Proximity as a Source of Comparative Advantage

Liza Archanskaia *

*SciencesPo/OFCE

July 2013

Introduction

- Classic Ricardo: specialize in good in which relatively more productive
- Many-good many-country Ricardo [Costinot(2009)]: export relatively more in sector in which relatively more productive
- Ranking of relative technology stocks establishes ranking of relative sectoral exports [CDK(2012)]
- BUT: increasingly international production unbundling
- Contribution of input cost channel to define comparative advantage?

Ricardo in the data

- What's inside the black box of technology? [Chor(2010)]
- Complementarity specific country-sector characteristics
- Welfare analysis: trade in inputs magnifies gains from trade [EK(2002), CP[2012]]
- BUT: what about role of inputs in determining pattern of trade?
- Country-sector complementarity in different dimension:
 - Cost of inputs matters more in certain sectors
 - Countries can be ranked in terms of proximity to suppliers

What this paper does

- Uses stylized model to spell out mechanism through which inputs may become source of comparative advantage
- Derives theoretically grounded measure of proximity to suppliers
- Shows that this proximity characteristic creates wedge in the cost of inputs across countries
- Verifies in data that input cost channel co-determines intersectoral specialization
- Quantifies contribution of the input cost channel relatively to technology

Production function

- Finite number of sectors k
- Within sector: infinite countable number of varieties $\alpha \in A \equiv \{1,...,\infty\}$
- Variety production function Cobb-Douglas (inputs & labor)

$$\omega_i^k = \nu_i^{1-\zeta^k} P_i^{\zeta^k} \epsilon^k$$

where ζ^k is 'input intensity' characteristic of sector

Landed cost given by

$$c_{ij}^{k}(\alpha) = \frac{\omega_{i}^{k} \tau_{ij}^{k}}{z_{i}^{k}(\alpha)}$$

• z drawn from Frechet: $Prob\left[Z>z
ight]=1-\exp\left[-\left(z/z_i^k
ight)^{- heta}
ight]$

Price indices

Perfect competition: least cost variety bought

$$p_j^k(\alpha) = \min_i \left[c_{ij}^k(\alpha) \right]$$

• Sectoral price index in the destination across all exporters

$$E\left[p_j^k(\alpha)^{1-\sigma}\right] = (P_j^k)^{1-\sigma} = \Gamma\left[\Phi_j^k\right]^{-(1-\sigma)/\theta}$$

- 1. $\Gamma = \Gamma [(\theta + 1 \sigma)/\theta]$
- 2. $\Phi_i^k = \sum_{i \in I} \left[c_{ii}^k \right]^{-\theta}$
- 3. $c_{ii}^{k} = \omega_{i}^{k} \tau_{ii}^{k} / z_{i}^{k}$, with z_{i}^{k} fundamental sectoral productivity
- Overall price index (cost of input bundle):

$$P_i = \prod_{i=1}^K P_i^{k\gamma^k}$$

• Sectoral trade share: $\pi_{ij}^k = \left\lceil c_{ij}^k \right\rceil^{-\theta}/\Phi_j^k$

Proximity characteristic

Use definition of sectoral price index

$$P_j^k = \kappa \left[\Phi_j^k \right]^{-1/\theta}$$

To write:

$$P_j^k = \kappa \left[\overline{\Phi}^k \right]^{-1/\theta} \left\{ \sum_{n=1}^N \tau_{nj}^{\theta} \pi_{nj}^k \right\}^{1/\theta}$$

- Use definition of overall price index: $P_j = \prod_{k=1}^K \left[P_j^k
 ight]^{\gamma^k}$
- To write:

$$P_{j} = \kappa \prod_{k=1}^{K} \left[\overline{\Phi}^{k} \right]^{-\gamma^{k}/\theta} \prod_{k=1}^{K} \left\{ \sum_{n=1}^{N} \tau_{nj}^{\theta} \pi_{nj}^{k} \right\}^{\gamma^{k}/\theta}$$

Industry-specific cost component

- Cost of input bundle consists of:
 - world's best practice across sectors
 - destination-specific proximity to suppliers:
 → trade costs weighed by probability this supplier is least cost
- Industry-specific cost component ω^k :

$$\omega_{j}^{k} = e^{k} \kappa^{\zeta^{k}} \left\{ \prod_{s=1}^{S} \left[\overline{\Phi}^{s} \right]^{-\gamma^{s}/\theta} \right\}^{\zeta^{k}}$$

$$\underbrace{\left[\nu_{j}^{k} \right]^{1-\zeta^{k}} \left\{ \prod_{s=1}^{S} \left[\sum_{n=1}^{N} \tau_{nj}^{\theta} \pi_{nj}^{s} \right]^{\gamma^{s}/\theta} \right\}^{\zeta^{k}}}_{exporter-sector-specific}$$

Pattern of RCA

Relative sectoral exports to market j

$$\ln\left\{X_{ij}^{k}/X_{i'j}^{k}\right\} = \theta\left[\ln\frac{z_{i}^{k}}{z_{i'}^{k}} - (1-\zeta^{k})\ln\frac{\nu_{i}^{k}}{\nu_{i'}^{k}} - \ln\frac{\tau_{ij}\tau_{i}^{E,k}}{\tau_{i'j}\tau_{i'}^{E,k}}\right]$$
$$+\theta\left[-\zeta^{k}\ln\left\{\frac{\prod_{s=1}^{S}\left[\sum_{n=1}^{N}\tau_{ni}^{\theta}\pi_{ni}^{s}\right]^{\gamma^{s}/\theta}}{\prod_{s=1}^{S}\left[\sum_{n=1}^{N}\tau_{ni'}^{\theta}\pi_{ni'}^{s}\right]^{\gamma^{s}/\theta}}\right\}\right]$$

- Proximity: $\overline{PROX}_{i}^{M} = 1/\prod_{s=1}^{S} \left\{ \sum_{n=1}^{N} \pi_{ni}^{s} \tau_{ni}^{\theta} \right\}^{\gamma^{s}/\theta}$.
- Four exporter-sector cost components: technology, wages, proximity, export costs
- Retrieved in estimation relatively benchmark country and sector: exporter-sector dummy

Estimation: Three-step procedure

• First step: retrieve exporter-sector dummies (cross-section)

$$X_{ij,t}^k = \exp\left\{fe_{ij,t} + fe_{j,t}^k + fe_{i,t}^k + \xi_{ij,t}^k\right\}$$

• Dummy contains cost components specific to exporter-sector:

$$\widehat{\mathit{fe}}_{i,t}^k \ = \ \theta \ln(z_{i,t}^k) - \theta(1-\zeta^k) \ln \nu_{i,t}^k - \theta \zeta^k \ln(P_{i,t}) - \theta \ln(\tau_{i,t}^{E,k})$$

• Second step: estimate model parameters (all years pooled)

$$\widehat{\mathit{fe}}_{i,t}^{k} = \theta \left[\ln \widehat{z}_{i,t}^{k} - (1 - \zeta^{k}) \ln \widehat{\nu}_{i,t}^{k} \right] + \mathit{fe}_{t} + \lambda_{it}^{k}$$

 $\hat{z}_{i,t}^k$: TFP; $\hat{v}_{i,t}^k$: wages (instrumented)

Three-step procedure (contd.)

- Residual of second step $\widehat{\lambda}_{it}^k$ contains:
 - index of trade frictions incurred in sourcing inputs (proximity)
 - trade cost paid to get domestic varieties to world markets
- Third step: proximity mechanism in residual component?
- Split sample by proximity & form pairwise sectoral residuals
- Interact relative proximity with sectoral input intensity
- Look at sign and significance of β_1 (pooled data)

$$\frac{1}{\widehat{\theta}} \left[\widehat{\lambda}_{i,t}^{k} - \widehat{\lambda}_{i',t}^{k} \right] = \beta_0 + \beta_1 \ln \left\{ \left(\frac{\widehat{PROX}_{i,t}^{M}}{\widehat{PROX}_{i',t}^{M}} \right)^{\zeta^k} \right\} + fe_{i,t} - fe_{i',t} + \eta_{ii',t}^{k}$$

Data

Results

Data: 1995-2009

- WIOD: ISIC Rev.3 2-digit sectors output, inputs, labor expenditure, workforce, capital expenditure, investment, capital stocks
- COMEXT: CN8 digit data aggregated to 2-digit bilateral imports by EU-15 from main partners
- COMTRADE: total imports and exports by sector
- ANBERD: R&D data (nominal expenditure, research personnel)
- Statistical Yearbooks China: R&D data

Technology and wages

• TFP: fit Cobb-Douglas production function

$$\ln(\overline{z}_i^k) = \ln Y_i^k - \beta_{I,i}^k \ln I_i^k - \beta_{H,i}^k \ln H_i^k - \beta_{K,i}^k \ln K_i^k$$

Y, I real output (inputs), H hours worked, K capital use

- Wages
 - 1. hourly wage ν_i^k reported in WIOD
 - 2. hourly wage adjusted for worker efficiency

$$\overline{\nu}_{i}^{k} = \sum_{\substack{\text{odu}}} \frac{\omega_{\text{edu},i}^{k}}{\overline{\omega}_{\text{edu},i}^{k}} \overline{\nu}_{\text{edu},i}^{k}$$

 $edu = \{I, m, h\}$ is skill; ω ($\overline{\omega}$) is cost (hour) share by skill; $\overline{\nu}_{edu,i}^k$ is efficiency-adjusted wage by skill

$$\overline{\nu}_{edu,i}^{k} = \nu_{edu,i}^{k} e^{-gS_{edu}}$$

where g = .06: return to education; S_{edu} : average nb years schooling

Instruments

- TFP instrumented with R&D
 - 1. R&D personnel and real capital stocks: [(I), (II)]
 - 2. Deflated R&D expenditure: [(III), (IV)]
- Wages instrumented with workforce
 - 1. Number persons engaged: [(II), (IV)]
 - 2. Efficiency-adjusted workforce: [(I), (III)]

$$\overline{L}_{i}^{k} = \sum_{edu} \overline{L}_{edu,i}^{k}$$

where \overline{L}_{edu}^{k} is efficiency adjusted nb workers

$$\overline{L}_{edu,i}^{k} = L_{edu,i}^{k} e^{gS_{edu}}$$

- Bottleneck: R&D data
- Drops: Russia, Bulgaria, Brazil, India, Indonesia, Lithuania, Latvia

Sample of countries

Table: Sample of countries: from 42 to 26

ID	Country	Туре	ID	Country	Туре
AT	Austria	intra-eu15	PL	Poland	ceec
BE	Belgium-Luxembourg	intra-eu15	RO	Romania	ceec
DK	Denmark	intra-eu15	SK	Slovakia	ceec
FI	Finland	intra-eu15	SI	Slovenia	ceec
FR	France	intra-eu15	TR	Turkey	ceec
DE	Germany	intra-eu15	CA	Canada	other devpd
GR	Greece	intra-eu15	JP	Japan	other devpd
IE	Ireland	intra-eu15	KR	Korea	other devpd
IT	Italy	intra-eu15	NO	Norway	other devpd
NL	Netherlands	intra-eu15	CH	Switzerland	other devpd
PT	Portugal	intra-eu15	US	USA	other devpd
ES	Spain	intra-eu15	BR	Brazil	other emerging
SW	Sweden	intra-eu15	CN	China	other emerging
GB	United Kingdom	intra-eu15	IN	India	other emerging
BG	Bulgaria	ceec	ID	Indonesia	other emerging
HR	Croatia	ceec	MY	Malaysia	other emerging
CZ	Czech Republic	ceec	MX	Mexico	other emerging
EE	Estonia	ceec	RU	Russia	other emerging
HU	Hungary	ceec	SG	Singapore	other emerging
LV	Latvia	ceec	TW	Taiwan	other emerging
LT	Lithuania	ceec	TH	Thailand	other emerging

Sample: focus on main EU15 trading partners

• In blue: dropped b/c absent from WIOD database

• In red: R&D bottleneck

Estimated parameters

- Estimated heterogeneity $\widehat{\theta}$ (EK: 8.3; CDK: 6.5; SW: 4.5):
 - 1. overidentified: 7.28(.51), 6.72(.43)
 - 2. identified: 7.84(.52), 7.28(.45)
 - 3. NB: 4.5 in one-sector economy
- Precisely estimated coefficient on hourly wage: $-\theta(1-\zeta_k)$
- Estimated sectoral input intensity $\widehat{\zeta}_k$:
 - 1. one sector economy: $\zeta_k = \zeta = .69$ (matches data)
 - 2. Sector-specific: strongly correlated ζ_k in WIOD

Sectoral input intensity

Table: Sectoral factor share of inputs

	DATA	(I)	(II)	(III)	(IV)	
17-18	0.68	0.82	0.79	0.79	0.78	
19	0.72	0.97	0.88	0.95	0.87	- 1
20	0.67	0.64	0.68	0.65	0.68	- 1
21-22	0.63	0.61	0.65	0.62	0.66	
24	0.69	0.74	0.74	0.75	0.75	
25	0.65	0.74	0.74	0.74	0.74	
26	0.62	0.70	0.71	0.70	0.71	- 1
27-28	0.66	0.78	0.77	0.78	0.78	
29	0.64	0.62	0.66	0.62	0.66	- 1
30-33	0.66	0.66	0.68	0.66	0.69	
34-35	0.76	0.75	0.74	0.76	0.75	- 1
36-37	0.65	0.62	0.67	0.63	0.68	

- estimated parameters higher in levels
- higher variability in estimated parameters
- strongly correlated with income share of inputs in data

Proximity ranking

Compute proximity characteristic in each year

$$\left[\overline{PROX}_{i,t}^{M}\right]^{-1} = \prod_{s=1}^{S} \left\{ \sum_{n=1}^{N} \pi_{ni,t}^{s} \tau_{ni}^{\theta} \right\}^{\gamma^{s}/\theta}$$

- distance as proxy of bilateral trade frictions
- observed market shares as weights (incl. domestic)
- estimated θ , expenditure shares γ^k from data
- Instrument with proximity endowment: unweighted norm of distance vector

$$\left[PROX_{i}^{M}\right]^{-1} = \left[\sum_{n=1}^{N} dist_{in}^{2}\right]^{0.5}$$

Persistence of proximity characteristic

- plots reciprocal of proximity for subset of countries
- illustrates variability across countries and persistence overtime

Microfounded proximity & proximity endowment

- persistent characteristic
- \bullet > 2/3 total variance picked up by proximity endowment

Proximity mechanism

- Group countries according to proximity characteristic
- ullet Compute pairwise sectoral residuals rescaled by $\widehat{ heta}$
- Compute relative proximity rescaled by $\widehat{\zeta^k}$
- Focus on intersectoral variation: include exporter-year fixed effects

$$\frac{1}{\widehat{\theta}} \left[\widehat{\lambda}_{i,t}^{k} - \widehat{\lambda}_{i',t}^{k} \right] = \beta_0 + \beta_1 \ln \left\{ \left(\frac{\widehat{PROX}_{i,t}^{M}}{\widehat{PROX}_{i',t}^{M}} \right)^{\zeta^k} \right\} + fe_{i,t} - fe_{i',t} + \eta_{ii',t}^{k}$$

• Proximity mechanism determines residual ranking of relative sectoral exports if β_1 positive, significant

Results for the full sample

Table: Proximity mechanism in the residual component of RCA rankings

	all (I)	all (I)	all (IV)	all (IV)	devd (I)	devg (I)
relprox * inpint	0.689*** (0.064)	0.375*** (0.093)	1.255*** (0.100)	0.658*** (0.152)	1.288*** (0.101)	0.176** (0.078)
recent		0.585*** (0.126)		1.033*** (0.200)		
Obs R ² Recent FE	17748 0.674	17748 0.674 YES	20097 0.665	20097 0.665 YES	8883 0.541	8865 0.776

- results robust to instrumenting procedure
- proximity matters more in recent period (2001-2009)

Results by sub-group

Table: Proximity mechanism in residual component of RCA rankings

	(I)	(II)	(III)	(IV)
eu15-to-devpd	1.379***	2.359***	1.344***	2.263***
nb-obs	5541	5541	6399	6399
ceec-to-devpd	1.151***	2.242***	0.890***	1.712***
nb-obs	3342	3342	3894	3894
eu15-to-devpg	0.165	0.356**	0.254**	0.520***
nb-obs	5529	5529	6100	6100
ceec-to-devpg	0.191*	0.623***	0.127	0.489***
nb-obs	3336	3336	3704	3704

Variance decomposition

- Quantify contribution of input cost channel to RCA
- Work with relative exporter-sector dummies
- Split sample by proximity & form pairwise combinations
- Calculate total explained variance by TFP, wages, proximity
- Focus on share uniquely attributable to relative proximity

$$\frac{1}{\widehat{\theta}} \left(\widehat{fe}_{i,t}^{k} - \widehat{fe}_{i',t}^{k} \right) = \alpha_0 + \alpha_1 \ln \left[\frac{\widehat{z}_{i,t}^{k}}{\widehat{z}_{i',t}^{k}} \right] + \alpha_2 \ln \left\{ \left[\frac{\widehat{\nu}_{i,t}^{k}}{\widehat{\nu}_{i',t}^{k}} \right]^{-(1-\widehat{\zeta}^{k})} \right\} + \alpha_2 \ln \left\{ \left[\frac{\widehat{\nu}_{i',t}^{k}}{\widehat{\nu}_{i',t}^{k}} \right] + \alpha_2 \ln \left[\frac{\widehat{\nu}_{i',t}^{k}}{\widehat{\nu}_{i',t}^{k}} \right] \right\} + \alpha_2 \ln \left\{ \left[\frac{\widehat{\nu}_{i',t}^{k}}{\widehat{\nu}_{i',t}^{k}} \right] \right\} + \alpha_2 \ln \left[\frac{\widehat{\nu}_{i',t}^{k}}{\widehat{\nu}_{i',t}^{k}} \right] + \alpha_2 \ln \left[\frac{\widehat{\nu}_{i',t}^{k}}{\widehat{\nu}$$

$$\alpha_{3} \ln \left\{ \left[\frac{\widehat{PROX}_{i,t}^{M}}{\widehat{PROX}_{i',t}^{M}} \right]^{\widehat{\zeta}^{k}} \right\} + fe_{i,t} + fe_{i',t} + \xi_{ii',t}^{k}$$

Unexplained variance attributable to proximity

Table: Fraction of residual variance attributable to proximity

	all (I)	all (II)	all (III)	all (IV)
relprox * inpint	2.777*** (0.282)	3.381*** (0.336)	2.583*** (0.255)	3.043*** (0.297)
R ²	0.178	0.200	0.181	0.196
Obs	17,748	17,748	20,097	20,097

Table: Coefficient of partial determination (proximity, all years)

	all (I)	all (II)	all (III)	all (IV)
resid — relprox	2.601*** (0.305)	3.180*** (0.363)	2.446*** (0.283)	2.907*** (0.330)
R^2	0.154	0.173	0.154	0.169
Obs	17,748	17,748	20,097	20,097

Increasing importance overtime

Figure: Coefficient of partial determination (proximity, annual)

Focus on intersectoral variation

Table: The intersectoral component of RCA rankings

	all (I)	all (II)	all (III)	all (IV)	β -coef (I)
tfp	2.143*** (0.110)	2.105*** (0.107)	2.124*** (0.111)	1.994*** (0.107)	2.50
wage	1.981*** (0.112)	1.919*** (0.109)	2.291*** (0.120)	2.178*** (0.117)	2.32
proximity	1.668*** (0.160)	2.964*** (0.274)	1.642*** (0.156)	2.861*** (0.265)	0.24
R^2	0.731	0.731	0.731	0.726	
Obs	17,748	17,748	20,097	20,097	

- Proximity matters at the intersectoral level
- BUT contribution much lower (see standardized coef. col.5)

Increasing importance overtime

Figure: Partial and semipartial r^2 in cross section: full sample

Results by subgroup: EU-15

Figure: Partial and semipartial r^2 : EU15

Results by subgroup: CEECs

Figure: Partial and semipartial r^2 : proximity (CEECs)

Does proximity constitute a source of comparative advantage?

- Determines wedge in relative cost of the input bundle which matters more in input-intensive sectors
- Input cost channel contributes to shape pattern of RCA across partners whith differ in proximity to suppliers
- This mechanism has growing importance overtime
- BUT: intersectoral specialization still determined by ranking of relative technology stocks

Robustness & Further Work

- Use model structure to compute price indices: do results on the role of proximity stand?
- Use explicit IO structure: do results in this paper establish a lower bound on the importance of the input cost channel?
- Look into persistence: which type (magnitude) of shocks on structure of trade costs (technology stocks) needed to inflect pattern of specialization?