# Proximity as a Source of Comparative Advantage 

Liza Archanskaia *<br>*SciencesPo/OFCE

July 2013

## Introduction

- Classic Ricardo: specialize in good in which relatively more productive
- Many-good many-country Ricardo [Costinot(2009)]: export relatively more in sector in which relatively more productive
- Ranking of relative technology stocks establishes ranking of relative sectoral exports [CDK(2012)]
- BUT: increasingly international production unbundling
- Contribution of input cost channel to define comparative advantage?


## Ricardo in the data

- What's inside the black box of technology? [Chor(2010)]
- Complementarity specific country-sector characteristics
- Welfare analysis: trade in inputs magnifies gains from trade [EK(2002), CP[2012]]
- BUT: what about role of inputs in determining pattern of trade?
- Country-sector complementarity in different dimension:
- Cost of inputs matters more in certain sectors
- Countries can be ranked in terms of proximity to suppliers


## What this paper does

- Uses stylized model to spell out mechanism through which inputs may become source of comparative advantage
- Derives theoretically grounded measure of proximity to suppliers
- Shows that this proximity characteristic creates wedge in the cost of inputs across countries
- Verifies in data that input cost channel co-determines intersectoral specialization
- Quantifies contribution of the input cost channel relatively to technology


## Production function

- Finite number of sectors $k$
- Within sector: infinite countable number of varieties $\alpha \in A \equiv\{1, \ldots, \infty\}$
- Variety production function Cobb-Douglas (inputs \& labor)

$$
\omega_{i}^{k}=\nu_{i}^{1-\zeta^{k}} P_{i}^{\zeta^{k}} \epsilon^{k}
$$

where $\zeta^{k}$ is 'input intensity' characteristic of sector

- Landed cost given by

$$
c_{i j}^{k}(\alpha)=\frac{\omega_{i}^{k} \tau_{i j}^{k}}{z_{i}^{k}(\alpha)}
$$

- $z$ drawn from Frechet: $\operatorname{Prob}[Z>z]=1-\exp \left[-\left(z / z_{i}^{k}\right)^{-\theta}\right]$


## Price indices

- Perfect competition: least cost variety bought

$$
p_{j}^{k}(\alpha)=\min _{i}\left[c_{i j}^{k}(\alpha)\right]
$$

- Sectoral price index in the destination across all exporters

$$
E\left[p_{j}^{k}(\alpha)^{1-\sigma}\right]=\left(P_{j}^{k}\right)^{1-\sigma}=\Gamma\left[\Phi_{j}^{k}\right]^{-(1-\sigma) / \theta}
$$

1. $\Gamma=\Gamma[(\theta+1-\sigma) / \theta]$
2. $\Phi_{j}^{k}=\sum_{i \in I}\left[c_{i j}^{k}\right]^{-\theta}$
3. $c_{i j}^{k}=\omega_{i}^{k} \tau_{i j}^{k} / z_{i}^{k}$, with $z_{i}^{k}$ fundamental sectoral productivity

- Overall price index (cost of input bundle):

$$
P_{i}=\prod_{k=1}^{K} P_{i}^{k \gamma^{k}}
$$

- Sectoral trade share: $\pi_{i j}^{k}=\left[c_{i j}^{k}\right]^{-\theta} / \Phi_{j}^{k}$


## Proximity characteristic

- Use definition of sectoral price index

$$
P_{j}^{k}=\kappa\left[\Phi_{j}^{k}\right]^{-1 / \theta}
$$

- To write:

$$
P_{j}^{k}=\kappa\left[\bar{\Phi}^{k}\right]^{-1 / \theta}\left\{\sum_{n=1}^{N} \tau_{n j}^{\theta} \pi_{n j}^{k}\right\}^{1 / \theta}
$$

- Use definition of overall price index: $P_{j}=\prod_{k=1}^{K}\left[P_{j}^{k}\right]^{\gamma^{k}}$
- To write:

$$
P_{j}=\kappa \prod_{k=1}^{K}\left[\bar{\Phi}^{k}\right]^{-\gamma^{k} / \theta} \prod_{k=1}^{K}\left\{\sum_{n=1}^{N} \tau_{n j}^{\theta} \pi_{n j}^{k}\right\}^{\gamma^{k} / \theta}
$$

## Industry-specific cost component

- Cost of input bundle consists of:
- world's best practice across sectors
- destination-specific proximity to suppliers:
$\rightarrow$ trade costs weighed by probability this supplier is least cost
- Industry-specific cost component $\omega^{k}$ :

$$
\begin{gathered}
\omega_{j}^{k}=\epsilon_{\text {sector-specific }}^{\epsilon^{k} \kappa^{\zeta^{k}}\left\{\prod_{s=1}^{S}\left[\bar{\Phi}^{s}\right]^{-\gamma^{s} / \theta}\right\}^{\zeta^{k}}} \\
\underbrace{\left[\nu_{j}^{k}\right]^{1-\zeta^{k}}\left\{\prod_{s=1}^{S}\left[\sum_{n=1}^{N} \tau_{n j}^{\theta} \pi_{n j}^{s}\right]^{\gamma^{s} / \theta}\right\}^{\zeta^{k}}}_{\text {exporter-sector-specific }}
\end{gathered}
$$

## Pattern of RCA

- Relative sectoral exports to market $j$

$$
\begin{aligned}
& \ln \left\{X_{i j}^{k} / X_{i^{\prime} j}^{k}\right\}=\theta\left[\ln \frac{z_{i}^{k}}{z_{i^{\prime}}^{k}}-\left(1-\zeta^{k}\right) \ln \frac{\nu_{i}^{k}}{\nu_{i^{\prime}}^{k}}-\ln \frac{\tau_{i j} \tau_{i}^{E, k}}{\tau_{i^{\prime} j} \tau_{i^{\prime}}^{E, k}}\right] \\
& +\theta\left[-\zeta^{k} \ln \left\{\frac{\prod_{s=1}^{S}\left[\sum_{n=1}^{N} \tau_{n i}^{\theta} \pi_{n i}^{s}\right]^{\gamma^{s} / \theta}}{\prod_{s=1}^{S}\left[\sum_{n=1}^{N} \tau_{n i^{\prime}}^{\theta} \pi_{n i^{\prime}}^{s}\right]}\right]\right.
\end{aligned}
$$

- Proximity: $\overline{\operatorname{PROX}}_{i}^{M}=1 / \prod_{s=1}^{S}\left\{\sum_{n=1}^{N} \pi_{n i}^{s} \tau_{n i}^{\theta}\right\}^{\gamma^{s} / \theta}$.
- Four exporter-sector cost components: technology, wages, proximity, export costs
- Retrieved in estimation relatively benchmark country and sector: exporter-sector dummy


## Estimation: Three-step procedure

- First step: retrieve exporter-sector dummies (cross-section)

$$
X_{i j, t}^{k}=\exp \left\{f e_{i j, t}+f e_{j, t}^{k}+f e_{i, t}^{k}+\xi_{i j, t}^{k}\right\}
$$

- Dummy contains cost components specific to exporter-sector:

$$
\widehat{f e}_{i, t}^{k}=\theta \ln \left(z_{i, t}^{k}\right)-\theta\left(1-\zeta^{k}\right) \ln \nu_{i, t}^{k}-\theta \zeta^{k} \ln \left(P_{i, t}\right)-\theta \ln \left(\tau_{i, t}^{E, k}\right)
$$

- Second step: estimate model parameters (all years pooled)

$$
\widehat{f e}_{i, t}^{k}=\theta\left[\ln \widehat{z}_{i, t}^{k}-\left(1-\zeta^{k}\right) \ln \widehat{\nu}_{i, t}^{k}\right]+f e_{t}+\lambda_{i t}^{k}
$$

$\widehat{z}_{i, t}^{k}:$ TFP; $\widehat{\nu}_{i, t}^{k}$ : wages (instrumented)

## Three-step procedure (contd.)

- Residual of second step $\hat{\lambda}_{i t}^{k}$ contains:
- index of trade frictions incurred in sourcing inputs (proximity)
- trade cost paid to get domestic varieties to world markets
- Third step: proximity mechanism in residual component?
- Split sample by proximity \& form pairwise sectoral residuals
- Interact relative proximity with sectoral input intensity
- Look at sign and significance of $\beta_{1}$ (pooled data)

$$
\begin{gathered}
\frac{1}{\hat{\theta}}\left[\widehat{\lambda}_{i, t}^{k}-\widehat{\lambda}_{i^{\prime}, t}^{k}\right]=\beta_{0}+\beta_{1} \ln \left\{\left(\frac{\widehat{\operatorname{PROX}}_{i, t}^{M}}{\widehat{\widehat{P R O X}}_{i^{\prime}, t}^{M}}\right)^{\widehat{\zeta^{k}}}\right\} \\
+f e_{i, t}-f e_{i^{\prime}, t}+\eta_{i i^{\prime}, t}^{k}
\end{gathered}
$$

## Data: 1995-2009

- WIOD: ISIC Rev. 3 2-digit sectors output, inputs, labor expenditure, workforce, capital expenditure, investment, capital stocks
- COMEXT: CN8 digit data aggregated to 2-digit bilateral imports by EU-15 from main partners
- COMTRADE: total imports and exports by sector
- ANBERD: R\&D data (nominal expenditure, research personnel)
- Statistical Yearbooks China: R\&D data


## Technology and wages

- TFP: fit Cobb-Douglas production function

$$
\ln \left(\bar{z}_{i}^{k}\right)=\ln Y_{i}^{k}-\beta_{l, i}^{k} \ln I_{i}^{k}-\beta_{H, i}^{k} \ln H_{i}^{k}-\beta_{K, i}^{k} \ln K_{i}^{k}
$$

$Y$, I real output (inputs), $H$ hours worked, $K$ capital use

- Wages

1. hourly wage $\nu_{i}^{k}$ reported in WIOD
2. hourly wage adjusted for worker efficiency

$$
\bar{\nu}_{i}^{k}=\sum_{e d u} \frac{\omega_{e d u, i}^{k}}{\bar{\omega}_{e d u, i}^{k}} \bar{\nu}_{e d u, i}^{k}
$$

ed $u=\{I, m, h\}$ is skill; $\omega(\bar{\omega})$ is cost (hour) share by skill; $\bar{\nu}_{\text {edu }, i}^{k}$ is efficiency-adjusted wage by skill

$$
\bar{\nu}_{e d u, i}^{k}=\nu_{e d u, i}^{k} e^{-g S_{e d u}}
$$

where $g=.06$ : return to education; $S_{\text {edu }}$ : average nb years schooling

## Instruments

- TFP instrumented with R\&D

1. R\&D personnel and real capital stocks: $[(I),(I I)]$
2. Deflated R\&D expenditure: [(III), (IV)]

- Wages instrumented with workforce

1. Number persons engaged: [(II),(IV)]
2. Efficiency-adjusted workforce: $[(I),(I I I)]$

$$
\bar{L}_{i}^{k}=\sum_{e d u} \bar{L}_{e d u, i}^{k}
$$

where $\bar{L}_{\text {edu,i }}^{k}$ is efficiency adjusted nb workers

$$
\bar{L}_{e d u, i}^{k}=L_{e d u, i}^{k} i^{g S_{e d u}}
$$

- Bottleneck: R\&D data
- Drops: Russia, Bulgaria, Brazil, India, Indonesia, Lithuania, Latvia


## Sample of countries

Table: Sample of countries: from 42 to 26

| ID | Country | Type | ID | Country | Type |
| :--- | :---: | :---: | :---: | :---: | :---: |
| AT | Austria | intra-eu15 | PL | Poland | ceec |
| BE | Belgium-Luxembourg | intra-eu15 | RO | Romania | ceec |
| DK | Denmark | intra-eu15 | SK | Slovakia | ceec |
| FI | Finland | intra-eu15 | SI | Slovenia | ceec |
| FR | France | intra-eu15 | TR | Turkey | ceec |
| DE | Germany | intra-eu15 | CA | Canada | other devpd |
| GR | Greece | intra-eu15 | JP | Japan | other devpd |
| IE | Ireland | intra-eu15 | KR | Korea | other devpd |
| IT | Italy | intra-eu15 | NO | Norway | other devpd |
| NL | Netherlands | intra-eu15 | CH | Switzerland | other devpd |
| PT | Portugal | intra-eu15 | US | USA | other devpd |
| ES | Spain | intra-eu15 | BR | Brazil | other emerging |
| SW | Sweden | intra-eu15 | CN | China | other emerging |
| GB | United Kingdom | intra-eu15 | IN | India | other emerging |
| BG | Bulgaria | ceec | ID | Indonesia | other emerging |
| HR | Croatia | ceec | MY | Malaysia | other emerging |
| CZ | Czech Republic | ceec | MX | Mexico | other emerging |
| EE | Estonia | ceec | RU | Russia | other emerging |
| HU | Hungary | ceec | SG | Singapore | other emerging |
| LV | Latvia | ceec | TW | Taiwan | other emerging |
| LT | Lithuania | ceec | TH | Thailand | other emerging |

- Sample: focus on main EU15 trading partners
- In blue: dropped b/c absent from WIOD database
- In red: R\&D bottleneck


## Estimated parameters

- Estimated heterogeneity $\widehat{\theta}$ (EK: 8.3; CDK: 6.5; SW: 4.5):

1. overidentified: 7.28(.51), 6.72(.43)
2. identified: 7.84(.52), $7.28(.45)$
3. NB: 4.5 in one-sector economy

- Precisely estimated coefficient on hourly wage: $-\theta\left(1-\zeta_{k}\right)$
- Estimated sectoral input intensity $\widehat{\zeta}_{k}$ :

1. one sector economy: $\zeta_{k}=\zeta=.69$ (matches data)
2. Sector-specific: strongly correlated $\zeta_{k}$ in WIOD

## Sectoral input intensity

Table: Sectoral factor share of inputs

|  | DATA | (I) | (II) | (III) | (IV) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 7 - 1 8}$ | 0.68 | 0.82 | 0.88 | 0.79 | 0.78 |
| $\mathbf{1 9}$ | 0.72 | 0.97 | 0.68 | 0.87 |  |
| $\mathbf{2 0}$ | 0.67 | 0.64 | 0.65 | 0.62 | 0.66 |
| $\mathbf{2 1 - 2 2}$ | 0.63 | 0.61 | 0.74 | 0.75 |  |
| $\mathbf{2 4}$ | 0.69 | 0.74 | 0.74 | 0.74 |  |
| $\mathbf{2 5}$ | 0.65 | 0.74 | 0.77 | 0.71 |  |
| $\mathbf{2 6}$ | 0.62 | 0.70 | 0.66 | 0.70 | 0.78 |
| $\mathbf{2 7 - 2 8}$ | 0.66 | 0.78 | 0.68 | 0.62 | 0.69 |
| $\mathbf{2 9}$ | 0.64 | 0.62 | 0.74 | 0.75 |  |
| $\mathbf{3 0 - 3 3}$ | 0.66 | 0.66 | 0.67 | 0.68 |  |
| $\mathbf{3 4 - 3 5}$ | 0.76 | 0.75 |  |  |  |
| $\mathbf{3 6 - 3 7}$ | 0.65 |  |  |  |  |

- estimated parameters higher in levels
- higher variability in estimated parameters
- strongly correlated with income share of inputs in data


## Proximity ranking

- Compute proximity characteristic in each year

$$
\left[\overline{\operatorname{PROX}}_{i, t}^{M}\right]^{-1}=\prod_{s=1}^{S}\left\{\sum_{n=1}^{N} \pi_{n i, t}^{s} \tau_{n i}^{\theta}\right\}^{\gamma^{s} / \theta}
$$

- distance as proxy of bilateral trade frictions
- observed market shares as weights (incl. domestic)
- estimated $\theta$, expenditure shares $\gamma^{k}$ from data
- Instrument with proximity endowment: unweighted norm of distance vector

$$
\left[P R O X_{i}^{M}\right]^{-1}=\left[\sum_{n=1}^{N} \operatorname{dist}_{i n}^{2}\right]^{0.5}
$$

## Persistence of proximity characteristic



- plots reciprocal of proximity for subset of countries
- illustrates variability across countries and persistence overtime


## Microfounded proximity \& proximity endowment



- persistent characteristic
- $>2 / 3$ total variance picked up by proximity endowment


## Proximity mechanism

- Group countries according to proximity characteristic
- Compute pairwise sectoral residuals rescaled by $\widehat{\theta}$
- Compute relative proximity rescaled by $\widehat{\zeta^{k}}$
- Focus on intersectoral variation: include exporter-year fixed effects

$$
\begin{gathered}
\frac{1}{\hat{\theta}}\left[\widehat{\lambda}_{i, t}^{k}-\widehat{\lambda}_{i^{\prime}, t}^{k}\right]=\beta_{0}+\beta_{1} \ln \left\{\left(\frac{\widehat{\operatorname{PROX}}_{i, t}^{M}}{\widehat{\operatorname{PROX}}_{i^{\prime}, t}^{M}}\right)^{\widehat{\zeta}^{k}}\right\} \\
+f e_{i, t}-f e_{i^{\prime}, t}+\eta_{i i^{\prime}, t}^{k}
\end{gathered}
$$

- Proximity mechanism determines residual ranking of relative sectoral exports if $\beta_{1}$ positive, significant


## Results for the full sample

Table: Proximity mechanism in the residual component of RCA rankings

|  | all (1) | all (1) | all (IV) | all (IV) | devd (1) | devg (I) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| relprox * inpint | $\begin{aligned} & 0.689 * * * \\ & (0.064) \end{aligned}$ | $\begin{aligned} & 0.375^{* * *} \\ & (0.093) \end{aligned}$ | $\begin{aligned} & 1.255^{* * *} \\ & (0.100) \end{aligned}$ | $\begin{aligned} & 0.658^{* * *} \\ & (0.152) \end{aligned}$ | $\begin{aligned} & 1.288^{* * *} \\ & (0.101) \end{aligned}$ | $\begin{aligned} & 0.176^{* *} \\ & (0.078) \end{aligned}$ |
| recent |  | $\begin{aligned} & 0.585^{* * *} \\ & (0.126) \end{aligned}$ |  | $\begin{aligned} & 1.033^{* * *} \\ & (0.200) \end{aligned}$ |  |  |
| Obs | 17748 | 17748 | 20097 | 20097 | 8883 | 8865 |
| R Recent FE | 0.674 | $\begin{aligned} & 0.674 \\ & \text { YES } \end{aligned}$ | 0.665 | $\begin{aligned} & 0.665 \\ & \text { YES } \end{aligned}$ | 0.541 | 0.776 |

- results robust to instrumenting procedure
- proximity matters more in recent period (2001-2009)


## Results by sub-group

Table: Proximity mechanism in residual component of RCA rankings

|  | (I) | (II) | (III) | (IV) |
| :--- | :---: | :---: | :---: | :---: |
| eu15-to-devpd | $1.379^{* * *}$ | $2.359^{* * *}$ | $1.344^{* * *}$ | $2.263^{* * *}$ |
| nb-obs | 5541 | 5541 | 6399 | 6399 |
| ceec-to-devpd | $1.151^{* * *}$ | $2.242^{* * *}$ | $0.890^{* * *}$ | $1.712^{* * *}$ |
| nb-obs | 3342 | 3342 | 3894 | 3894 |
| eu15-to-devpg | 0.165 | $0.356^{* *}$ | $0.254^{* *}$ | $0.520^{* * *}$ |
| nb-obs | 5529 | 5529 | 6100 | 6100 |
|  |  |  |  |  |
| ceec-to-devpg | $0.191^{*}$ | $0.623^{* * *}$ | 0.127 | $0.489^{* * *}$ |
| nb-obs | 3336 | 3336 | 3704 | 3704 |

## Variance decomposition

- Quantify contribution of input cost channel to RCA
- Work with relative exporter-sector dummies
- Split sample by proximity \& form pairwise combinations
- Calculate total explained variance by TFP, wages, proximity
- Focus on share uniquely attributable to relative proximity

$$
\begin{gathered}
\frac{1}{\hat{\theta}}\left(\widehat{f e}_{i, t}^{k}-\widehat{f e}_{i^{\prime}, t}^{k}\right)=\alpha_{0}+\alpha_{1} \ln \left[\frac{\widehat{z}_{i, t}^{k}}{\widehat{z}_{i^{\prime}, t}^{k}}\right]+\alpha_{2} \ln \left\{\left[\frac{\widehat{\nu}_{i, t}^{k}}{\widehat{\nu}_{i^{\prime}, t}^{k}}\right]^{-\left(1-\widehat{\zeta}^{k}\right)}\right\}+ \\
\alpha_{3} \ln \left\{\left[\frac{\widehat{P R O X}_{i, t}^{M}}{\widehat{P R O X}_{i^{\prime}, t}^{M}}\right]^{\widehat{\zeta_{k}^{k}}}\right\}+f e_{i, t}+f e_{i^{\prime}, t}+\xi_{i i^{\prime}, t}^{k}
\end{gathered}
$$

## Unexplained variance attributable to proximity

Table: Fraction of residual variance attributable to proximity

|  | all (I) | all (II) | all (III) | all (IV) |
| :--- | :--- | :--- | :--- | :--- |
| relprox * inpint | $2.777^{* * *}$ | $3.381^{* * *}$ | $2.583^{* * *}$ | $3.043^{* * *}$ |
|  | $(0.282)$ | $(0.336)$ | $(0.255)$ | $(0.297)$ |
| $R^{2}$ | 0.178 | 0.200 | 0.181 | 0.196 |
| Obs | 17,748 | 17,748 | 20,097 | 20,097 |

Table: Coefficient of partial determination (proximity, all years)

|  | all (I) | all (II) | all (III) | all (IV) |
| :--- | :--- | :--- | :--- | :--- |
| resid - relprox | $2.601^{* * *}$ | $3.180^{* * *}$ | $2.446^{* * *}$ | $2.907^{* * *}$ |
| $(0.305)$ | $(0.363)$ | $(0.283)$ | $(0.330)$ |  |
| $R^{2}$ | 0.154 | $\mathbf{0 . 1 7 3}$ | $\mathbf{0 . 1 5 4}$ | 0.169 |
| Obs | 17,748 | 17,748 | 20,097 | 20,097 |

## Increasing importance overtime

Figure: Coefficient of partial determination (proximity, annual)


## Focus on intersectoral variation

Table: The intersectoral component of RCA rankings

|  | all (I) | all (II) | all (III) | all (IV) | $\beta$-coef (I) |
| :--- | :--- | :--- | :--- | :--- | :--- |
| tfp | $2.143^{* * *}$ | $2.105^{* * *}$ | $2.124^{* * *}$ | $1.994^{* * *}$ | 2.50 |
|  | $(0.110)$ | $(0.107)$ | $(0.111)$ | $(0.107)$ |  |
| wage | $1.981^{* * *}$ | $1.919^{* * *}$ | $2.291^{* * *}$ | $2.178^{* * *}$ | 2.32 |
|  | $(0.112)$ | $(0.109)$ | $(0.120)$ | $(0.117)$ |  |
| proximity | $1.668^{* * *}$ | $2.964^{* * *}$ | $1.642^{* * *}$ | $2.861^{* * *}$ | 0.24 |
|  | $(0.160)$ | $(0.274)$ | $(0.156)$ | $(0.265)$ |  |
| $R^{2}$ |  |  |  |  |  |
| Obs | 0.731 | 0.731 | 0.731 | 0.726 |  |

- Proximity matters at the intersectoral level
- BUT contribution much lower (see standardized coef. col.5)


## Increasing importance overtime

Figure: Partial and semipartial $r^{2}$ in cross section: full sample


## Results by subgroup: EU-15

Figure: Partial and semipartial $r^{2}$ : EU15


## Results by subgroup: CEECs

Figure: Partial and semipartial $r^{2}$ : proximity (CEECs)


## Does proximity constitute a source of comparative advantage?

- Determines wedge in relative cost of the input bundle which matters more in input-intensive sectors
- Input cost channel contributes to shape pattern of RCA across partners whith differ in proximity to suppliers
- This mechanism has growing importance overtime
- BUT: intersectoral specialization still determined by ranking of relative technology stocks


## Robustness \& Further Work

- Use model structure to compute price indices: do results on the role of proximity stand?
- Use explicit IO structure: do results in this paper establish a lower bound on the importance of the input cost channel?
- Look into persistence: which type (magnitude) of shocks on structure of trade costs (technology stocks) needed to inflect pattern of specialization?

