te beschouwen moleculen.

Hoewel het moleculemodel dus enorme besparing levert op de rekeninspanning
en zo berekeningen mogelijk maakt, blijft de fundamentelere beschrijving noodzake-
lijk. Voor het uitrekenen van het elektronische deel van een moleculespectrum, dat zijn
de energieën die een molecule kan opnemen of afstaan door van de ene naar de
andere elektronische toestand te gaan, is een quantummechanische beschrijving ver-
eist. De energieën van de verschillende toestanden worden bepaald door elektronen-
banen die zich over het hele molecule kunnen uitspreiden. Ook de directe omgeving
van het molecule is voor de elektronenbanen belangrijk. Het spectrum van een ge-
isoleerd molecule verschilt in het algemeen van dat van het molecule in een vloeistof
of oplossing, en soms maakt het soort oplosmiddel dramatisch verschil voor het
spectrum. Een praktische toepassing van deze eigenschap is te vinden bij allerlei
indicatoren, waarvan de kleur informatie geeft over de polariteit van de omgeving.
In zo’n geval moet het molecule quantumchemisch worden beschreven en kan de
invloed van de omgeving niet weggelaten worden. Hier biedt het moleculemodel
uitkomst als het gecombineerd kan worden met het kern-en-elektronmodel.

De belangrijkste eis die in dit verband aan het moleculemodel gesteld moet
worden is dat de verschijnselen die beschreven worden plaatselijk (men zegt ook wel
lokaal) van aard zijn. Dat wil zeggen dat de belangrijke elektronentoestanden zich
over een klein deel van de ruimte uitstrekken. Goed beschouwd is dat eigenlijk nooit
het geval, en wel vanwege het Pauli-principe. Bij benadering mag echter ‘gezondigd’
worden tegen dit principe, door de elektronen tòch te nummeren en toe te wijzen
aan moleculen. Voor de moleculen in de nabijheid van het bestudeerde worden de
elektronen samen met de kernen als collectief beschreven; de elektronen die zijn
toegewezen aan het bestudeerde molecule houden hun oorspronkelijke, uitgebreide
beschrijving. De verwisselingen van de elektronen in het quantumchemisch beschre-
ven stuk met die in het moleculair beschreven stuk worden weggelaten. De kwintes-
sens van de getrapte beschrijving is echter dat men terug kan grijpen op het kern-en-
elektronmodel zodra het moleculemodel faalt, en zo altijd controle heeft op de
terechtheid van de gemaakte vereenvoudigingen.

Het is mogelijk nòg verder te gaan in de reductie van benodigde rekenkracht dan
het geval is door toepassing van het moleculemodel. Dan beschrijft men het collec-
tief gedrag van vele duizenden moleculen en komt tot stofmodellen. Het stofmodel
relevant voor combinatie met het moleculemodel en het kern-en-elektronmodel is
die van de stof als diëlektrisch continuüm, waarmee de elektrische eigenschappen
van een stof worden beschreven. Het gaat dan om het collectieve gedrag van enkele
tienduizenden moleculen. Het is duidelijk dat er in zo’n model veel detail verloren
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gaat, meer nog dan in het moleculemodel. Het is dan ook de vraag in hoeverre het
nog geoorloofd is voor de beschrijving van verschijnselen die zo sterk afhangen van
het gedrag van de elektronen het diëlektrisch model te combineren met het kern-en-
elektronmodel. Ook hiervoor zijn vanuit de quantumtheorie, net als bij de opstelling
van het moleculemodel, grenzen aan te geven. Zij zijn eigenlijk precies dezelfde,
daarmee de kracht, consistentie en algemeenheid aangevend van de quantum-
mechanische beschrijving van de natuur.

Tenslotte nog iets meer over de aard van de collectieve eigenschappen die door
het moleculemodel moeten worden weergegeven. De kernen en elektronen hebben
wisselwerking met elkaar door hun elektrische lading. De molecule-eigenschappen
die van belang zijn, zijn dus elektrische. Vanuit het oogpunt van consistentie is de
beste aanpak de collectieve elektrische eigenschappen van moleculen te onder-
scheiden in twee soorten, vacuüm en respons. De vacuümeigenschappen worden
bepaald door het molecule in isolatie, wanneer het geen enkele invloed van andere
moleculen voelt (weer een geïdealiseerde toestand die alleen op papier – en in de
computer! – te verwezenlijken is). Deze geven aan hoe het molecule de eerste
confrontatie aangaat.

De responseigenschappen geven aan hoe de verdeling van kernen en elektronen
zal reageren op de aanwezigheid van andere kernen en elektronen. Als twee
groepen kernen en elektronen met elkaar wisselwerking aangaan is het een kwestie
van geven en nemen, op zoek naar een nieuw evenwicht, net als in cao-onder-
handelingen beide partijen wat zullen moeten inschikken, hoe fraai hun uitgangs-
punten ook waren. Een verschil tussen onderhandelaars en moleculen is dat de
responseigenschappen van moleculen makkelijk te berekenen zijn. De ‘inschik-
kelijkheid’ – in vakjargon spreekt men van polariseerbaarheid – van een molecule is
een intrinsieke eigenschap van het molecule. De polariseerbaarheid kan alleen op het
kern-en-elektronniveau worden berekend, hetgeen tot problemen kan leiden in
verband met de benodigde rekenkracht. Niettemin is deze aanpak vruchtbaar
aangezien de analyse van allerlei invloeden direct gerelateerd kan worden aan
fysische processen.

Bijna alle bestaande moleculemodellen brengen de scheiding tussen vacuüm- en
responseigenschappen niet aan, maar gebruiken ‘effectieve’ elektrische eigenschap-
pen, waarin de responseigenschappen zijn opgenomen gebaseerd op experimentele
gegevens van een aantal voorbeeldsystemen. De hoop is dan dat deze effectieve
eigenschappen ook bruikbaar zullen zijn voor andersoortige systemen. Vaak blijkt
echter dat dan toch flinke aanpassingen nodig zijn. Om weer de metafoor van de
cao-onderhandelingen aan te halen: het is alsof de uitkomst van de onderhande-
lingen in de metaalsector voorspeld worden in termen van de uiteindelijke resul-
taten van die in de bouw, de detailhandel en het bankwezen, zonder dat is gekeken
hoe daar het proces van geven en nemen in z’n werk is gegaan. Kennis van die
zaken had wellicht kunnen voorzien wat nu als verrassing komt. De aanpak die hier
wordt voorgesteld vereist aanvankelijk meer werk en is rekenintensiever, maar de
verwachting is dat het uiteindelijk zal leiden tot breder toepasbare en inzichtelijker
modellen, die ons het minder interessante werk zullen besparen.
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Samenvatting en conclusie A.4

IN DIT PROEFSCHRIFT wordt beschreven hoe men vanuit de gedetailleerde
quantumchemische beschrijving van materie op het kern-en-elektronniveau kan
komen tot moleculemodellen, die het collectieve gedrag van een aantal kernen en
elektronen vereenvoudigd weergeven. Een niveau hoger wordt het collectieve
gedrag van enkele tienduizenden moleculen beschreven door een diëlektrisch
continuüm. De beschrijving van collectief gedrag vereist aanzienlijk minder inspan-
ning, waardoor het mogelijk wordt realistischer voorstellingen van gecompliceerde
systemen te maken en door te rekenen. De voor de scheikunde interessante pro-
cessen vereisen vaak slechts een gedetailleerde beschrijving van een deel van het
macroscopische systeem. Door de molecule- en continuümmodellen af te leiden uit
de quantummechanica van de kernen en elektronen kunnen zij gebruikt worden in
combinatie met het kern-en-elektronmodel. Het te bestuderen macroscopische
systeem wordt in stukken verdeeld die in verschillend detail worden behandeld, al
naar gelang het verwachte belang van verschillende onderdelen. Dit wordt
geïllustreerd in de onderstaande figuur.

Het interessante gedeelte (het quantumsysteem) wordt zeer gedetailleerd
beschreven m.b.v. quantumchemie. Hier beschrijven we de bewegingen van kernen
en elektronen. De invloed van directe buurmoleculen (expliciet klassiek systeem)
wordt beschreven door gebruik te maken van vereenvoudigde moleculemodellen,
die nog wel enig detail vertonen, maar waarin afzonderlijke kernen en elektronen
niet meer zichtbaar zijn. Tenslotte kan de rest van het macroscopisch systeem
worden weergegeven als een diëlektrisch continuüm, waarin ook individuele mole-
culen niet meer zichtbaar zijn, maar hun collectieve gedrag wordt weergegeven door
betrekkelijk eenvoudige, algemene vergelijkingen met één of twee molecule-speci-
fieke parameters.
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Het proefschrift doorloopt de fasen van de beschreven modelvorming. Hoofd-
stuk 1 behandelt de wiskunde van de voorgestelde modelvorming, met de nadruk
op de beperkingen die het model opgelegd krijgt door de benodigde benaderingen.
Getoond wordt dat het de elektronische eigenschappen van de moleculen zijn die de
spil vormen van het moleculemodel. Deze zijn zowel toegankelijk via experiment als
door berekening, waarmee theorie en experiment worden verbonden. In hoofdstuk 2
wordt het instrumentarium voor het doen van berekeningen met de gecombineerde
modellen uitgestald. Het gaat om praktische vergelijkingen en formules die men in
een computerprogramma moet verwezenlijken om de voorgestelde methode te
gebruiken.

Het derde hoofdstuk bevat de toepassingen van de gecombineerde aanpak. Eerst
wordt aan de hand van de interacties tussen twee moleculen – in zogeheten dimeer-
complexen – bekeken in hoeverre het moleculemodel beantwoordt aan de verwach-
tingen. De totaal verschillende dimeren van water enerzijds en benzeenderivaten
anderzijds blijken met hetzelfde recept heel behoorlijk te beschrijven. Nu durven we
ook de stap te zetten naar grotere verzamelingen van moleculen en gaan dan
proberen de oploswarmte van moleculen uit te rekenen. Dit blijkt veel moeilijker,
maar dat ligt niet aan een slechte beschrijving van de interacties tussen de mole-
culen. Veeleer is het aantal moleculen om het centrale molecule die worden beschre-
ven te klein en worden niet alle mogelijke manieren waarop deze zich om het
centrale molecule kunnen bevinden effectief en afdoende afgezocht, hetgeen wel erg
belangrijk is voor het berekenen van de oploswarmte. De verschuiving van het
spectrum van een molecule ten gevolge van naburige moleculen blijkt wèl goed te
berekenen met een beperkt aantal nabuurmoleculen, ook al worden niet alle moge-
lijke posities van de nabuurmoleculen afgezocht. Het moleculemodel beschreven in
dit proefschrift  leverde de eerste succesvolle beschrijving van zowel blauw- als
roodverschuiving op van de zogenaamde π*←n overgang van aceton in zeer uiteen-
lopende oplosmiddelen (water, acetonitril en tetrachloorkoolstof).

Door het proefschrift heen blijkt steeds weer dat de combinatie van kern-en-elek-
tronmodel met het diëlektrisch continuümmodel zonder tussenliggende expliciet
beschreven moleculen leidt tot inconsistenties. De scheiding tussen de verschillende
onderdelen, quantum, klassiek en continuüm, moet duidelijk aan te brengen zijn. De
continuümbeschrijving is te grof om binnen de theoretische grenzen van toepasbaar-
heid met het quantumsysteem te combineren. Hoewel het expliciet beschrijven van
moleculen veel duurder is dan het gebruik van het continuümmodel, moet het toch
gedaan worden om een realistisch beeld van de microscopische werkelijkheid te
scheppen.

Hoofdstuk 3 sluit af met een gedeelte dat laat zien dat het naar beneden schalen
van macroscopische eigenschappen, zoals het diëlektrisch continuüm dat beschrijft,
naar microscopische dimensies onjuist is en leidt tot foutieve inzichten. Aangetoond
wordt dat de directe omgeving van de microscopisch interessante delen van macro-
scopische systemen het gedrag stuurt, en dat het essentieel is deze directe omgeving
in enig detail te beschrijven.
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Het succes van de scheikundige manier van kijken naar stoffen is gelegen in het
uitleggen van alledaagse, macroscopische stofeigenschappen in termen van eigen-
schappen van en interacties tussen microscopische bouwstenen, atomen en moleculen.
Het achterhalen van molecule-eigenschappen en intermoleculaire interacties door
middel van experimenten is echter allerminst eenvoudig en vaak zelfs onmogelijk
door de complexiteit van het macroscopische systeem.

Verrassenderwijs brengt een nòg gedetailleerder zienswijze van materie hier
uitkomst: de quantumchemie. In de quantumchemie wordt materie beschreven op
het niveau van kernen en elektronen, de bouwstenen van moleculen. De onderlinge
bewegingen van de kernen en elektronen bepalen de molecule-eigenschappen en
uiteindelijk alle stofeigenschappen. Quantumchemie verschaft het theoretisch en
praktisch instrumentarium om de molecule-eigenschappen niet alleen globaal te
begrijpen, maar ook uit te rekenen door het oplossen van de bewegingsvergelijkingen
waaraan de kernen en elektronen moeten voldoen. Op deze manier zijn de eigen-
schappen van een individueel, niet al te groot molecule goed toegankelijk. In het
macroscopische systeem is het molecule echter niet meer alleen, maar wordt omge-
ven door zeer veel andere moleculen. Door interactie met de omgeving veranderen
de eigenschappen van het molecule in het macroscopisch systeem. De omgeving
bevat zoveel kernen en elektronen dat het niet mogelijk is deze op het gedetail-
leerde, quantumchemische niveau te beschrijven. Gelukkig is dat ook niet altijd
nodig. In plaats daarvan doet men een beroep op vereenvoudigde omgevings-
modellen.

In het onderzoek beschreven in dit proefschrift, dat zich richt op het berekenen
van eigenschappen van moleculen in oplossing, zoals bijvoorbeeld de optische
eigenschappen van aceton in verschillende oplosmiddelen (water, tetra en aceto-
nitril), vormen de omgevingsmodellen zèlf het belangrijkste aandachtsgebied. Er zijn
twee niveaus waarop de omgeving vereenvoudigd kan worden weergegeven: het
moleculaire en het diëlektrische. Op het moleculaire niveau wordt het collectieve
gedrag van maximaal enkele honderden kernen en elektronen beschreven; op het
diëlektrisch niveau worden enkele tienduizenden moleculen ‘samengepakt’. Met
iedere vereenvoudiging gaat een zekere hoeveelheid detail verloren. Onderzocht
wordt in hoeverre het verlies aan detail fouten veroorzaakt in de berekende eigen-
schappen van het molecule in oplossing. Vaak wordt aangenomen dat het molecu-
laire niveau kan worden overgeslagen. Het detail dat door het moleculaire niveau
wordt verschaft blijkt echter essentieel voor een consistent en betrouwbaar reken-
model, hetgeen zowel in theorie als in praktijk wordt aangetoond. De algemeenheid
van dit omgevingsmodel wordt geïllustreerd door het toe te passen op zeer
uiteenlopende systemen.
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