Differential Effects of Nitric Oxide Synthase Inhibitors on Endotoxin-Induced Liver Damage in Rats

THERA A. VOS,* ANNETTE S. H. GOUW,‡ PIETER A. KLOK,‡ RICK HAVINGA,§ HARRY VAN GOOR,‡ SIPPIE HUITEMA,‡ HAN ROELOFSEN,* FOLKERT KUIPERS,§ PETER L. M. JANSEN,* and HAN MOSHAGE*

Groningen Institute for Drug Studies, *Division of Gastroenterology and Hepatology, Department of Internal Medicine, ¤Department of Pathology, and §Department of Pediatrics, University Hospital Groningen, Groningen, The Netherlands

See editorial on page 1405.

Background & Aims: During endotoxemia, expression of inducible nitric oxide synthase (iNOS) and nitric oxide production in the liver is increased. NO has been suggested to have a hepatoprotective function. The aim of this study was to investigate the distribution of iNOS and the effect of different NO synthase inhibitors on liver damage and hemodynamics during endotoxemia. Methods: Rats were injected with lipopolysaccharide (LPS) and received the NOS-inhibitor S-methylisothiourea (SMT) or NG-nitro-L-arginine methyl ester (L-NAME). iNOS induction was assessed by Western blot, immunohistochemistry, and measurement of NO metabolites in plasma and bile. Liver damage was determined by aspartate aminotransferase and alanine aminotransferase and by histology. The effects of both inhibitors on systemic and portal pressure were measured in normal and LPS-treated rats. Results: LPS treatment strongly induced iNOS in inflammatory cells, macrophages, bile duct epithelium, and hepatocytes, especially at the canalicular membrane. LPS-induced liver damage strongly increased after L-NAME. SMT caused a similar reduction of NO production without enhancing liver damage. In LPS-treated rats, SMT increased the systemic and portal pressure significantly more than L-NAME. Conclusions: During endotoxemia, administration of the NOS-inhibitor L-NAME aggravates liver damage. This liver damage does not seem to be caused by hemodynamic changes. In contrast, SMT caused significant hemodynamic changes but did not increase LPS-induced liver damage.

Nitric oxide radical is increasingly recognized as an important mediator of physiological and pathophysiological processes. NO is produced by NO synthase (NOS), an enzyme that exists in three isoforms encoded by distinct genes. Neuronal (type I, nNOS) NOS and endothelial (type III, eNOS) NOS are Ca2+-and calmodulin-dependent constitutive isoforms. nNOS has a function in neurotransmission. eNOS plays an important role in vasorelaxation, and NO produced by the endothelium has antithrombotic properties. Inducible NOS (iNOS), also known as type II NOS, is not expressed under normal conditions. However, it can be induced by cytokines and lipopolysaccharide (LPS) in many cell types, such as hepatocytes, macrophages (including Kupffer cells), neutrophils, smooth muscle cells, and chondrocytes.

Harmful effects of enhanced NO production in the liver include inhibition of the mitochondrial respiratory chain enzymes and gluconeogenesis. In cultured hepatocytes, NO inhibits total protein synthesis and bile canalicular contraction. NO has been implicated in several pathophysiological processes such as endotoxemia (sepsis), hepatic ischemia/reperfusion injury, and hepatic allograft rejection. However, the exact function of iNOS and enhanced NO production under these conditions has not been elucidated yet. Most studies postulate a hepatoprotective effect of NO during endotoxemia, because inhibition of NO production increased hepatic damage. However, in these studies the L-arginine analogues NG-nitro-L-arginine methyl ester (L-NAME) and NG-monomethyl-L-arginine (L-NMMA) were used, which are better eNOS than iNOS inhibitors. In contrast, S-methylisothiourea (SMT) has been described as a preferential iNOS inhibitor. The aim of the present study was to compare the effects of SMT and L-NAME on liver damage and hemodynamics during endotoxemia. In addition, we investigated the cellular distribution of hepatic iNOS during endotoxemia.

Abbreviations used in this paper: eNOS, endothelial nitric oxide synthase; iNOS, inducible nitric oxide synthase; L-NAME, NG-nitro-L-arginine methyl ester; L-NMMA, NG-monomethyl-L-arginine; LPS, lipopolysaccharide; MAP, mean arterial pressure; nNOS, neuronal nitric oxide synthase; NOS, nitric oxide synthase; NO\textsubscript{x}, nitrite plus nitrate; SMT, S-methylisothiourea.

© 1997 by the American Gastroenterological Association
0016-5085/97/$3.00
Materials and Methods

Animals

Specified pathogen-free male Wistar rats (220–300g; purchased from Harlan-CPB, Zeist, The Netherlands) were kept under routine laboratory conditions at the Central Animal Laboratory of the University of Groningen. The rats received standard laboratory chow and had free access to food and water. The study as presented was approved by the Local Committee for Care and Use of Laboratory Animals.

Experimental Design

Rats were injected intraperitoneally (IP) with endotoxin LPS, *Escherichia coli*, serotype 0127:B8 (Sigma Chemical Co., St. Louis, MO), or the same volume of phosphate-buffered saline (PBS, control group; n = 6 for each experimental group). SMT (Sigma) and L-NAME (Sigma) were given together with LPS. LPS and drugs were dissolved in sterile PBS. At indicated time points after LPS injection, the rats were anesthetized with pentobarbital (60 mg/kg, IP). For determination of serum alanine transaminase (ALT) and aspartate transaminase (AST) activities and the NO metabolites nitrite plus nitrate (NOx), heparinized blood samples were obtained by cardiac puncture. At 30 minutes before starting liver perfusion, the rats received sodium thiopentone (100 mg/kg, IP) and lidocaine-HCl (2%; subcutaneously locally at the site of injection). Six hours after the injection of LPS (5 mg/kg, IP) or the same volume of PBS, the effects of L-NAME, SMT, or the same volume of PBS on mean arterial pressure (MAP) and portal pressure were measured (n = 6–7 for L-NAME and SMT treated rats; n = 3 for the control groups). For blood pressure measurements, rats received sodium thiopentone (100 mg/kg, IP) and lidocaine-HCl (2%; subcutaneously locally at the site of incision). The left femoral artery was cannulated (flexible nylon tubing, Portex, Hythe, England; size 00; 0.51 mm ID; 0.64 mm OD), and the cannula was connected to a pressure transducer (Hewlett-Packard, Böblingen, Germany) for registration of the phasic and MAP. After a midline abdominal incision, the portal vein was cannulated through the ileocolic vein and this cannula was also connected to the pressure transducer. The rectal temperature was maintained at 37°C with a heating pad. On completion of the surgical procedure, rats were allowed to stabilize for 20 minutes. Six hours after LPS, L-NAME (12.5 mg/kg), SMT (12.5 mg/kg), or the same volume of vehicle (PBS) were infused via the portal-vein catheter over a 1-minute period (time 0–1). Systolic, diastolic, and portal pressure were monitored for 32 minutes. At the end of the experiment, heparinized blood samples were taken for determination of NOx. Change in MAP is expressed as the difference in MAP between time 0 (baseline MAP) and time t.

iNOS Antibodies

Specific polyclonal iNOS antibodies were raised in rabbits against a synthetic peptide (KKGNTLEEPKGTRL) comprising the C-terminal 14 amino acids 1134–1147 of the rat hepatocyte iNOS sequence.22 An amineterminal cysteine was added to facilitate coupling to keyhole limpet hemocyanin using m-maleimidobenzoyl-N-hydroxy succinimide ester chemistry.

Analytical Procedures

ALT and AST were determined by routine clinical chemistry. NOx concentrations in plasma and bile were measured according to Moshage et al.25

Western Blot Analysis

Livers were homogenized with a Polytron homogenizer (Kinematica GmbH, Luzern, Switzerland) in a buffer containing 20 mmol/L Tris-HCl (pH 7.2), 0.2 mmol/L phenylmethylsulfonyl fluoride, 1 mmol/L ethylenediaminetetraacetic acid, and 1 mmol/L dithiothreitol. After centrifugation (30 minutes, 11,600 g), the protein concentration in the supernatant (crude lysate) was determined with the Bio-Rad protein assay (Bio-Rad Laboratories, Hercules, CA) using bovine serum albumin as standard. The crude lysates were fractionated on a 10% sodium dodecyl sulfate polyacrylamide gel and transferred to nitrocellulose (Amersham International, Buckinghamshire, England), using a semidry blotting system according to manufacturer’s instructions (Pharmacia, Uppsala, Sweden). Pre-stained molecular weight standards (Bio-Rad) were used as marker proteins. The blots were incubated with a 1:5000 dilution of the polyclonal iNOS antibody in PBS containing 4% skim milk powder and 0.1% Tween-20, subsequently incubated with horseradish peroxidase labeled swine anti-rabbit immunoglobulin G (dilution 1:5000, DAKO A/S, Glostrup, Denmark) and finally developed using the enhanced chemiluminescence Western blotting system (Amersham).

NOS Activity Assay

NOS activities were measured according to Misko et al.24 with the following modifications: each reaction included 125 μL of reaction buffer containing 20 mmol/L Tris-HCl (pH 7.2), 1 mmol/L dithiothreitol, 20 μmol/L tetrahydrobiopterin, 10 μmol/L flavin adenine dinucleotide, 10 μmol/L flavin mononucleotide, 1 mmol/L nicotinamide adenine dinucleotide phosphate (reduced), 1 mmol/L MgCl2, 1 mmol/L citrulline, 25 mmol/L valine, 1 mmol/L ornithine, 10 μmol/L arginine, 0.3 μCi l-[2,3-3H]arginine (44.2 Ci/mmol; NEN Dupont, Dordrecht, The Netherlands), and 25 μL of crude lysate. The reaction time was 20 minutes at 37°C. iNOS antiserum and preimmune serum were added to the reaction mixtures as indicated.

Hepatocyte Isolation and Culture

Rat hepatocytes were isolated by two-step collagenase perfusion as described previously.13 Hepatocytes were plated at a density of 150,000 cells per cm² in William’s medium E, supplemented with 5% fetal calf serum, 2 mmol/L L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin, and 20 mU/mL insulin. After 4 hours, medium was changed and
Confocal Scanning Laser Microscopy

Frozen rat liver sections were stained with the following antibodies: mouse monoclonal antibody C219 against Pgp (Centocor, Antwerp, Belgium; 1:100), rabbit polyclonal antibody against iNOS (dilution, 1:5000), fluorescein isothiocyanate–labeled goat anti-mouse immunoglobulin G, and tetramethylrhodamine isothiocyanate–labeled goat anti-rabbit immunoglobulin G (both Sigma; dilution, 1:200). Images were taken with a confocal scanning laser microscope (CSLM; True Confocal Scanner Leica, Heidelberg, Germany) equipped with an argon/krypton laser and coupled to a Leitz DM IRB inverted microscope (Leica). Double-labeled images were taken sequentially at 488 and 562 nm to avoid bleed-through into the other channel.

Statistical Analysis

The data resulting from each experimental group were expressed as the mean ± SEM. The significance in differences between the presented data groups was determined using the one-way analysis of variance test with Bonferroni correction. For hemodynamic measurements, an unpaired Student’s t test was used to compare means between the two groups at the same time point. A P value < 0.01 was considered significant.

Results

iNOS Protein in Rat Liver After LPS Induction

Antibodies raised against the C-terminal 14 amino acids of rat hepatocyte iNOS22 recognized a single protein of approximately 130–135 kilodaltons in crude lysate of LPS-induced rat liver (Figure 1). Preimmune serum did not react with either untreated or LPS-induced rat liver (not shown). In untreated rats, no immunoreactivity was seen (Figure 1, lane 1). Six hours after LPS administration (5 mg/kg, IP), iNOS protein was significantly induced (Figure 1, lane 2). After 12 hours, iNOS protein had declined, and it was barely detectable 24 hours after LPS treatment (lanes 3 and 4, respectively).

NOS activity (Table 1) was measured by the conver-
sion of [3H]arginine into [3H]citrulline. It was assumed
that the NOS activity in control liver is due to constitutive
eNOS and that the increase in enzyme activity after
LPS administration is predominantly due to iNOS. After
LPS administration, the NOS enzyme activity (Table 1)
correlated with iNOS protein level (Figure 1). The anti-
body against iNOS was able to inhibit about 50% of the
total NOS enzyme activity. Preimmune serum did not
inhibit NOS activity (Table 1).

Rat hepatocytes incubated with LPS-conditioned me-
dium from monocytes contained significant amounts of
iNOS, shown by Western blotting (Figure 1, lane 5). This
was accompanied by a sevenfold increased NOx level in
culture medium.

Histology

Liver tissue of control animals showed a normal
architecture. There were no inflammatory cells in the
portal tracts nor in the parenchyma. There were no
signs of cellular damage. Six hours after LPS adminis-
tration, there was a slight increase in inflammatory activity
(Figure 2A). Inflammatory cells consisted mainly of
neutrophilic granulocytes, lymphocytes, and sinusoidal
macrophages. These cells were evenly distributed in the
sinusoidal spaces, whereas portal inflammation was in-
conspicuous. Single cell acidophilic necrotic hepatocytes
(Councilman’s bodies) were present sporadically in the
parenchyma (Figure 2A).

Twenty-four hours after LPS administration, circum-
scribed necrotic areas were seen with inflammatory cells
in addition to intralobular infiltrates (Figure 2B).

Immunohistology

There was no iNOS staining in liver sections of
control animals. In the liver of all three experimental
groups (LPS, LPS + L-NAME, and LPS + SMT), positive
iNOS staining was seen 6 hours after LPS treatment in
inflammatory cells, hepatocytes, and bile duct epithelium
(Figure 2C and D). The iNOS staining of hepatocytes
showed a scattered pattern with positive hepatocytes ran-
domly distributed throughout the parenchyma (Figure
2C). These positive hepatocytes showed a weak cyto-
plasmic staining and a strong membranous staining. The
chicken-wire pattern of iNOS immunoreactivity (Figure
2C) suggests association with canalicular membranes.
This was confirmed by confocal scanning laser micros-
cy: iNOS staining of membranes predominantly colo-
ralized with the canalicular membrane marker Pgp (Fig-
ure 3). Semiquantitative scoring of iNOS staining in the
various cell types did not result in significant differences
between the three experimental groups (n = 6 for each
experimental group).

Twenty-four hours after LPS treatment, iNOS staining
on hepatocytes had completely disappeared. Only in-
flammatory cells in necrotic areas stained positive at this
time point (Figure 2E).

**Nitrite/Nitrate (NOx) Concentrations in
Plasma and Bile**

NOx concentrations in plasma and in bile were
measured at various times after LPS treatment (Figure
4). NOx concentrations in plasma and bile were nearly
identical at 6 and 12 hours after LPS induction. In con-
trast, 24 hours after LPS treatment the NOx concentra-
tion in bile had returned to control levels, whereas the
plasma NOx level still was significantly increased. NOS
inhibitors reduced NOx concentrations in plasma and
bile to the same extent (Figure 5).

**Inhibition of Nitrite/Nitrate Production by
SMT and L-NAME**

Figure 6 shows the effects of the inhibitors SMT
and L-NAME on NOx, AST, and ALT levels in plasma
at 6 hours after LPS administration. LPS treatment (5
mg/kg) resulted in an increase of plasma NOx concentra-
tion from 6 ± 0.7 to 351 ± 46 μmol/L after 6 hours.
Administration of the inhibitor SMT (25 mg/kg), given
together with LPS, led to a more than two-thirds decrease
in plasma NOx. Administration of L-NAME (25 mg/kg)
reduced plasma NOx levels by 50%. It is obvious that
neither L-NAME nor SMT led to a complete inhibition.

AST and ALT were measured as indicators of liver
damage. Rats treated with LPS alone showed an approxi-
mately twofold increase in AST and ALT. This was statis-
tically not significant. After administration of L-NAME,
liver damage was strongly increased. In contrast, SMT
did not increase the LPS-induced liver damage (Figure 6).

Hemodynamic Effects of L-NAME and SMT

We measured the effects of L-NAME and SMT
on hemodynamic parameters in normal rats and in rats
6 hours after LPS treatment (n = 6–7 for each of the
four experimental groups). In control animals, no iNOS
was detected with Western blot and plasma NOx level
was normal (NOx = 25 ± 1.6 μmol/L). In LPS-treated
animals, iNOS protein was induced as detected by West-
ern blot, and plasma NOx levels were increased (NOx
= 262 ± 32.5 μmol/L). However, baseline MAP of un-
treated rats and rats 6 hours after LPS was not signifi-
cantly different: 103.5 ± 2.2 and 101.2 ± 1.4 mm Hg,
respectively (n = 15 for the two groups).

In control animals and LPS-treated animals, MAP and
portal pressure were stable during the entire monitoring
period after injection of vehicle (PBS, n = 3 for each
Figure 2. Histology and immunohistochemistry of liver of LPS-treated rats (5 mg/kg, IP). (A) Histology 6 hours after LPS administration. Portal tract is indicated by an arrowhead. Influx of neutrophils is clearly visible. Original magnification 100×; H&E. (B) After 24 hours, several necrotic areas are seen in the liver parenchyma. Original magnification 64×; H&E. (C) iNOS staining 6 hours after LPS. Membranous expression of iNOS on hepatocytes is present in a characteristic chicken-wire pattern. Original magnification 100×. (D) Bile duct epithelium (arrowhead) is strongly iNOS positive 6 hours after LPS. Original magnification 100×. (E) After 24 hours iNOS is only expressed in necrotic areas, whereas the rest of the parenchyma has become negative. Original magnification 100×.

1-NAME (12.5 mg/kg, IV) increased MAP in normal rats significantly more than in LPS-treated rats (Figure 7). Initially, SMT (12.5 mg/kg, IV) caused a significantly higher increase of MAP in normal rats than in LPS-treated rats. The SMT effect was only transient and lasted about 17 minutes (Figure 8).

We also monitored the portal pressure in these experimental groups. Baseline values of normal rats and rats 6
hours after LPS were 6.7 ± 0.2 and 6.8 ± 0.3 mm Hg, respectively (n = 15 for each group). L-NAME and SMT had no effect on portal pressure in normal rats (Figure 9). In LPS-treated rats, L-NAME had no effect on portal pressure, whereas SMT caused a significant increase (Figure 9).

Discussion

In the present study, we investigated the cellular distribution of iNOS and studied the effect of the NOS inhibitors L-NAME and SMT on LPS-induced liver damage.

A polyclonal antibody was raised against the C-terminal 14 amino acids of rat hepatocyte iNOS. This antibody recognizes a single protein in LPS-induced liver homogenates and cytokine-stimulated cultured hepatocytes and shows no immunoreactivity with control liver homogenates. The apparent molecular weight of this protein is

Figure 3. Canalicular localization of iNOS in rat liver 6 hours after LPS (5 mg/kg, IP). Double-labeling with antibodies against (A) iNOS and (B) Pgp (C219 monoclonal antibody), assessed with confocal scanning laser microscopy. As indicated by arrows, membrane staining of iNOS-positive hepatocytes colocalizes with Pgp, a canalicular membrane marker.

Figure 4. NOx levels in plasma (■) and bile (▲) 0, 6, 12, and 24 hours after LPS administration (1 mg/kg, IP). The data represent the mean ± SEM of duplicate samples of a typical experiment.

Figure 5. NOx levels in plasma (■) and bile (▲) 6 hours after administration of LPS (1 mg/kg, IP). The inhibitors L-NAME and SMT were given together with LPS at a dose of 25 mg/kg. The data represent the mean ± SEM of n = 2–4 per group of a typical experiment.
that a considerable number of hepatocytes are strongly iNOS positive. Moreover, in homogenates of cytokine-exposed hepatocytes, a high level of iNOS is detectable by Western blot. The reason for this difference in interpretation may be explained by the use of different antibodies and fixation procedures. Our antibody is directed against the C-terminal amino acids 1134–1147 of rat iNOS, whereas most antibodies used so far are directed against the N-terminal amino acids 47–71 of mouse iNOS or monoclonal antibodies against an unknown epitope of rat iNOS. In addition, some investigators used formalin or paraformaldehyde-fixed material for immunostaining. In our hands, these fixation procedures markedly reduced iNOS positivity compared with acetone fixation. Our results show that hepatocytes are an important source of iNOS and, consequently, of NO radical production during endotoxemia.

The induction of iNOS in rat liver after LPS administration is maximal at 6 hours and has almost returned to undetectable levels after 24 hours. In accordance, NOS enzyme activity in liver homogenates correlates with NOx levels as detected by Western blot. The inhibitors SMT and L-NAME were injected (25 mg/kg, IP) together with LPS (5 mg/kg, IP). Six hours later, the rats were killed. Data are expressed as the mean ± SEM of n = 6–8 rats per group. *P < 0.01.

Based on the staining of a few scattered hepatocytes in endotoxin-treated rats, some investigators have suggested that LPS is a weak inducer of hepatocyte iNOS and that most iNOS in LPS-treated liver is derived from inflammatory cells and Kupffer cells. We now show
In LPS-treated rats, plasma ALT and AST are approximately twofold elevated, indicating minor liver damage. Recently, Thiemermann et al.19,37 reported similar results, although in their study the liver damage induced by LPS alone was much higher and SMT actually decreased liver damage. We used various dosages and schemes of LPS administration but were not able to induce substantial liver damage with LPS alone. This is in accordance with recent studies using iNOS knockout mice.38–40 In these studies, LPS administration to both iNOS-positive and -negative mice led to minor liver damage.

Liver damage is dramatically increased when the NO production is inhibited with L-NAME. In contrast, when SMT is used, liver damage does not increase, although plasma NO\textsubscript{x} is reduced to the same extent. It has been reported that liver endothelial cells produce increased amounts of NO in response to LPS.41 However, endothelial cells produce less NO than Kupffer cells and hepatocytes on a per cell basis.41,42 Furthermore, the percentage of endothelial cells in the liver is about 12.5\%, whereas hepatocytes and Kupffer cells together account for 78\%.43 This leads to the conclusion that the contribution of endothelial cells to the increased NO production after treatment, at which time point plasma NO\textsubscript{x} levels still are highly elevated. Two mechanisms could explain these findings: NO\textsubscript{x} in bile measured 6 and 12 hours after LPS administration could result from an increased permeability of tight junctions during the first 12 hours after LPS. This is supported by equal NO\textsubscript{x} concentrations in plasma and bile during the first 12 hours after LPS administration. Increased tight junctional permeability for horseradish peroxidase has been observed 18 hours after LPS administration in an isolated perfused rat liver model.44 Moreover, NO itself can increase tight junctional permeability, as has been shown in cultured intestinal epithelial cells treated with the NO donor sodium nitroprusside.45 Apparently, 24 hours after LPS administration, the tight junctions are impermeable to NO\textsubscript{x} again and NO\textsubscript{x} cannot enter bile. Alternatively, NO\textsubscript{x} in bile may originate exclusively from iNOS in hepatocytes and/or bile duct epithelial cells. In this case, biliary NO\textsubscript{x} correlates with hepatic iNOS expression.

Many studies have suggested that during endotoxemia NO in the liver has a protective function, because inhibition of NO production leads to increased hepatic damage. In contrast, Laskin et al.36 showed an improvement in liver histology when NO production was inhibited during endotoxemia. Because these studies were performed with l-arginine analogues that show some selectivity towards eNOS, in vitro and in vivo,13–15 we investigated the effects of SMT, a preferential iNOS inhibitor,15–21 and L-NAME on endotoxin-induced liver damage.

In LPS-treated rats, plasma ALT and AST are approximately twofold elevated, indicating minor liver damage. Recently, Thiemermann et al.19,37 reported similar results, although in their study the liver damage induced by LPS alone was much higher and SMT actually decreased liver damage. We used various dosages and schemes of LPS administration but were not able to induce substantial liver damage with LPS alone. This is in accordance with recent studies using iNOS knockout mice.38–40 In these studies, LPS administration to both iNOS-positive and -negative mice led to minor liver damage.

Liver damage is dramatically increased when the NO production is inhibited with L-NAME. In contrast, when SMT is used, liver damage does not increase, although plasma NO\textsubscript{x} is reduced to the same extent. It has been reported that liver endothelial cells produce increased amounts of NO in response to LPS.41 However, endothelial cells produce less NO than Kupffer cells and hepatocytes on a per cell basis.41,42 Furthermore, the percentage of endothelial cells in the liver is about 12.5\%, whereas hepatocytes and Kupffer cells together account for 78\%.43 This leads to the conclusion that the contribution of endothelial cells to the increased NO production after LPS administration is low. Therefore, increased plasma NO\textsubscript{x} mainly originates from iNOS and the NO\textsubscript{x} reduction after administration of the NOS inhibitors L-NAME and SMT mainly results from iNOS inhibition. Thus, in
this in vivo model L-NAME and SMT inhibit iNOS to the same extent, but only L-NAME causes increased liver damage.

It has been suggested that inhibition with L-NAME causes vasoconstriction and thrombosis due to inhibition of eNOS.\(^9\) Our results show a stronger effect of L-NAME on MAP in normal rats than in LPS-treated rats, suggesting that L-NAME is a stronger eNOS than iNOS inhibitor. This is in agreement with Wu et al.\(^{44}\) SMT administration causes a significant but transient rise of MAP in normal compared with LPS-treated rats.

Like MAP, portal pressure in normal and LPS-treated animals is not significantly different, in agreement with the findings of Pastor et al.\(^{45}\) We found no effect of L-NAME on portal pressure in control rats. This lack of effect of L-NAME on portal pressure is in agreement with recent observations in intact pigs\(^{46}\) and rats\(^{47}\) and in isolated perfused rat liver.\(^{48}\) In endotoxemic rats, L-NAME also did not affect portal pressure. This is in agreement with Gundersen et al., who used a porcine model of endotoxia.\(^{49}\) In contrast, Ayuse et al. observed an increase in portal pressure after administration of L-NAME in endotoxemic pigs; the difference between this study and the present study is a different time interval between LPS and L-NAME administration.\(^{46}\) In contrast to L-NAME, SMT had no effect on portal pressure of control rats but significantly increased portal pressure in LPS-treated rats.

In conclusion, our study shows that L-NAME is hepatotoxic in LPS-treated rats, although this agent does not seem to affect portal pressure. On the other hand, SMT causes no liver damage, but it increases portal pressure in LPS-treated rats. It is important to note that we measured portal pressure and not portal flow or hepatic perfusion. Therefore we cannot rule out a possible effect of L-NAME on hepatic perfusion. For example, this agent could increase intrahepatic vascular resistance and at the same time decrease splanchnic and portal blood flow without any change in portal pressure. Effects of L-NAME on portal flow or sinusoidal resistance have been reported by several groups in control\(^{17,50}\) and in LPS-treated animals.\(^{10,48,50}\) On the other hand, Suematsu et al. observed no effect of L-NAME on hepatic vascular resistance and on sinusoidal hemodynamics in normal isolated perfused rat liver.\(^{51}\) Similarly, the increased portal pressure, observed after SMT administration to LPS-treated rats, could result from either an increase in intrahepatic vascular resistance with unchanged portal flow or from increased portal flow with unchanged resistance. If hemodynamic changes form the basis for the differences in hepatotoxicity observed after L-NAME and SMT, one would have to postulate a decreased hepatic perfusion after L-NAME, which does not occur after SMT.

Apart from possible hemodynamic consequences of NOS inhibition, strong inhibition of the NO production during endotoxemia may lead to an increased generation of reactive oxygen species within endothelial cells and mast cells.\(^{52,53}\) Moreover, Bautista and Spitzer\(^{54}\) reported on stimulation of superoxide anion release in the liver after L-NAME in normal and LPS-treated rats. When the more specific iNOS inhibitor 1-NMMA was used, this effect was absent in normal rats and less pronounced in LPS-treated rats.

Our study suggests that NO radical production can be inhibited in the endotoxemic rat without increasing liver damage. The damaging effect of L-NAME is not due to an increased portal pressure.

References

15. Southan GJ, Szabó C. Selective pharmacological inhibition of...

Received July 5, 1996. Accepted June 17, 1997.
Address requests for reprints to: Thera A. Vos, Ph.D., University Hospital Groningen, Division of Gastroenterology and Hepatology, Department of Internal Medicine, P.O. Box 30.001, 9700 RB Groningen, The Netherlands. e-mail: T.A.Vos@med.rug.nl; fax: (31) 50-3619306.

Supported by the Netherlands Digestive Diseases Foundation grant WS 93-54 and the J.K. de Cock Foundation.